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Abstract

A largeportionof real-world datais storedin com-

mercial relational databasesystems. In contrast,
most statisticallearning methodswork only with

“flat” datarepresentations.Thus, to apply these
methods,we are forced to corvert our datainto

a flat form, therebylosing much of the relational
structurepresentin our databaseThis paperbuilds

ontherecentwork on probabilisticrelationalmod-
els (PRMs) anddescribesow to learnthemfrom

databasesPRMsallow the propertiesof anobject
to dependprobabilistically both on other proper

ties of thatobjectandon propertiesof relatedob-

jects. Although PRMs are significantly more ex-

pressie than standardmodels, such as Bayesian
networks, we shov how to extendwell-known sta-
tistical methodsfor learningBayesiametworks to

learnthesemodels. We describeboth parameter
estimationandstructure learning— the automatic
induction of the dependeng structurein a model.

Moreover, we shav how thelearningprocedurecan

exploit standarddatabaseetrieval techniquesfor

efficient learningfrom large datasets.We present
experimentalresultson both real andsyntheticre-

lationaldatabases.

1 Introduction

Relationalmodelsare the most commonrepresentatiorof
structureddata. Enterprisebusinessnformation, marketing
andsalesdata,medicalrecords andscientificdatasetgreall
storedin relationaldatabasedndeed relationaldatabaseare
amulti-billion dollarindustry Recentlytherehasbeengrow-
ing interestin making more sophisticatediseof thesehuge
amountf data,in particularminingthesedatabasefor cer
tain patternsandregularities. By explicitly modelingthese
regularities,we cangain a deeperunderstandingf our do-
mainandmay discover usefulrelationshipsWe canalsouse
ourmodelto “fill in” unknovnbutimportantinformation. For
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example,we maybeinterestedn predictingwhetheraperson
is a potentialmoney-launderebasedon their bankdeposits,
internationaltravel, businessconnectionsand arrestrecords
of known associateflensen1997. In anothercasewe may
be interestedn classifyingweb pagesasbelongingto a stu-
dent,afacultymembera project,etc.,usingattributesof the
webpageandof relatedpageqdCravenetal., 1994.

Unfortunately few inductive learningalgorithmsarecapa-
ble of handlingdatain its relationalform. Mostarerestricted
to dealingwith aflat setof instanceseachwith its own sepa-
rateattributes. To usethesemethodspnetypically “flattens”
the relationaldata,removing its richer structure. This pro-
cess,however, losesinformation which might be crucial in
understandinghe data. Consider for example,the problem
of predictingthe valueof anattribute of a certainentity, e.g.,
whethera personis a money-launderer This attribute will
be correlatedwith other attributesof this entity, aswell as
with attributesof relatedentities, e.g., of financial transac-
tions conductedby this person,of otherpeopleinvolvedin
thesetransactionspf othertransactiongonductedoy these
people etc. In orderto “flatten” this problem,we would need
to decidein advanceon afixedsetof attributesthatthelearn-
ing algorithmcanusein this task. Thus,we wanta learning
algorithmthatcandealwith multiple entitiesandtheir prop-
erties,andcanreachconclusionsaboutan entity’s character
istics basedon the propertiesof the entitiesto whichiit is re-
lated. Until now, inductivelogic programming(ILP) [Lavrat
and DZeroski, 1994 hasbeenthe primary learning frame-
work with this capability ILP algorithmslearnlogical Horn
rulesfor determiningwhensomefirst-orderpredicateholds.
While ILP is anexcellentsolutionin mary settingsjt maybe
inappropriateén others. The main limitation is the determin-
istic natureof the rulesdiscovered. In marny domains,such
asthe examplesabore, we encounteinterestingcorrelations
thatarefar from beingdeterministic.

Our goalin this paperis to learnmorerefinedprobabilis-
tic modelsthatrepresenstatisticalcorrelationgothbetween
the propertiesof an entity and betweenthe propertiesof re-
lated entities. Sucha modelcanthenbe usedfor reasoning
aboutan entity usingthe entirerich structureof knowledge
encodedy therelationalrepresentation.

Thestartingpointfor ourwork is thestructuredepresenta-
tion of probabilisticmodels,asexemplifiedin Bayesiamet-
works (BNs). A BN allows us to provide a compactrep-



resentatiorof a complex probability distribution over some
fixed setof attributesor randomvariables Therepresenta-
tion exploits the locality of influencethatis presentin mary
domains. We build on two recentdevelopmentsn the field
of Bayesiannetworks. The first is the deepunderstanding
of the statisticallearning problemin suchmodels[Hecker-
man, 1998; Heckermanet al., 1999 andthe role of struc-
ture in providing an appropriatebias for the learningtask.
The seconds therecentdevelopmentof representationthat
extend the attribute-basedBN representatiorio incorporate
amuchricher relationalstructure[Koller and Pfeffer, 1998;
Ngo andHaddavy, 1996;Poole,1993.

In this paperwe combinethesetwo advancesindeed,one
of our key contritutionsis to shov that mary of the tech-
niguesof Bayesiannetwork learningcanbe extendedto the
taskof learningthesemore complex models. This contribu-
tion generalize$§Koller andPfeffer, 1997’s preliminarywork
on thistopic. We startby describingthe semanticof proba-
bilistic relational models We thenexaminethe problemsof
parameterestimationandstructuie selectionfor this classof
models.We dealwith somecrucialtechnicalissueghatdis-
tinguishthe problemof learningrelationalprobabilisticmod-
els from that of learningBayesiannetworks. We provide a
formulationof thelik elihoodfunctionappropriatdo this set-
ting, andshow how it interactswith the standarcdassumptions
of BN learning. The searchover coherentdependeng struc-
turesis significantlymorecomplex thanin the caseof learn-
ing BN structureand we introducethe necessaryools and
conceptgo do this effectively. We thendescribeexperimen-
tal resultson syntheticand real-world datasetsand finally
discusgpossibleextensionsaandapplications.

2 Underlying framework
2.1 Relational model

We describeourrelationalmodelin genericterms,closelyre-
latedto thelanguageof entity-relationshipmodels.This gen-
erality allows our framework to be mappednto a variety of
specificrelational systemsjncluding the probabilisticlogic
programsof [Ngo andHaddavy, 1996;Poole, 1993, andthe
probabilisticframesystem®f [Koller andPfeffer, 199§. Our
learningresultsapplyto all of theseframenorks.

The vocahulary of a relationalmodel consistsof a setof
classesXy, ..., X, andasetof relationsRy, ..., R,,. Each
entity typeis associatedvith a setof attributes.A(X;). Each
attribute A; € A(X;) takeson valuesin somefixed domain
of valuesV' (4,). EachrelationR is typed. This vocatulary
definesa schemafor our relationalmodel.

Considera simple geneticmodel of the inheritanceof a
singlegenethatdetermines persons bloodtype. Eachper
sonhastwo copiesof the chromosomeontainingthis gene,
oneinheritedfrom hermother andoneinheritedfrom herfa-
ther Thereis alsoa possiblycontaminatedestthatattempts
to recognizethe persons blood type. Our schemacontains
two classe$ersonandBlood-Test andthreerelationsFather,
Mother, andTest-of. Attributesof PersonareName Gender
P-Chromosomdthe chromosomeénheritedfrom the father),
M-Chromosoméinheritedfrom the mother). The attributes

of Blood-Testare Serial-Number Date, Contaminatedand
Result

An instanceZ of aschemalefinesasetof entitiesOZ (X;)
for eachentity type X;. For eachentity z € 0%(X;), and
eachattribute 4; € A(Xj;), theinstancenasanassociatect-
tributez.a;; its valuein 7 is denotedZ, ,,. For eachrelation
R(Xl, - ,Xk) andeach(;rl, . ,.’L‘k> € OI(Xl) X e+e X
O%(X},), T specifiesvhetherR(z1, ..., z;) holds.

We are interestedin describinga probability model over
instanceof a relationalschema.However, someattributes,
suchas a nameor social security number are fully deter
mined. We label suchattributesasfixed We assumethat
they areknown in ary instantiationof the schemaTheother
attributesare called probabilistic. A skeletonstructue o of
arelationalschemas a partial specificatiorof aninstanceof
the schema. It specifiesthe setof objectsO’ (X;) for each
class,the valuesof the fixed attributesof theseobjects,and
therelationsthathold betweertheobjects.However, it leaves
the valuesof probabilisticattributesunspecified.A comple-
tion Z of theskeletonstructures extendsthe skeletonby also
specifyingthe valuesof the probabilisticattributes.

Onefinal definitionwhich will turn out to be usefulis the
notionof aslotchain. If R(X;,...,X}) is ary relation,we
can project R onto its i-th and j-th argumentsto obtain a
binary relation p(X;, X;), which we canthenview asa slot
of X;. Forary z in X;, welet z.p denoteall the elements,
in X; suchthatp(z,y) holds. (In relationalalgebranotation
z.p = lIx,0x,-. R.) Objectsin thissetarecalledp-relatives
of z. We can concatenateslots to form longer slot chains
T = p1----.pm, definedby compositionof binary relations.
(Eachof the p;’sin thechainmustbe appropriatelytyped.)

2.2 Probabilistic Relational Models

We now proceedto the definition of probabilisticrelational
models(PRMSs). The basicgoal hereis to modelour uncer
tainty aboutthe valuesof the non-fixed, or probabilistic,at-
tributesof the objectsin our domainof discourse.In other
words,givena skeletonstructure we wantto definea proba-
bility distribution over all completionsof the skeleton.

Our probabilisticmodel consistsof two componentsithe
gualitatve dependeng structure,S, andthe parameterss-
sociatedwith it, §s. The dependeng structureis definedby
associatingvith eachattribute X. A a setof parentsPa( X . A).
Thesecorrespondo formal parentsthey will beinstantiated
in differentways for differentobjectsin X. Intuitively, the
parentsareattributesthatare“direct influenceson X.A.

We distinguishbetweentwo typesof formal parents.The
attribute X. A candependbn anothemprobabilisticattribute B
of X. This formal dependencéducesa correspondingle-
pendeng for individual objects:for ary objectz in 07 (X),
z.a Will dependprobabilisticallyon z.b. The attribute X. A
canalsodependn attributesof relatedobjectsX.7.B, where
7 is a slot chain. To understandhe semanticof this formal
dependencéor anindividual objectz, recallthatz.7 repre-
sentsthe setof objectsthat are r-relativesof . Exceptin
caseswherethe slot chainis guaranteedo be single-\alued,
we mustspecify the probabilisticdependencef z.a on the
multiset{y.b : y € z.7}. Thenotion of aggregation from
databaseheory gives us preciselythe right tool to address
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Figure 1. The PRM structurefor a simple geneticsdomain.
Fixed attributesare shovn in regular font and probabilistic
attributesareshown in italic. Dottedlinesindicaterelations
betweenentitiesand solid arrows indicate probabilisticde-
pendencies.

thisissue;i.e., z.a will dependprobabilisticallyon someag-
gregatepropertyof this multiset. Therearemary naturaland
usefulnotionsof aggreyation: the modeof the set(mostfre-
guentlyoccurringvalue); meanvalueof the set(if valuesare
numerical); median,maximum, or minimum (if valuesare
ordered);cardinalityof the set;etc.

More formally, our languageallows a notion of anaggre-
gatew; v takesa multisetof valuesof somegroundtype,and
returnsa summaryof it. Thetypeof theaggreyatecanbethe
sameasthatof its agumentsHowever, we allow othertypes
aswell, e.g.,anaggreatethatreportsthe sizeof the multiset.
Weallow X.A to haveasaparenty(X.7.B); thesemanticss
thatfor ary x € X, z.a will dependbnthevalueof v(z.7.b).
We defineV (y(X.7.b)) in theobviousway.

Returningto our geneticsexample, considerthe attribute
Blood-TestResult Sincetheresultof abloodtestdepend®n
whetheirit wascontaminatedt hasBlood-TestContaminated
as a parent. The result also dependson the ge-
netic material of the person tested. Since Test-of is
single-walued, we add Blood-TestTest-of M-Chromosome
and Blood-TestTest-of P-Chiomosomeas parents. Figure 1
shavsthestructureof a simplePRM for this domain.

Given a setof parentsPa(X.A) for X.A, we candefine
a local probability modelfor X.A. We associateX.A with
a conditional probability distribution (CPD) that specifies
P(X.A | Pa(X.A)). More preciselylet U bethesetof par
entsof X.A. Recallthateachof theseparentd/; — whether
asimpleattributein the samerelationor anaggreyateof a set
of 7 relatves— hasa setof valuesV (U;) in someground
type. For eachtuple of valuesu € V' (U), the CPD specifies
adistribution P(X.A | u) over V(X.A). Theparameterin
all of theseCPDscompriséfs.

Givena skeletonstructurefor our schemaywe wantto use
theselocal probability modelsto definea probability distri-
bution over completionsof the skeleton. First, notethatthe
skeletondetermineshe setof objectsin our model.We asso-
ciatearandomvariablex.a with eachprobabilisticattribute
A of eachobjectz. Theskeletonalsodeterminesherelations

betweerobjects,andtherebythe setof r-relatvesassociated
with every objectfor eachrelationshipchainr. Also note
that by assumingthat the relationsbetweenobjectsare al-
waysspecifiedby o, we aredisallonving uncertaintyover the
relationalstructureof the model.

To definea coherentprobabilisticmodel over this skele-
ton, we mustensurethat our probabilisticdependencieare
agyclic, sothata randomvariabledoesnot dependdirectly
or indirectly, on its own value. Considerthe parentsof an
attribute X.A. When X .B is a parentof X.A, we definean
edger.b —, z.a; whenvy(X.7.B) is a parentof X.A and
y € z.1, we definean edgey.b —, z.a. We saythata
dependeng structureS is acyclic relative to a skeletono if
the directedgraphdefinedby —, over the variablesz.a is
agyclic. In this case,we candefinea coherentprobabilistic
modelover completeinstantiationsZ consistentith o

P(Z|o0,8,0s) =

I 1

Xi AcA(X:) z€0(X;)

P(Iw.a | IPa(za)) (1)

Proposition 2.1: If S is acyclicrelativeto o, then(1) defines
a distribution over completion< of o.

We briefly sketcha proof of this proposition,by shaving
how to constructa BN over the probabilisticattributesof a
skeletonusing (S, 8s). This constructionis reminiscentof
theknowled@-basednodelconstructiorapproaciWellman
etal., 1992. Here, however, the constructionis merely a
thought-experiment;our learningalgorithmnever constructs
this network. In this network thereis a nodefor eachvari-
ablez.a andfor aggrgatequantitiesequiredoy parentsThe
parentsof theseaggrejaterandomvariablesareall of the at-
tributesthat participatein the aggreyation,accordingto the
relationsspecifiedby o. The CPDsof randomvariablesthat
correspondo probabilisticattributesaresimply the CPDsde-
scribedby 65, andthe CPDsof randomvariablesthat corre-
spondto aggregyatenodescapturethe deterministicfunction
of the particularaggregateoperator It is easyto verify that
if the probabilisticdependencieare agyclic, thensois the
inducedBayesiannetwork. This constructionalso suggests
oneway of answeringqueriesabouta relationalmodel. We
can“compile” the correspondindayesiannetwork anduse
standardoolsfor answeringyueriesaboultit.

Althoughfor eachskeleton,we cancompilea PRMinto a
Bayesiametwork, a PRM expressesnuchmoreinformation
thantheresultingBN. A BN definesaprobability distribution
over afixedsetof attributes. A PRM specifiesa distribution
over any skeleton;in differentskeletons,the set(and num-
ber) of entitiesin the domainwill vary, aswill therelations
betweerthe entities. In away, PRMsareto BNs asa setof
rulesin first-orderlogic is to a setof rulesin propositional
logic: A rule suchasVz, y, z.Parenfz, y) A Parent(y, z) =
Grandpaent(z, z) inducesa potentiallyinfinite setof ground
(propositionaljinstantiations.

3 Parameter Estimation

We now move to thetaskof learningPRMs. We begin with
learning the parameterdor a PRM wherethe dependeng



structureis known. In otherwords,we aregiventhestructure
S thatdetermineghesetof parentdor eachattribute,andour

taskis to learnthe parameter9s that definethe CPDsfor

this structure. Our learningis basedon a particulartraining

set,which we will take to be a completeinstanceZ. While

this taskis relatively straightforvard, it is of interestin and
of itself. In addition,it is acrucialcomponentn the structure
learningalgorithmdescribedn the next section.

Thekey ingredientin parameteestimatioris thelikelihood
function the probability of the datagiven the model. This
function captureghe responsef the probability distribution
to changedn the parameters.As usual,the likelihood of a
parametesetis definedto betheprobabilityof the datagiven
themodel: L(0s | Z,0,8) = P(Z | 0,85,0s). As usual,we
typically work with thelog of this function:

l(GS |I,0’,S) ZIOgP(I | 078705)

=2 X

Xi A€ A(X;)

Z IOg P(Iz.a | IPa(za)) (2)
z€07(X;)

The key insight is that this equationis very similar to
the log-likelihood of datagiven a Bayesiannetwork [Heck-
erman,1994. In fact, it is the likelihood function of the
Bayesiannetwork inducedby the structuregiven the skele-
ton. The main differencefrom standardBayesiannetwork
parametetearningis that parametergor differentnodesin
the network areforcedto beidentical. Thus,we canusethe
well-understoodheoryof learningfrom Bayesiametworks.
Considerthetaskof performingmaximumiikelihood param-
eterestimation. Here, our goal is to find the parameteset-
ting 8s that maximizesthe likelihood L(fs | Z,0,S) for a
givenZ, o andS. This estimationis simplified by the de-
compositionof log-likelihood function into a summationof
termscorrespondindo the variousattributesof the different
classesEachof thetermsin thesquaréoracletsin (2) canbe
maximizedindependentlyf therest. Hence maximallik eli-
hoodestimationreducego independentmaximizationprob-
lems,onefor eachCPD.

For multinomial CPDs, maximum likelihood estimation
canbedonevia suficientstatisticswhichin this casearejust
thecountsCx_4[v, u] of thedifferentvaluesv, u thatthe at-
tribute X.A andits parentscanjointly take.

Proposition 3.1 Assumingnultinomial CPDs,themaximum
likelihoodparametersettingfs is

CX.A [Ua ll]
zv’ CX.A[vla u]

As a consequencef this proposition,parametetearning
in PRMsis reducedo countingsufficient statistics.We need
to countonevectorof sufiicient statisticsfor eachCPD.Such
countingcanbedonein a straightforvardmannerusingstan-
darddatabasegueries.

Notethatthis propositionshavsthatlearningparameter
PRMsis very similar to learningparameterén Bayesiamet-
works. In fact,we mightview this aslearningparametergor
theBN thatthe PRMinduceggiventheskeleton.However, as

P(X.A=v|Pa(X.A) =u)

discussedbove,the learnedparametersanthenbe usedfor
reasoningaboutotherskeletons,which inducea completely
differentBN.

In mary casesmaximumlik elihoodparameteestimation
is notrobust,asit overfitsthetrainingdata.The Bayesiarap-
proachusesaprior distribution overtheparameters smooth
the irregularitiesin the training data, and is thereforesig-
nificantly morerobust. As we will seein Section4.2, the
Bayesianframenork alsogivesus a goodmetricfor evaluat-
ing the quality of differentcandidatestructuresDueto space
limitations,weonly briefly describehis alternatve approach.

Roughly speaking,the Bayesianapproachintroducesa
prior over the unknovn parametersand performsBayesian
conditioning,usingthe dataasevidence to computea poste-
rior distribution over theseparametersTo apply this ideain
our setting,recallthatthe PRM parameter§s arecomposed
of asetof individual probability distribution 6 x 4| for each
conditionaldistribution of the form P(X.A | Pa(X.4) =
u). Following the work on Bayesianapproachesor learn-
ing Bayesiametworks[Heckerman,199¢, we make two as-
sumptions. First, we assumeparameterindependencethe
priors over the parameteré x 4|y for the differentX, A and
v areindependent.Second,we assumethat the prior over
0x.a v isaDirichletdistribution. Briefly, aDirichlet prior for
amultinomialdistributionof avariablelV is specifiedby aset
of hyperpaametes {a[w] : w € v(W)}. A distribution on
theparametersf P(W) is Dirichletif Pr(6w) o« [],, golel,
(For moredetailssee[DeGroot,1970.)

For aparameteprior satisfyingthesetwo assumptionshe
posterioralsohasthis form. Thatis, it is a productof inde-
pendentDirichlet distributions over the parameterdx_ v,
which canbe computeceasily

Proposition 3.2 If 7 is a completeassignmentandthe prior
satisfiesparameterindependencand Dirichlet with hyper
parametes ax. 4[v,u], thenthe posterior P(8s | Z,0,S)
is a productof Dirichlet distributionswith hyperpaametes
o' x alv,u] = ax a[v,u] + Cx. 4v,u].

Oncewe have updatedthe posterior how do we evaluate
the probability of new data?In the caseof BN learning,we
assumehatinstancesrellD, whichimpliesthatthey arein-
dependengiventhe valueof the parametersThus,to evalu-
ateanew instancewe only needtheposteriorovertheparam-
eters. The probability of the new instance's thenthe proba-
bility givenevery possibleparametewvalue,weightedby the
posteriorprobability over thesevalues. In the caseof BNs,
this term can be rewritten simply as the instanceprobabil-
ity accordingo theexpectedvalueof theparameteréi.e., the
meanof theposterioDirichlet for eachparameter)Thissug-
geststhatwe might usethe expectedparametergor evaluat-
ing new data.Indeed theformulafor theexpectedparameters
is analogougo theonefor BNs:

Proposition 3.3: Assumingmultinomial CPDs, prior in-
dependence and Dirichlet priors, with hyperpaametes
ax. Av, u], wehavethat:

EP(X.A=v|PaX.A)=u)|Z]=
Cx.alv,u] + ax.alv,u]
> Cx.alv,u] + ax.ale!, u]




Unfortunately the expectedparametersrenot the proper
Bayesiansolution for computing probability of new data.
Therearetwo possiblecomplications.

Thefirst problemis that, in our setting,the assumptiorof
IID datais oftenviolated. Specifically a new instancemight
notbeconditionallyindependentf old onesgiventheparam-
eters.Considetthegeneticslomain,andassumehatour new
datainvolvesinformation aboutthe motherz’ of someper
sonz alreadyin the databaseln this case the introduction
of the new objectz’ alsochangeur probability aboutthe
attributesof ’. We thereforecannotsimply useour old pos-
terior aboutthe parameter$o reasoraboutthe new instance.
This problemdoesnot occurif the new datais not relatedto
the training data, thatis, whenthe new datais essentiallya
disjoint databasevith the samescheme.More interestingly
the problemalso disappearsvhen attributesof new objects
arenot parentsof ary attributein the training set. In the ge-
neticsexample thismeanghatwe caninsertnew peopleinto
our databaseaslong asthey arenot ancestorof peopleal-
readyin the database.

The secondprobleminvolvesthe formal justification for
usingexpectedparametersalues.Thisargumentdepend®n
thefactthatthe probability of a new instances linearin the
value of eachparameter Thatis, eachparameteis “used”
at mostonce. This assumptioris violatedwhenwe consider
the probability of a complex databasénvolving multiple in-
stancesrom the sameclass. In this case,our integral of the
probabilityof thenew datagiventheparametersannolonger
be reducedto computingthe probability relative to the ex-
pectedparametewalue. The correctexpressionis calledthe
maurginal likelihoodof the (new) data;we useit in Sectiord.2
for scoringstructuresFor now, we notethatif theposterioris
sharplypealed (i.e., we have seenmary traininginstances),
we canapproximatehis termby usingthe expectedparame-
tersof Proposition3.3, aswe could for a singleinstance.In
practice,we will often usetheseexpectedparametergsour
learnedmodel.

4 Structure selection

We now move to the morechallengingproblemof learninga
dependeng structureautomatically as opposedo having it

givenby theuser Therearethreeimportantissueshatneed
to beaddressedWe mustdeterminevhich dependengstruc-
turesarelegal; we needto evaluatethe “goodness’of differ-

ent candidatestructures;and we needto definean effective
searctprocedurehatfindsa goodstructure.

4.1 Legal structures

Whenwe considerdifferentdependeng structuresit is im-
portantto be surethatthe dependeng structureS we choose
resultsin coherentprobability models. To guaranteethis
property we seefrom Propositior2.1thattheskeletono must
be agyclic relatve to S. Of course we caneasilyverify for

a given candidatestructureS thatit is agyclic relative to the
skeletong of our training database However, we alsowant
to guarantedhatit will beagyclic relative to otherdatabases
thatwe may encountein ourdomain.How do we guarantee
agyclicity for anarbitrarydatabase? simpleapproaclis to

ensuraghatdependenciesmongattributesrespecsomeorder
(i.e.,arestratified).More precisely we saythat X. A directly
dependonY.B if either(a) X = Y and X.B is a parentof
X.A, or (b) v(X.7.B) is aparentof X.A andthe r-relatives
of X areof classY. We thenrequirethat X.A directly de-
pendsonly on attributesthatprecedet in theordet

While this simple approachclearly ensuresagyclicity,
it is too limited to cover mary important cases. Con-
sider again our genetic model. Here, the genotype
of a person dependson the genotype of her parents;
thus, we have PersonP-Chromosomealependingdirectly on
PersonP-Chromosomegwhich clearly violates the require-
mentsof our simple approach. In this model, the appar
entcyclicity at the attribute level is resoled at the level of
individual objects, as a personcannotbe his/her own an-
cestor Thatis, the resolutionof agyclicity relieson some
prior knowledgethat we have aboutthe domain. To allow
our learningalgorithmto dealwith dependeng modelssuch
as this we mustallow the userto give our algorithm prior
knowledge. We allow the userto assertthat certain slots
Rga = {p1,...,pr} areguaranteedacyclic i.e., we are
guaranteedhat thereis a partial ordering <,, suchthat if
y is a p-relative for somep € R, of z, theny <y, . We
saythatr is guarantee@gyclic if eachof its componentg’s
is guaranteeaoyclic.

We usethis prior knowledgedeterminethe legality of cer
tain dependeng models. We startby building a graphthat
describeghe direct dependenciebetweenthe attributes. In
this graph,we have ayellowedgeX.B — X.Aif X.Bisa
parentof X.A. If v(X.7.B) is a parentof X.A, we have an
edgeY.B — X.A whichis greenif 7 is guaranteedqyclic
andred otherwise. (Note thattheremight be several edges,
of differentcolors,betweentwo attributes). The intuition is
thatdependengalonggreenedgeselatesobjectsthatareor-
deredby anagyclic order Thustheseedgeshy themselesor
combinedwith intra-objectdependencieyellow edgeskan-
not causea cyclic dependeng We musttake carewith other
dependenciedor which we do not have prior knowledge,as
thesemight form a cycle. Thisintuition suggestshe follow-
ing definition: A (colored)dependeng graphis stratified if
every cycle in the graphcontainsat leastonegreenedgeand
norededges.

Proposition 4.1: If the colored dependencgraph of S and
Ry, is stratified, thenfor any skeletono for which the slots
in R4, are jointly acyclic, S definesa coheent probability
distribution overassignmentto o.

This notion of stratification generalizeshe two special
casesveconsideredbove. Whenwedonothaveary guaran-
teedagyclic relations,all the edgesin the dependeng graph
are coloredeitheryellow or red. Thus,the graphis strati-
fied if andonly if it is agyclic. In the geneticsexample,all
therelationswould bein R4,. Thus,it suficesto checkthat
dependenciewithin objects(yellow edges)reacyclic.

Proposition 4.2 Stratificationof a coloredgraphcanbede-
terminedin timelinear in the numberof edgesin thegraph.

We omit the detailsof the algorithmfor lack of spacejut it
relieson standardgraphalgorithms. Finally, we notethat it



is easyto expandthis definition of stratificationfor situations
whareour prior knowledgeinvolves several setsof guaran-
teedagyclic relations,eachsetwith its own order(e.g.,ob-
jectson a grid with a north-southorderingandan east-west
ordering).We simply colorthegraphwith severalcolors,and
checkthat eachcycle containsedgeswith exactly onecolor
otherthanyellow, exceptfor red.

4.2 Evaluating different structures

Now thatwe know which structuresarelegal, we needto de-
cide how to evaluatedifferentstructuresn orderto pick one
that fits the datawell. We adaptBayesianmodelselection
methodsto our framewvork. Formally, we wantto compute
the posteriorprobability of a structureS given an instantia-
tion Z. UsingBayesrule we havethat P(S | Z,0) «x P(Z |

S,0)P(S | o). This scoreis composedf two main parts:
the prior probability of the structure,and the probability of

thedataassuminghatstructure.

The first components P(S | o), which definesa prior
over structures We assumethatthe choiceof structureis in-
dependentf theskeleton,andthusP(S | o) = P(S). Inthe
context of Bayesiametworks,we oftenusea simpleuniform
prior overpossibledependengstructureslUnfortunatelythis
assumptiordoesnot work in our setting. The problemis that
theremay be infinitely mary possiblestructures.In our ge-
neticsexample,a persons genotypecandependonthegeno-
type of his parents,or of his grandparentsor of his great-
grandparentsgtc. A simpleandnaturalsolution penalizes
long indirectslot chains by having log P(S) proportionalto
the sumof thelengthsof thechainsr appearingn S.

The secondcomponents the marginal likelihood

P(I|8,0) = /P(I | S,0s,0)P(6s | S) dfs

If we usea parameteindependenDirichlet prior (asabove,
this integral decomposeito a productof integrals eachof
which hasa simple closedform solution. (This is a sim-
ple generalizatiorof theideasusedin the Bayesiarscorefor
Bayesiametworks.)

Proposition 4.3: If Z is a completeassignmentand P(fs |
S) satisfieparameterindependencandis Dirichletwith hy-
perparmmetes ax a[v,u], then, P(Z | S,o), the mamginal
likelihoodof Z givens, is equalto

II II [I  DM{Cx,.alv,ul}, {ax,.alv, ul})

i ACA(X;)ueV((Pa(X;.A))

whee
_ Qo el I(afv]+Clv])
DM({C[U]}7 {Oé[U]}) - F(Ev(a[v]+C[v])) Hv T(alv])

and[(z) = [;° t*~'e~'dt is theGammafunction.

Hence, the mamginal likelihood is a product of simple
terms,eachof which correspondso a distribution P(X.A |
u) whereu € V(Pa(X.A)). Moreover, thetermfor P(X. A |
u) dependsonly on the hyperparameterax. 4[v, u] andthe
sufiicient statisticSCx_ 4[v, u] forv € V(X.A).

The mamginal likelihoodterm is the dominanttermin the
probability of a structure. It balanceghe complexity of the

structurewith its fit to the data. This balancecanbe made
explicitly via the asymptoticrelation of the maminal lik eli-
hoodto explicit penalization,suchasthe MDL score(see,
e.g..[Heckerman,1999).

Finally, we notethat the Bayesianscorerequiresthat we
assigna prior over parameteraluesfor eachpossiblestruc-
ture. Sincethereare mary (perhapsnfinitely mary) alter
native structures this is a formidabletask. In the caseof
Bayesiamnetworks, thereis a classof priors that canbe de-
scribedby a singlenetwork [Heckermanetal., 1995. These
priorshave theadditionalpropertyof beingstructuie equiva-
lent, thatis, they guarante¢hatthe maminallikelihoodis the
samefor structureghatare,in somestrongsenseequialent.
Thesenotionshave not yet beendefinedfor our richer struc-
tures,sowe defertheissueto futurework. Insteadwe simply
assumehatsomesimpleDirichlet prior (e.g.,auniformone)
hasbeendefinedfor eachattributeandparentset.

4.3 Structuresearch

Now thatwe have atestfor determiningwhetherastructurds
“legal”, andascoringfunctionthatallows usto evaluatedif-
ferentstructureswe needonly provide a procedurefor find-
ing legal high-scoringstructuresFor Bayesiametworks, we
know thatthis taskis NP-Hard[Chickering,1996. As PRM
learningis at leastashardasBN learning(a BN is simply a
PRMwith oneclassandnorelations)we cannothopeto find
an efficient procedurethat always finds the highestscoring
structure.Thus,we mustresortto heuristicsearch.The sim-
plestsuchalgorithmis greedyhill-climbing searchusingour
scoreasametric. We maintainour currentcandidatestructure
anditeratively improveit. At eachiteration,we consideraset
of simplelocal transformationgo that structure,scoreall of
them,andpick theonewith highestscore.We dealwith local
maximausingrandomrestarts.

As in Bayesiannetworks, the decomposabilityproperty
of the scorehassignificantimpacton the computationakf-
ficiengy of the searchalgorithm. First, we decomposehe
scoreinto a sumof local scoescorrespondindo individual
attributesandtheirparentsNow, if oursearchalgorithmcon-
sidersamodificationto our currentstructurewherethe parent
setof a singleattribute X . A is different,only the component
of thescoreassociateavith X.A will change Thus,we need
only reevaluatethis particularcomponent|eaving the others
unchangedthis resultsin majorcomputationasarings.

Therearetwo problemswith this simpleapproach.First,
asdiscussedn the previoussection,we have infinitely mary
possiblestructures. Second,even the atomic stepsof the
searchare expensve; the processof computing sufficient
statisticsrequiresexpensve databas@perations Evenif we
restrict the set of candidatestructuresat eachstep of the
searchye cannotafford to doall thedatabaseperationsec-
essanyto evaluateall of them.

We proposea heuristic searchalgorithm that addresses
both theseissues. At a high level, the algorithm proceeds
in phasesAt eachphasek, we have a setof potentialparents
Pot; (X.A) for eachattribute X.A. We thendo a standard
structuresearctrestrictedto the spaceof structuresn which
theparentof eachX. A arein Pot,(X.A). Theadwantageof
thisapproachs thatwe canprecomputeéheview correspond-



ing to X. A, Pot; (X.A); mostof the expensve computations
— thejoins andthe aggreyationrequiredin the definition of
the parents— are precomputedn theseviews. The suffi-
cient statisticsfor ary subsetof potentialparentscaneasily
be derived from this view. The above constructiontogether
with the decomposabilityf the score allows the stepsof the
search(say greedyhill-climbing) to donevery efficiently.

The succes®f this approachdependn the choiceof the
potentialparents Clearly, awronginitial choicecanresultto
poorstructuresFollowing [Friedmaretal., 1999, which ex-
aminesasimilarapproachn the context of learningBayesian
networks, we proposean iterative approachthat startswith
somestructure(possibly one where eachattribute doesnot
have ary parents),and selectthe setsPot,(X.A) basedon
this structure.We thenapply the searchprocedureandgeta
new, higherscoring,structure.We choosenew potentialpar
entsbasedn this new structureandreiterate stoppingwhen
no furtherimprovementis made.

It remainsonly to discussthe choiceof Pot (X.A) atthe
differentphasesPerhapshesimplestapproachs to begin by
settingPot; (X.A) to bethesetof attributesin X. In succes-
sive phasesPot; 1 (X.A) would consistof all of Pa, (X.A),
aswell asall attributesthat arerelatedto X via slot chains
of length< k. Of course thesenew attributeswould require
aggrejation;we sidestepheissueby predefiningpossibleag-
gregatedfor eachattribute.

This schemeexpandsthe set of potentialparentsat each
iteration. However, it usually resultsin large setof poten-
tial parents.Thus,we actuallyusea morerefinedalgorithm
thatonly addsparentsto Poty 1 (X.A) if they seemto “add
value”beyondPa;,(X.A). Thereareseveralreasonablevays
of evaluatingthe additionalvalue provided by new parents.
Someof thesearediscussedn [Friedmanetal., 1999 in the
contet of learningBayesiametworks. Their resultssuggest
that we should evaluatea new potential parentby measur
ing the changeof scorefor the family of X.A if we addthe
~v(X.r.B) toits currentparents.We thenchoosethe highest
scoringof these aswell asthe currentparentsto bethe new
setof potentialparents. This approachallows usto signifi-
cantlyreducethe sizeof the potentialparentset,andthereby
of theresultingview, while beingunlikely to causesignificant
degradationin thequality of thelearnedmodel.

5 Implementation and experimental results

We implementedour learningalgorithm on top of the Post-
gresobject-relationablatabasenanagemensystem. All re-
quired countswere obtainedsimply throughdatabaseelec-
tion queries andcachedo avoid performingthe samequery
twice. During the searchprocesswe createdemporaryma-
terializedviews correspondingdo joins betweendifferentre-
lations, and theseviews were then usedfor computingthe
counts.

We testedour proposedlearning algorithm on two do-
mains, one real and one synthetic. The two domainshave
very differentcharacteristics The first is a movie databask
that containsthree relations: Movie, Actor and Appeas,
which relatesactorsto movies in which they played. The

IObtainedfrom http: // ww db. st anf or d. edu/ pub/ novi es/ doc. ht ni

databasecontains about 11000 movies and 7000 actors.
While this databasehasa simple structure,it presentshe
kind of problemsoneoftenencountersvhendealingwith real
data:missingvalues Jarge domainsfor attributes,andincon-
sistentuse of values. The fact that our algorithmwas able
to dealwith this kind of real-world problemis quite promis-
ing. Our algorithmlearnedthe modelshowvn in Figure 2(a).
Thismodelis reasonablegndcloseto onethatwe would con-
siderto be “correct”. It learnedthatthe Gene of a movie
dependean its Decadeandits film Procesg(color, black &

white, technicoloretc.) andthatthe Decadedependedn its
film Process It alsolearnedaninterestingdependengcom-
bining all threerelations:the Role-Typeplayedby anactorin

amovie depend®nthe Genderof theactorandthe Genee of
themovie.

The seconddatabasean artificial geneticdatabassimilar
to the examplein this paper presentedjuite differentchal-
lenges. For one thing, the recursve natureof this domain
allows arbitrarily complex joins to be defined. In addition,
the probabilisticmodelin this domainis fairly subtle. Each
personhasthree relevant attributes — P-Chromosome M-
Chromosomegand BloodType — all with the samedomain
andall relatedsomehav to the sameattributesof the persons
motherand father The gold standards the modelusedto
generatahe data;the structureof thatmodelwasshovn ear
lier in Figurel. We trainedour algorithmon dataset®f var-
ious sizesrangingup to 800. A datasetof sizen consisted
of afamily tree containingn people,with anaverageof 0.6
bloodtestsper person.We evaluatedour algorithmon a test
setof size10,000.Figure2(b) shavsthelog-likelihoodof the
testsetfor thelearnedmodels.In mostcasespur algorithm
learneda modelwith the correctstructure,and scoredwell.
However, in asmallminority of casesthealgorithmgotstuck
in local maxima, learninga model with incorrectstructure
thatscoredquite poorly. This canbe seenin the scattemplots
of Figure2(b) which show thatthe medianlog-likelihoodof
the learnedmodelsis quite reasonablebut thereare a few
outliers. Standardechniquesuchasrandomrestartscanbe
usedto dealwith local maxima.

6 Discussion and conclusions

In this paperwe defineda new statisticalearningtask:learn-
ing probabilisticrelationalmodelsfrom data.We have shavn
thatmary of theideasfrom Bayesiametwork learningcarry
over to this new task. However, we have alsoshowvn that it
alsoraisesmary new challenges.

Scalingthesddeasto largedatabaseis animportantissue.
We believe that this canbe achieved by a closerintegration
with the technologyof databasesystems,ncluding indices
andqueryoptimization. Furthermoretherehasbeenalot of
recentwork onextractinginformationfrom massve datasets,
includingwork on finding frequentlyoccurringcombinations
of valuesfor attributes. We believe thattheseideaswill help
significantlyin the computatiorof sufficient statistics.

Therearealsosereralimportantpossibleextensiongo this
work. Perhapshe mostobviousoneis thetreatmenbf miss-
ing dataandhiddenvariables.We canextendstandardech-
niques(suchasExpectationMaximizationfor missingdata)
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Figure2: (a) The PRM learnedfor the movie domain,a real-world databaseontainingabout11000moviesand7000actors.

(b) Learningcurve shawving the generalizatiomperformanceof PRMslearnedin the geneticdomain. The x-axis shows the

databasesize; the y-axis shows log-likelihood of a testsetof size 10,000. For eachsamplesize,we shov 10 independent
learningexperiments.The curve shavs medianlog-likelihoodof the modelsasa function of the samplesize.

to this task (see[Koller and Pfeffer, 1997 for someprelim-
inary work on relatedmodels.) However, the complexity of

inferenceon large databasewith mary missingvaluesmake
thecostof a naive applicationof suchalgorithmsprohibitive.
Clearly, this domaincalls both for new inferencealgorithms
andfor new learningalgorithmsthat avoid repeatectalls to

inferenceovertheseverylargeproblems.Evenmoreinterest-
ing is the issueof automatedliscovery of hiddenvariables.
Thereare somepreliminary answersto this questionin the
context of Bayesiannetworks [Friedman,1997, in the con-
text of ILP [Lavrat andDZeroski, 1994, andvery recentlyin

thecontext of simplebinaryrelationg Hofmannetal., 1999.

Combiningthesedeasandextendingthemto this morecom-
plex framework is a significantandinterestingchallenge.

Anotherdirectionextendsthe classof modelswe consider
Here,we assumedhattherelationalstructures specifiecbe-
foretheprobabilisticattributevaluesaredeterminedA richer
classof PRMs(e.g. thatof [Koller andPfeffer, 199¢) would
allow probabilitiesover the structue of the model; for ex-
ample: uncertaintyover the setof objectsin the model,e.g.,
thenumberof childrena couplehas,or over therelationsbe-
tweenobjects,e.g.,whoseis the blood that wasfound on a
crime scene.Ultimately, we would wantthesetechniquego
help us automaticallydiscover interestingentitiesand rela-
tionshipsthathold in theworld.
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