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Abstract

A largeportionof real-world datais storedin com-
mercial relationaldatabasesystems. In contrast,
most statisticallearningmethodswork only with
“flat” data representations.Thus, to apply these
methods,we are forced to convert our data into
a flat form, therebylosing much of the relational
structurepresentin ourdatabase.Thispaperbuilds
on therecentwork onprobabilisticrelationalmod-
els (PRMs), anddescribeshow to learnthemfrom
databases.PRMsallow thepropertiesof anobject
to dependprobabilisticallyboth on other proper-
ties of thatobjectandon propertiesof relatedob-
jects. Although PRMs are significantly more ex-
pressive than standardmodels,such as Bayesian
networks,we show how to extendwell-known sta-
tistical methodsfor learningBayesiannetworks to
learn thesemodels. We describeboth parameter
estimationandstructure learning— theautomatic
inductionof the dependency structurein a model.
Moreover, weshow how thelearningprocedurecan
exploit standarddatabaseretrieval techniquesfor
efficient learningfrom large datasets.We present
experimentalresultson both real andsyntheticre-
lationaldatabases.

1 Introduction
Relationalmodelsare the most commonrepresentationof
structureddata. Enterprisebusinessinformation,marketing
andsalesdata,medicalrecords,andscientificdatasetsareall
storedin relationaldatabases.Indeed,relationaldatabasesare
amulti-billion dollar industry. Recently, therehasbeengrow-
ing interestin makingmoresophisticateduseof thesehuge
amountsof data,in particularmining thesedatabasesfor cer-
tain patternsandregularities. By explicitly modelingthese
regularities,we cangain a deeperunderstandingof our do-
mainandmaydiscoverusefulrelationships.We canalsouse
ourmodelto “fill in” unknownbut importantinformation.For�
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example,wemaybeinterestedin predictingwhetheraperson
is a potentialmoney-laundererbasedon their bankdeposits,
internationaltravel, businessconnectionsandarrestrecords
of known associates[Jensen,1997]. In anothercase,we may
be interestedin classifyingwebpagesasbelongingto a stu-
dent,a facultymember, a project,etc.,usingattributesof the
webpageandof relatedpages[Cravenet al., 1998].

Unfortunately, few inductive learningalgorithmsarecapa-
bleof handlingdatain its relationalform. Mostarerestricted
to dealingwith aflat setof instances,eachwith its own sepa-
rateattributes.To usethesemethods,onetypically “flattens”
the relationaldata,removing its richer structure. This pro-
cess,however, losesinformationwhich might be crucial in
understandingthe data. Consider, for example,the problem
of predictingthevalueof anattributeof a certainentity, e.g.,
whethera personis a money-launderer. This attribute will
be correlatedwith other attributesof this entity, as well as
with attributesof relatedentities,e.g., of financial transac-
tions conductedby this person,of otherpeopleinvolved in
thesetransactions,of other transactionsconductedby these
people,etc. In orderto “flatten” thisproblem,wewouldneed
to decidein advanceonafixedsetof attributesthatthelearn-
ing algorithmcanusein this task. Thus,we wanta learning
algorithmthatcandealwith multiple entitiesandtheir prop-
erties,andcanreachconclusionsaboutanentity’s character-
isticsbasedon thepropertiesof theentitiesto which it is re-
lated.Until now, inductivelogic programming(ILP) [Lavrac̆
and Dz̆eroski,1994] hasbeenthe primary learningframe-
work with this capability. ILP algorithmslearnlogical Horn
rulesfor determiningwhensomefirst-orderpredicateholds.
While ILP is anexcellentsolutionin many settings,it maybe
inappropriatein others.Themain limitation is thedetermin-
istic natureof the rulesdiscovered. In many domains,such
astheexamplesabove,we encounterinterestingcorrelations
thatarefar from beingdeterministic.

Our goal in this paperis to learnmorerefinedprobabilis-
tic models,thatrepresentstatisticalcorrelationsbothbetween
the propertiesof an entity andbetweenthe propertiesof re-
latedentities. Sucha modelcanthenbe usedfor reasoning
aboutan entity usingthe entirerich structureof knowledge
encodedby therelationalrepresentation.

Thestartingpoint for ourwork is thestructuredrepresenta-
tion of probabilisticmodels,asexemplifiedin Bayesiannet-
works (BNs). A BN allows us to provide a compactrep-



resentationof a complex probability distribution over some
fixed� setof attributesor randomvariables. The representa-
tion exploits the locality of influencethat is presentin many
domains.We build on two recentdevelopmentsin the field
of Bayesiannetworks. The first is the deepunderstanding
of the statisticallearningproblemin suchmodels[Hecker-
man, 1998; Heckermanet al., 1995] and the role of struc-
ture in providing an appropriatebias for the learningtask.
Thesecondis therecentdevelopmentof representationsthat
extend the attribute-basedBN representationto incorporate
a muchricher relationalstructure[Koller andPfeffer, 1998;
Ngo andHaddawy, 1996;Poole,1993].

In thispaper, wecombinethesetwo advances.Indeed,one
of our key contributions is to show that many of the tech-
niquesof Bayesiannetwork learningcanbe extendedto the
taskof learningthesemorecomplex models.This contribu-
tiongeneralizes[Koller andPfeffer, 1997]’spreliminarywork
on this topic. We startby describingthesemanticsof proba-
bilistic relationalmodels. We thenexaminetheproblemsof
parameterestimationandstructure selectionfor this classof
models.We dealwith somecrucial technicalissuesthatdis-
tinguishtheproblemof learningrelationalprobabilisticmod-
els from that of learningBayesiannetworks. We provide a
formulationof thelikelihoodfunctionappropriateto this set-
ting, andshow how it interactswith thestandardassumptions
of BN learning.Thesearchover coherentdependency struc-
turesis significantlymorecomplex thanin thecaseof learn-
ing BN structureand we introducethe necessarytools and
conceptsto do this effectively. We thendescribeexperimen-
tal resultson syntheticand real-world datasets,and finally
discusspossibleextensionsandapplications.

2 Underlying framework

2.1 Relational model

Wedescribeourrelationalmodelin genericterms,closelyre-
latedto thelanguageof entity-relationshipmodels.Thisgen-
erality allows our framework to be mappedinto a varietyof
specificrelationalsystems,including the probabilisticlogic
programsof [Ngo andHaddawy, 1996;Poole,1993], andthe
probabilisticframesystemsof [KollerandPfeffer, 1998]. Our
learningresultsapplyto all of theseframeworks.

The vocabulary of a relationalmodelconsistsof a setof
classes���	��
�
�

����� anda setof relations ������
�
�
������ . Each
entity typeis associatedwith a setof attributes ��������� . Each
attribute � ��!"���#���$� takeson valuesin somefixeddomain
of values%��#� � � . Eachrelation � is typed. This vocabulary
definesa schemafor our relationalmodel.

Considera simple geneticmodel of the inheritanceof a
singlegenethatdeterminesa person’s bloodtype. Eachper-
sonhastwo copiesof thechromosomecontainingthis gene,
oneinheritedfrom hermother, andoneinheritedfrom herfa-
ther. Thereis alsoa possiblycontaminatedtestthatattempts
to recognizethe person’s blood type. Our schemacontains
two classesPersonandBlood-Test, andthreerelationsFather,
Mother, andTest-of. Attributesof PersonareName, Gender,
P-Chromosome(the chromosomeinheritedfrom the father),
M-Chromosome(inheritedfrom the mother). The attributes

of Blood-TestareSerial-Number, Date, Contaminated, and
Result.

An instance& of aschemadefinesasetof entities ')(*��� � �
for eachentity type � � . For eachentity +,!-'�(.��� � � , and
eachattribute �/�)!0���#���$� , theinstancehasanassociatedat-
tribute +1
 23� ; its valuein & is denoted&5476 8:9 . For eachrelation�;��������
�
�
�����<	� andeach =#+>�7��
�
�
���+?<7@A!B' ( ��������CED�D�DFC')(*��� < � , & specifieswhether�;�#+ � ��
�
�
���+ < � holds.

We are interestedin describinga probability model over
instancesof a relationalschema.However, someattributes,
suchas a nameor social securitynumber, are fully deter-
mined. We label suchattributesas fixed. We assumethat
they areknown in any instantiationof theschema.Theother
attributesarecalledprobabilistic. A skeletonstructure G of
a relationalschemais a partialspecificationof aninstanceof
the schema.It specifiesthe setof objects 'IH5�����$� for each
class,the valuesof the fixed attributesof theseobjects,and
therelationsthatholdbetweentheobjects.However, it leaves
the valuesof probabilisticattributesunspecified.A comple-
tion & of theskeletonstructureG extendstheskeletonby also
specifyingthevaluesof theprobabilisticattributes.

Onefinal definitionwhich will turn out to beusefulis the
notionof a slot chain. If �;��� � ��
�
�
���� < � is any relation,we
can project � onto its J -th and K -th argumentsto obtain a
binary relation L>�����M���N�O� , which we canthenview asa slot
of � � . For any + in � � , we let +F
 L denoteall theelementsP
in �I� suchthat L>��+1��PQ� holds. (In relationalalgebranotation+F
 LSRUTWV*9�GXV*Y[Z\43� .) Objectsin thissetarecalled L -relatives
of + . We can concatenateslots to form longer slot chains] R^LQ�	
�D�D�D

 L_� , definedby compositionof binary relations.
(Eachof the L_� ’s in thechainmustbeappropriatelytyped.)

2.2 Probabilistic Relational Models
We now proceedto the definition of probabilisticrelational
models(PRMs). The basicgoalhereis to modelour uncer-
tainty aboutthe valuesof the non-fixed,or probabilistic,at-
tributesof the objectsin our domainof discourse.In other
words,givena skeletonstructure,we wantto definea proba-
bility distributionoverall completionsof theskeleton.

Our probabilisticmodelconsistsof two components:the
qualitative dependency structure,̀ , and the parametersas-
sociatedwith it, a�b . Thedependency structureis definedby
associatingwith eachattribute �c
 � asetof parentsPa���c
 �d� .
Thesecorrespondto formal parents;they will beinstantiated
in differentwaysfor differentobjectsin � . Intuitively, the
parentsareattributesthatare“direct influences”on �c
 � .

We distinguishbetweentwo typesof formal parents.The
attribute �c
 � candependonanotherprobabilisticattribute e
of � . This formal dependenceinducesa correspondingde-
pendency for individual objects:for any object + in ' H ���f� ,+F
 2 will dependprobabilisticallyon +F
hg . The attribute �c
 �
canalsodependonattributesof relatedobjects�i
 ] 
 e , where] is a slot chain. To understandthesemanticsof this formal
dependencefor an individual object + , recall that +F
 ] repre-
sentsthe set of objectsthat are ] -relativesof + . Exceptin
caseswheretheslot chainis guaranteedto besingle-valued,
we mustspecify the probabilisticdependenceof +F
 2 on the
multiset j�P>
 glk0Pm!n+1
 ]>o . Thenotion of aggregation from
databasetheory givesus preciselythe right tool to address



p q r sr t u v s wx y z { | } ~ } � } ~ �� y z { | } ~ } � } ~ �� q u v s w� � } } � � � � �
Person p q r sr t u v s wx y z { | } ~ } � } ~ �� y z { | } ~ } � } ~ �� q u v s w� � } } � � � � �

Person

p q r sr t u v s wx y z { | } ~ } � } ~ �� y z { | } ~ } � } ~ �� q u v s w� � } } � � � � �
Person

Blood Testu s � u � � �p q r sz } � � � ~ � � � � � �| � � � � �
Figure1: The PRM structurefor a simplegeneticsdomain.
Fixed attributesare shown in regular font and probabilistic
attributesareshown in italic. Dottedlines indicaterelations
betweenentitiesand solid arrows indicateprobabilisticde-
pendencies.

this issue;i.e., +1
 2 will dependprobabilisticallyon someag-
gregatepropertyof this multiset.Therearemany naturaland
usefulnotionsof aggregation: themodeof theset(mostfre-
quentlyoccurringvalue);meanvalueof theset(if valuesare
numerical);median,maximum,or minimum (if valuesare
ordered);cardinalityof theset;etc.

More formally, our languageallows a notionof an aggre-
gate� ; � takesa multisetof valuesof somegroundtype,and
returnsa summaryof it. Thetypeof theaggregatecanbethe
sameasthatof its arguments.However, weallow othertypes
aswell, e.g.,anaggregatethatreportsthesizeof themultiset.
Weallow �i
 � to haveasaparent�����c
 ] 
 eN� ; thesemanticsis
thatfor any +0!A� , +1
 2 will dependon thevalueof ����+1
 ] 
 g
� .
We define %��������i
 ] 
hg
��� in theobviousway.

Returningto our geneticsexample,considerthe attribute
Blood-Test
Result. Sincetheresultof abloodtestdependson
whetherit wascontaminated,it hasBlood-Test
Contaminated
as a parent. The result also depends on the ge-
netic material of the person tested. Since Test-of is
single-valued, we add Blood-Test
 Test-of
M-Chromosome
andBlood-Test
 Test-of
P-Chromosomeasparents.Figure1
shows thestructureof asimplePRMfor this domain.

Given a set of parentsPa���c
 �d� for �i
 � , we can define
a local probability model for �c
 � . We associate�c
 � with
a conditional probability distribution (CPD) that specifies� ���i
 ��� Pa�#�c
 �d��� . More precisely, let � bethesetof par-
entsof �c
 � . Recallthateachof theseparents� � — whether
asimpleattributein thesamerelationor anaggregateof aset
of ] relatives— hasa setof values %�������� in someground
type. For eachtupleof values�E!�%��#��� , theCPDspecifies
a distribution

� �#�c
 �l���*� over %����c
 �d� . Theparametersin
all of theseCPDscomprisea b .

Givena skeletonstructurefor our schema,we want to use
theselocal probability modelsto definea probability distri-
bution over completionsof the skeleton. First, notethat the
skeletondeterminesthesetof objectsin ourmodel.Weasso-
ciatea randomvariable +1
 2 with eachprobabilisticattribute� of eachobject + . Theskeletonalsodeterminestherelations

betweenobjects,andtherebythesetof ] -relativesassociated
with every object for eachrelationshipchain ] . Also note
that by assumingthat the relationsbetweenobjectsare al-
waysspecifiedby G , we aredisallowing uncertaintyover the
relationalstructureof themodel.

To definea coherentprobabilisticmodel over this skele-
ton, we mustensurethat our probabilisticdependenciesare
acyclic, so that a randomvariabledoesnot depend,directly
or indirectly, on its own value. Considerthe parentsof an
attribute �c
 � . When �c
 e is a parentof �c
 � , we definean
edge +F
hg0� H +F
 2 ; when �����i
 ] 
 eN� is a parentof �c
 � andP�!l+F
 ] , we definean edge P?
hgn� H +F
 2 . We say that a
dependency structurè is acyclic relative to a skeleton G if
the directedgraphdefinedby � H over the variables+F
 2 is
acyclic. In this case,we candefinea coherentprobabilistic
modelovercompleteinstantiations& consistentwith G :� ��& �	G>��`W��a b �¡R¢ V Y ¢£*¤3¥¡¦ V Y#§ ¢4 ¤©¨.ª	¦ V Y[§ � ��&5436 8I�
& Pa

¦ 436 8 § � (1)

Proposition 2.1: If ` is acyclicrelativeto G , then(1) defines
a distribution overcompletions& of G .

We briefly sketcha proof of this proposition,by showing
how to constructa BN over the probabilisticattributesof a
skeletonusing ��`W��a b � . This constructionis reminiscentof
theknowledge-basedmodelconstructionapproach[Wellman
et al., 1992]. Here, however, the constructionis merely a
thought-experiment;our learningalgorithmnever constructs
this network. In this network thereis a nodefor eachvari-
able +1
 2 andfor aggregatequantitiesrequiredby parents.The
parentsof theseaggregaterandomvariablesareall of theat-
tributesthat participatein the aggregation,accordingto the
relationsspecifiedby G . TheCPDsof randomvariablesthat
correspondto probabilisticattributesaresimplytheCPDsde-
scribedby a�b , andtheCPDsof randomvariablesthatcorre-
spondto aggregatenodescapturethe deterministicfunction
of the particularaggregateoperator. It is easyto verify that
if the probabilisticdependenciesare acyclic, then so is the
inducedBayesiannetwork. This constructionalsosuggests
oneway of answeringqueriesabouta relationalmodel. We
can“compile” the correspondingBayesiannetwork anduse
standardtoolsfor answeringqueriesaboutit.

Althoughfor eachskeleton,we cancompilea PRM into a
Bayesiannetwork, a PRM expressesmuchmoreinformation
thantheresultingBN. A BN definesaprobabilitydistribution
over a fixedsetof attributes.A PRM specifiesa distribution
over any skeleton; in differentskeletons,the set (andnum-
ber) of entitiesin the domainwill vary, aswill the relations
betweentheentities. In a way, PRMsareto BNs asa setof
rules in first-orderlogic is to a setof rules in propositional
logic: A rule suchas «?+1��P>��¬X
Parent��+1��PQ�.­ Parent�#P?�®¬©�°¯
Grandparent�#+F��¬_� inducesapotentiallyinfinite setof ground
(propositional)instantiations.

3 Parameter Estimation
We now move to the taskof learningPRMs. We begin with
learning the parametersfor a PRM where the dependency



structureis known. In otherwords,wearegiventhestructure` that± determinesthesetof parentsfor eachattribute,andour
task is to learn the parametersa�b that definethe CPDsfor
this structure.Our learningis basedon a particulartraining
set,which we will take to be a completeinstance& . While
this taskis relatively straightforward, it is of interestin and
of itself. In addition,it is acrucialcomponentin thestructure
learningalgorithmdescribedin thenext section.

Thekey ingredientin parameterestimationis thelikelihood
function, the probability of the datagiven the model. This
functioncapturestheresponseof theprobabilitydistribution
to changesin the parameters.As usual,the likelihoodof a
parametersetis definedto betheprobabilityof thedatagiven
themodel: ²d��a b �	&°��G>�M` �dR � �³&-�´G>�M`d��a b �:
 As usual,we
typically work with thelog of this function:µ ��a b �:&°��G>�M` �¶RE·¹¸3º � ��& �	G>��`W��a b �R » V Y »£*¤3¥¡¦ V.Y §

¼½ »4 ¤©¨ ª ¦ V.Y § ·³¸¾º � ��&5436 8N�
& Pa
¦ 436 8 § �$¿Àc
 (2)

The key insight is that this equationis very similar to
the log-likelihoodof datagiven a Bayesiannetwork [Heck-
erman,1998]. In fact, it is the likelihood function of the
Bayesiannetwork inducedby the structuregiven the skele-
ton. The main differencefrom standardBayesiannetwork
parameterlearningis that parametersfor differentnodesin
thenetwork areforcedto be identical. Thus,we canusethe
well-understoodtheoryof learningfrom Bayesiannetworks.
Considerthetaskof performingmaximumlikelihoodparam-
eterestimation. Here,our goal is to find the parameterset-
ting a b that maximizesthe likelihood ²W�#a b �?&/�®G>�M`Á� for a
given & , G and ` . This estimationis simplified by the de-
compositionof log-likelihoodfunction into a summationof
termscorrespondingto thevariousattributesof thedifferent
classes.Eachof thetermsin thesquarebracketsin (2) canbe
maximizedindependentlyof therest.Hence,maximallikeli-
hoodestimationreducesto independentmaximizationprob-
lems,onefor eachCPD.

For multinomial CPDs, maximum likelihood estimation
canbedonevia sufficientstatisticswhich in thiscasearejust
thecountsCVÁ6 £/Â Ã �®�\Ä of thedifferentvaluesÃ �®� that theat-
tribute �c
 � andits parentscanjointly take.

Proposition 3.1: AssumingmultinomialCPDs,themaximum
likelihoodparametersetting Åa b is� �#�c
 �UR Ã � Pa ���c
 �d�ÆRU�.�ÇR CVÁ6 £ Â Ã �®�\ÄÈ É:Ê

CVÁ6 £/Â Ã©Ë ���FÄ
As a consequenceof this proposition,parameterlearning

in PRMsis reducedto countingsufficient statistics.We need
to countonevectorof sufficientstatisticsfor eachCPD.Such
countingcanbedonein astraightforwardmannerusingstan-
darddatabasesqueries.

Notethatthispropositionshowsthatlearningparametersin
PRMsis verysimilar to learningparametersin Bayesiannet-
works. In fact,we might view this aslearningparametersfor
theBN thatthePRMinducesgiventheskeleton.However, as

discussedabove,thelearnedparameterscanthenbeusedfor
reasoningaboutotherskeletons,which inducea completely
differentBN.

In many cases,maximumlikelihoodparameterestimation
is not robust,asit overfitsthetrainingdata.TheBayesianap-
proachusesaprior distributionovertheparametersto smooth
the irregularities in the training data, and is thereforesig-
nificantly more robust. As we will seein Section4.2, the
Bayesianframework alsogivesusa goodmetric for evaluat-
ing thequalityof differentcandidatestructures.Dueto space
limitations,weonly briefly describethisalternativeapproach.

Roughly speaking,the Bayesianapproachintroducesa
prior over the unknown parameters,andperformsBayesian
conditioning,usingthedataasevidence,to computea poste-
rior distribution over theseparameters.To apply this ideain
our setting,recall thatthePRM parametersa b arecomposed
of a setof individualprobabilitydistribution a VÁ6 £�Ì Í for each
conditionaldistribution of the form

� ���c
 �Î� Pa���i
 ���fR�.� . Following the work on Bayesianapproachesfor learn-
ing Bayesiannetworks[Heckerman,1998], we make two as-
sumptions. First, we assumeparameterindependence: the
priorsover theparametersa VÁ6 £�Ì Í for thedifferent �i��� andÍ are independent.Second,we assumethat the prior overa VÁ6 £�Ì Í is aDirichletdistribution. Briefly, aDirichletprior for
amultinomialdistributionof avariableÏ is specifiedbyaset
of hyperparameters jOÐ Â Ñ Ä/k Ñ ! Ã �$ÏÒ� o . A distribution on

theparametersof
� �$ÏÒ� is Dirichlet if ÓÆÔO��a3Õ��¡ÖØ×iÙIa¾Ú>Û Ù?ÜÙ .

(For moredetailssee[DeGroot,1970].)
For aparameterprior satisfyingthesetwo assumptions,the

posterioralsohasthis form. That is, it is a productof inde-
pendentDirichlet distributions over the parametersa VÁ6 £�Ì Í ,
which canbecomputedeasily.
Proposition 3.2: If & is a completeassignment,andtheprior
satisfiesparameterindependenceand Dirichlet with hyper-
parameters Ð1VÁ6 £ Â Ã �®�\Ä , then the posterior

� ��a b ��&/�®G>�M`Á�
is a productof Dirichlet distributionswith hyperparametersÐ Ë VÁ6 £ Â Ã �®�\Ä5R Ð*VÁ6 £ Â Ã ���FÄ´Ý CVÁ6 £ Â Ã �®�\Ä .

Oncewe have updatedthe posterior, how do we evaluate
the probabilityof new data?In thecaseof BN learning,we
assumethatinstancesareIID, which impliesthatthey arein-
dependentgiventhevalueof theparameters.Thus,to evalu-
ateanew instance,weonly needtheposteriorovertheparam-
eters.Theprobabilityof thenew instanceis thentheproba-
bility givenevery possibleparametervalue,weightedby the
posteriorprobability over thesevalues. In the caseof BNs,
this term can be rewritten simply as the instanceprobabil-
ity accordingto theexpectedvalueof theparameters(i.e., the
meanof theposteriorDirichlet for eachparameter).Thissug-
geststhatwe might usetheexpectedparametersfor evaluat-
ing new data.Indeed,theformulafor theexpectedparameters
is analogousto theonefor BNs:
Proposition 3.3 : Assumingmultinomial CPDs, prior in-
dependence, and Dirichlet priors, with hyperparametersÐ VÁ6 £ÁÂ Ã ���FÄ , wehavethat:Þ Â � �#�c
 �ØR Ã � Pa ���c
 �d�¶R �.�/�:&.Ä\R

CVÁ6 £ Â Ã ���FÄ´ÝnÐ VÁ6 £ÁÂ Ã ���FÄÈ É Ê
C VÁ6 £ Â Ã Ë �®�\ÄQÝ"Ð*VÁ6 £ Â Ã Ë ���FÄ



Unfortunately, the expectedparametersarenot theproper
Bayesianß solution for computingprobability of new data.
Therearetwo possiblecomplications.

Thefirst problemis that, in our setting,theassumptionof
IID datais oftenviolated.Specifically, a new instancemight
notbeconditionallyindependentof old onesgiventheparam-
eters.Considerthegeneticsdomain,andassumethatournew
datainvolvesinformationaboutthe mother + Ë of someper-
son + alreadyin the database.In this case,the introduction
of the new object + Ë alsochangesour probability aboutthe
attributesof + Ë . We thereforecannotsimply useour old pos-
terior abouttheparametersto reasonaboutthenew instance.
This problemdoesnot occurif thenew datais not relatedto
the training data,that is, whenthe new datais essentiallya
disjoint databasewith the samescheme.More interestingly,
the problemalsodisappearswhenattributesof new objects
arenot parentsof any attribute in the trainingset. In thege-
neticsexample,thismeansthatwecaninsertnew peopleinto
our database,aslong asthey arenot ancestorsof peopleal-
readyin thedatabase.

The secondprobleminvolves the formal justification for
usingexpectedparametersvalues.Thisargumentdependson
thefact that theprobabilityof a new instanceis linear in the
valueof eachparameter. That is, eachparameteris “used”
at mostonce.This assumptionis violatedwhenwe consider
theprobability of a complex databaseinvolving multiple in-
stancesfrom thesameclass.In this case,our integral of the
probabilityof thenew datagiventheparameterscannolonger
be reducedto computingthe probability relative to the ex-
pectedparametervalue. Thecorrectexpressionis calledthe
marginal likelihoodof the(new) data;weuseit in Section4.2
for scoringstructures.For now, wenotethatif theposterioris
sharplypeaked(i.e., we have seenmany training instances),
we canapproximatethis termby usingtheexpectedparame-
tersof Proposition3.3,aswe could for a singleinstance.In
practice,we will oftenusetheseexpectedparametersasour
learnedmodel.

4 Structure selection
We now move to themorechallengingproblemof learninga
dependency structureautomatically, asopposedto having it
givenby theuser. Therearethreeimportantissuesthatneed
to beaddressed.Wemustdeterminewhichdependency struc-
turesarelegal; we needto evaluatethe“goodness”of differ-
ent candidatestructures;andwe needto definean effective
searchprocedurethatfindsa goodstructure.

4.1 Legal structures
Whenwe considerdifferentdependency structures,it is im-
portantto besurethatthedependency structurè we choose
results in coherentprobability models. To guaranteethis
property, weseefrom Proposition2.1thattheskeletonG must
be acyclic relative to ` . Of course,we caneasilyverify for
a givencandidatestructurè that it is acyclic relative to the
skeleton G of our training database.However, we alsowant
to guaranteethat it will beacyclic relative to otherdatabases
thatwe mayencounterin our domain.How do we guarantee
acyclicity for anarbitrarydatabase?A simpleapproachis to

ensurethatdependenciesamongattributesrespectsomeorder
(i.e.,arestratified).More precisely, we saythat �i
 � directly
dependson à¶
 e if either(a) �áRBà and �c
 e is a parentof�c
 � , or (b) �����c
 ] 
 eN� is a parentof �c
 � andthe ] -relatives
of � areof class à . We thenrequirethat �c
 � directly de-
pendsonly on attributesthatprecedeit in theorder.

While this simple approachclearly ensuresacyclicity,
it is too limited to cover many important cases. Con-
sider again our genetic model. Here, the genotype
of a person dependson the genotype of her parents;
thus,we have Person
P-Chromosomedependingdirectly on
Person
P-Chromosome, which clearly violates the require-
mentsof our simple approach. In this model, the appar-
ent cyclicity at the attribute level is resolved at the level of
individual objects,as a personcannotbe his/her own an-
cestor. That is, the resolutionof acyclicity relies on some
prior knowledgethat we have aboutthe domain. To allow
our learningalgorithmto dealwith dependency modelssuch
as this we must allow the userto give our algorithm prior
knowledge. We allow the user to assertthat certain slotsâ�ã 8^RäjOL � ��
�
�

��L < o are guaranteedacyclic; i.e., we are
guaranteedthat thereis a partial ordering å ã 8 suchthat ifP is a L -relative for someLm! â ã 8 of + , then Pmå ã 8 + . We
saythat ] is guaranteedacyclic if eachof its componentsL ’s
is guaranteedacyclic.

We usethis prior knowledgedeterminethelegality of cer-
tain dependency models. We startby building a graphthat
describesthe direct dependenciesbetweenthe attributes. In
this graph,we have a yellowedge�c
 eæ�ç�i
 � if �c
 e is a
parentof �c
 � . If �.�#�c
 ] 
 eS� is a parentof �c
 � , we have an
edgeà¶
 eè�Î�i
 � which is greenif ] is guaranteedacyclic
and red otherwise. (Note that theremight be several edges,
of differentcolors,betweentwo attributes). The intuition is
thatdependency alonggreenedgesrelatesobjectsthatareor-
deredby anacyclic order. Thustheseedgesby themselvesor
combinedwith intra-objectdependencies(yellow edges)can-
not causea cyclic dependency. We musttake carewith other
dependencies,for which we do not have prior knowledge,as
thesemight form a cycle. This intuition suggeststhefollow-
ing definition: A (colored)dependency graphis stratified if
every cycle in thegraphcontainsat leastonegreenedgeand
no rededges.

Proposition 4.1: If the colored dependencygraph of ` andâ�ã 8 is stratified, thenfor any skeleton G for which the slots
in
â ã 8 are jointly acyclic, ` definesa coherent probability

distribution overassignmentsto G .

This notion of stratificationgeneralizesthe two special
casesweconsideredabove.Whenwedonothaveany guaran-
teedacyclic relations,all theedgesin thedependency graph
are coloredeither yellow or red. Thus, the graphis strati-
fied if andonly if it is acyclic. In the geneticsexample,all
therelationswould bein

â�ã 8 . Thus,it sufficesto checkthat
dependencieswithin objects(yellow edges)areacyclic.

Proposition 4.2: Stratificationof a coloredgraphcanbede-
terminedin timelinear in thenumberof edgesin thegraph.

We omit thedetailsof thealgorithmfor lack of space,but it
relieson standardgraphalgorithms. Finally, we notethat it



is easyto expandthisdefinitionof stratificationfor situations
whereé our prior knowledgeinvolvesseveral setsof guaran-
teedacyclic relations,eachsetwith its own order(e.g.,ob-
jectson a grid with a north-southorderingandan east-west
ordering).Wesimplycolor thegraphwith severalcolors,and
checkthat eachcycle containsedgeswith exactly onecolor
otherthanyellow, exceptfor red.

4.2 Evaluating different structures
Now thatweknow which structuresarelegal,we needto de-
cidehow to evaluatedifferentstructuresin orderto pick one
that fits the datawell. We adaptBayesianmodelselection
methodsto our framework. Formally, we want to compute
the posteriorprobability of a structurè given an instantia-
tion & . UsingBayesrule we have that

� ��`B�	&/�®G\�WÖ � �³&,�`W�®G\� � ��`ê�*G\� . This scoreis composedof two main parts:
the prior probability of the structure,andthe probability of
thedataassumingthatstructure.

The first componentis
� ��`ë�°G\� , which definesa prior

over structures.We assumethat thechoiceof structureis in-
dependentof theskeleton,andthus

� ��`Ø�	G\�¡R � ��`Á� . In the
context of Bayesiannetworks,weoftenuseasimpleuniform
prior overpossibledependency structures.Unfortunately, this
assumptiondoesnot work in our setting.Theproblemis that
theremay be infinitely many possiblestructures.In our ge-
neticsexample,a person’sgenotypecandependon thegeno-
type of his parents,or of his grandparents,or of his great-
grandparents,etc. A simpleandnaturalsolutionpenalizes
long indirectslot chains,by having ·³¸¾º � ��`Á� proportionalto
thesumof thelengthsof thechains] appearingin ` .

Thesecondcomponentis themarginal likelihood:� ��&ì�O`d��G\�¶RØí � �³& �O`W��a b ��G\� � ��a b �O`Á�*î3a b
If we usea parameterindependentDirichlet prior (asabove,
this integral decomposesinto a productof integralseachof
which hasa simple closedform solution. (This is a sim-
ple generalizationof theideasusedin theBayesianscorefor
Bayesiannetworks.)

Proposition 4.3: If & is a completeassignment,and
� �#a b �`Á� satisfiesparameterindependenceandis Dirichletwith hy-

perparameters Ð*VÁ6 £ Â Ã ���FÄ , then,
� �³&æ�1`d��G\� , the marginal

likelihoodof & given ` , is equalto¢ � ¢£*¤3¥¡¦ V Y#§ ¢ï ¤©ð�¦�¦ § Pa
¦ V Y 6 £ §�§ DM �Mj CV Y 6 £ Â Ã �®�\Ä o ��jOÐ V Y 6 £ Â Ã ���FÄ o �

where

DM �ñj C Â Ã Ä o ��jOÐ Â Ã Ä o �cR ò ¦ ÈUó Ú5Û É Ü §ò ¦ È ó ¦ Ú>Û É Üõô C Û É Ü §�§ × É ò ¦ Ú>Û É Üõô C Û É Ü §ò ¦ Ú5Û É Ü § ,

and ö¡�#+?�¡RØ÷�øùèú 47û �:ü ûXý î ú is theGammafunction.

Hence, the marginal likelihood is a product of simple
terms,eachof which correspondsto a distribution

� �#�c
 �æ��.� where�m!0%�� Pa���i
 ����� . Moreover, thetermfor
� �#�c
 �-��.� dependsonly on thehyperparametersÐ VÁ6 £ Â Ã ���FÄ andthe

sufficient statisticsC VÁ6 £ Â Ã �®�\Ä for Ã !0%����i
 ��� .
The marginal likelihoodterm is the dominantterm in the

probability of a structure. It balancesthe complexity of the

structurewith its fit to the data. This balancecanbe made
explicitly via the asymptoticrelationof the marginal likeli-
hood to explicit penalization,suchas the MDL score(see,
e.g.,[Heckerman,1998]).

Finally, we notethat the Bayesianscorerequiresthat we
assigna prior over parametervaluesfor eachpossiblestruc-
ture. Sincethereare many (perhapsinfinitely many) alter-
native structures,this is a formidable task. In the caseof
Bayesiannetworks, thereis a classof priors that canbe de-
scribedby a singlenetwork [Heckermanet al., 1995]. These
priorshavetheadditionalpropertyof beingstructureequiva-
lent, thatis, they guaranteethatthemarginal likelihoodis the
samefor structuresthatare,in somestrongsense,equivalent.
Thesenotionshave not yet beendefinedfor our richerstruc-
tures,sowedefertheissueto futurework. Instead,wesimply
assumethatsomesimpleDirichlet prior (e.g.,auniformone)
hasbeendefinedfor eachattributeandparentset.

4.3 Structure search
Now thatwehaveatestfor determiningwhetherastructureis
“legal”, anda scoringfunctionthatallowsusto evaluatedif-
ferentstructures,we needonly provide a procedurefor find-
ing legalhigh-scoringstructures.For Bayesiannetworks,we
know that this taskis NP-Hard[Chickering,1996]. As PRM
learningis at leastashardasBN learning(a BN is simply a
PRMwith oneclassandnorelations),wecannothopeto find
an efficient procedurethat always finds the highestscoring
structure.Thus,we mustresortto heuristicsearch.Thesim-
plestsuchalgorithmis greedyhill-climbing search,usingour
scoreasametric.Wemaintainourcurrentcandidatestructure
anditeratively improveit. At eachiteration,weconsideraset
of simplelocal transformationsto thatstructure,scoreall of
them,andpick theonewith highestscore.Wedealwith local
maximausingrandomrestarts.

As in Bayesiannetworks, the decomposabilityproperty
of the scorehassignificantimpacton the computationalef-
ficiency of the searchalgorithm. First, we decomposethe
scoreinto a sumof local scorescorrespondingto individual
attributesandtheirparents.Now, if oursearchalgorithmcon-
sidersamodificationto ourcurrentstructurewheretheparent
setof a singleattribute �c
 � is different,only thecomponent
of thescoreassociatedwith �c
 � will change.Thus,weneed
only reevaluatethis particularcomponent,leaving theothers
unchanged;this resultsin majorcomputationalsavings.

Therearetwo problemswith this simpleapproach.First,
asdiscussedin theprevioussection,we have infinitely many
possiblestructures. Second,even the atomic stepsof the
searchare expensive; the processof computingsufficient
statisticsrequiresexpensive databaseoperations.Evenif we
restrict the set of candidatestructuresat eachstep of the
search,wecannotafford to doall thedatabaseoperationsnec-
essaryto evaluateall of them.

We proposea heuristic searchalgorithm that addresses
both theseissues. At a high level, the algorithm proceeds
in phases.At eachphaseþ , wehavea setof potentialparents
Pot <´�#�c
 ��� for eachattribute �c
 � . We then do a standard
structuresearchrestrictedto thespaceof structuresin which
theparentsof each�c
 � arein Pot < �#�c
 �d� . Theadvantageof
thisapproachis thatwecanprecomputetheview correspond-



ing to �c
 �ÿ� Pot < ���i
 ��� ; mostof theexpensive computations
— the� joins andtheaggregationrequiredin thedefinitionof
the parents— are precomputedin theseviews. The suffi-
cient statisticsfor any subsetof potentialparentscaneasily
be derivedfrom this view. Theabove construction,together
with thedecomposabilityof thescore,allows thestepsof the
search(say, greedyhill-climbing) to doneveryefficiently.

Thesuccessof this approachdependson thechoiceof the
potentialparents.Clearly, awronginitial choicecanresultto
poorstructures.Following [Friedmanetal., 1999], whichex-
aminesasimilarapproachin thecontext of learningBayesian
networks, we proposean iterative approachthat startswith
somestructure(possiblyonewhereeachattribute doesnot
have any parents),and selectthe setsPot < ���c
 �d� basedon
this structure.We thenapply thesearchprocedureandgeta
new, higherscoring,structure.We choosenew potentialpar-
entsbasedon this new structureandreiterate,stoppingwhen
no furtherimprovementis made.

It remainsonly to discussthe choiceof Pot<´�#�c
 �d� at the
differentphases.Perhapsthesimplestapproachis to begin by
settingPot � �#�c
 ��� to bethesetof attributesin � . In succes-
sive phases,Pot< ô �7�#�c
 ��� would consistof all of Pa<´���c
 �d� ,
aswell asall attributesthat arerelatedto � via slot chains
of length �Øþ . Of course,thesenew attributeswould require
aggregation;wesidesteptheissueby predefiningpossibleag-
gregatesfor eachattribute.

This schemeexpandsthe setof potentialparentsat each
iteration. However, it usually resultsin large set of poten-
tial parents.Thus,we actuallyusea morerefinedalgorithm
thatonly addsparentsto Pot< ô �7�#�c
 �d� if they seemto “add
value”beyondPa< ���i
 ��� . Thereareseveralreasonableways
of evaluatingthe additionalvalueprovided by new parents.
Someof thesearediscussedin [Friedmanet al., 1999] in the
context of learningBayesiannetworks. Their resultssuggest
that we shouldevaluatea new potentialparentby measur-
ing the changeof scorefor the family of �c
 � if we addthe�����c
 ] 
 eN� to its currentparents.We thenchoosethehighest
scoringof these,aswell asthecurrentparents,to bethenew
setof potentialparents.This approachallows us to signifi-
cantlyreducethesizeof thepotentialparentset,andthereby
of theresultingview, while beingunlikely to causesignificant
degradationin thequalityof thelearnedmodel.

5 Implementation and experimental results
We implementedour learningalgorithmon top of the Post-
gresobject-relationaldatabasemanagementsystem.All re-
quiredcountswereobtainedsimply throughdatabaseselec-
tion queries,andcachedto avoid performingthesamequery
twice. During thesearchprocess,we createdtemporaryma-
terializedviews correspondingto joins betweendifferentre-
lations, and theseviews were then usedfor computingthe
counts.

We testedour proposedlearning algorithm on two do-
mains,one real and one synthetic. The two domainshave
very differentcharacteristics.The first is a movie database�
that containsthree relations: Movie, Actor and Appears,
which relatesactorsto movies in which they played. The

�
Obtainedfrom http://www-db.stanford.edu/pub/movies/doc.html

databasecontains about 11000 movies and 7000 actors.
While this databasehasa simple structure,it presentsthe
kind of problemsoneoftenencounterswhendealingwith real
data:missingvalues,largedomainsfor attributes,andincon-
sistentuseof values. The fact that our algorithm was able
to dealwith this kind of real-world problemis quitepromis-
ing. Our algorithmlearnedthe modelshown in Figure2(a).
Thismodelis reasonable,andcloseto onethatwewouldcon-
sider to be “correct”. It learnedthat the Genre of a movie
dependedon its Decadeandits film Process(color, black&
white, technicoloretc.) andthat theDecadedependedon its
film Process. It alsolearnedaninterestingdependency com-
biningall threerelations:theRole-Typeplayedby anactorin
amovie dependson theGenderof theactorandtheGenreof
themovie.

Theseconddatabase,anartificial geneticdatabasesimilar
to the examplein this paper, presentedquite differentchal-
lenges. For one thing, the recursive natureof this domain
allows arbitrarily complex joins to be defined. In addition,
the probabilisticmodel in this domainis fairly subtle. Each
personhas three relevant attributes— P-Chromosome, M-
Chromosome, and BloodType— all with the samedomain
andall relatedsomehow to thesameattributesof theperson’s
motherand father. The gold standardis the modelusedto
generatethedata;thestructureof thatmodelwasshown ear-
lier in Figure1. We trainedour algorithmon datasetsof var-
ious sizesrangingup to 800. A datasetof size � consisted
of a family treecontaining� people,with an averageof 0.6
bloodtestsperperson.We evaluatedour algorithmon a test
setof size10,000.Figure2(b)showsthelog-likelihoodof the
testsetfor the learnedmodels.In mostcases,our algorithm
learneda modelwith the correctstructure,andscoredwell.
However, in asmallminority of cases,thealgorithmgotstuck
in local maxima, learninga model with incorrectstructure
thatscoredquitepoorly. This canbeseenin thescatterplots
of Figure2(b) which show that themedianlog-likelihoodof
the learnedmodelsis quite reasonable,but thereare a few
outliers. Standardtechniquessuchasrandomrestartscanbe
usedto dealwith localmaxima.

6 Discussion and conclusions
In thispaper, wedefinedanew statisticallearningtask:learn-
ing probabilisticrelationalmodelsfrom data.Wehaveshown
thatmany of theideasfrom Bayesiannetwork learningcarry
over to this new task. However, we have alsoshown that it
alsoraisesmany new challenges.

Scalingtheseideasto largedatabasesis animportantissue.
We believe that this canbe achieved by a closerintegration
with the technologyof databasesystems,including indices
andqueryoptimization.Furthermore,therehasbeena lot of
recentwork onextractinginformationfrom massivedatasets,
includingwork onfindingfrequentlyoccurringcombinations
of valuesfor attributes.We believe that theseideaswill help
significantlyin thecomputationof sufficientstatistics.

Therearealsoseveralimportantpossibleextensionsto this
work. Perhapsthemostobviousoneis thetreatmentof miss-
ing dataandhiddenvariables.We canextendstandardtech-
niques(suchasExpectationMaximizationfor missingdata)
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Figure2: (a) ThePRM learnedfor themovie domain,a real-world databasecontainingabout11000moviesand7000actors.
(b) Learningcurve showing the generalizationperformanceof PRMslearnedin the geneticdomain. The + -axis shows the
databasessize; the P -axis shows log-likelihoodof a testsetof size10,000. For eachsamplesize,we show 10 independent
learningexperiments.Thecurveshowsmedianlog-likelihoodof themodelsasa functionof thesamplesize.

to this task(see[Koller andPfeffer, 1997] for someprelim-
inary work on relatedmodels.) However, the complexity of
inferenceon largedatabaseswith many missingvaluesmake
thecostof anaiveapplicationof suchalgorithmsprohibitive.
Clearly, this domaincallsboth for new inferencealgorithms
andfor new learningalgorithmsthat avoid repeatedcalls to
inferenceovertheseverylargeproblems.Evenmoreinterest-
ing is the issueof automateddiscovery of hiddenvariables.
Thereare somepreliminaryanswersto this questionin the
context of Bayesiannetworks [Friedman,1997], in the con-
text of ILP [Lavrac̆ andDz̆eroski,1994], andveryrecentlyin
thecontext of simplebinaryrelations[Hofmannetal., 1998].
Combiningtheseideasandextendingthemto thismorecom-
plex framework is asignificantandinterestingchallenge.

Anotherdirectionextendstheclassof modelsweconsider.
Here,weassumedthattherelationalstructureis specifiedbe-
foretheprobabilisticattributevaluesaredetermined.A richer
classof PRMs(e.g.,thatof [Koller andPfeffer, 1998]) would
allow probabilitiesover the structure of the model; for ex-
ample:uncertaintyover thesetof objectsin themodel,e.g.,
thenumberof childrena couplehas,or over therelationsbe-
tweenobjects,e.g.,whoseis the blood that wasfound on a
crimescene.Ultimately, we would want thesetechniquesto
help us automaticallydiscover interestingentitiesand rela-
tionshipsthathold in theworld.
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