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Abstract

Constantly improving gene expression profiling technologies
are expected to provide understanding and insight into can-
cer related cellular processes. Gene expression data is also
expected to significantly aid in the development of efficient
cancer diagnosis and classification platforms. In this work
we examine two sets of gene expression data measured across
sets of tumor and normal clinical samples. Omne set con-
sists of 2,000 genes, measured in 62 epithelial colon samples
[1]. The second consists of &~ 100,000 clones, measured in
32 ovarian samples (unpublished, extension of data set de-
scribed in [26]).

We examine the use of scoring methods, measuring sepa-
ration of tumors from normals using individual gene expres-
sion levels. These are then coupled with high dimensional
classification methods to assess the classification power of
complete expression profiles. We present results of perform-
ing leave-one-out cross validation (LOOCV) experiments on
the two data sets, employing SVM [8], AdaBoost [13] and
a novel clustering based classification technique. As tumor
samples can differ from normal samples in their cell-type
composition we also perform LOOCYV experiments using ap-
propriately modified sets of genes, attempting to eliminate
the resulting bias.

We demonstrate success rate of at least 90% in tumor
vs normal classification, using sets of selected genes, with
as well as without cellular contamination related members.
These results are insensitive to the exact selection mecha-
nism, over a certain range.

1 Introduction

The process by which the approximately 100,000 genes en-
coded by the human genome are expressed as proteins in-
volves two steps. DNA sequences are initially transcribed
into mRNA sequences. These mRNA sequences in turn are
translated into the amino acid sequences of the proteins
that perform various cellular functions. A crucial aspect
of proper cell function is the regulation of gene expression
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process, so that different cell types express different subsets
of genes. Measuring mRNA levels can provide a detailed
molecular view of the subset of genes expressed in different
cell types under different conditions. Recently developed
array-based methods enable simultaneous measurements of
the expression levels of thousands of genes. These measure-
ments are made by quantitating the hybridization (detected
for example, by fluorescence) of cellular mRNA to an array
of defined cDNA or oligonucleotide sequences immobilized
on a solid substrate. Array methodologies have led to a
tremendous acceleration in the rate at which gene expres-
sion pattern information is accumulated [9, 16, 17, 19, 29].
Measuring gene expression levels under different conditions
is important for expanding our understanding of gene func-
tion, how various gene products interact, and how experi-
mental treatments can affect cellular function.

Gene expression data can help in better understanding of
cancer. Normal cells can evolve into malignant cancer cells
through a series of mutations in genes that control the cell
cycle, apoptosis, and genome integrity, to name only a few.
As determination of cancer type and stage is often crucial to
the assignment of appropriate treatment [14], a central goal
of the analysis of gene expression data is the identification of
sets of genes that can serve, via expression profiling assays,
as classification or diagnosis platforms.

Another important purpose of gene expression studies
is to improve understanding of cellular responses to drug
treatment. Expression profiling assays performed before,
during and after treatment, are aimed at identifying drug
responsive genes, indications of treatment outcomes, and
at identifying potential drug targets [7]. More generally,
complete profiles can be considered as a potential basis for
classification of treatment progression or other trends in the
evolution of the treated cells.

Data obtained from cancer related gene expression stud-
ies typically consists of expression level measurements of
thousands of genes. This complexity calls for data analysis
methodologies that will efficiently aid in extracting relevant
biological information. Previous gene expression analysis
work emphasizes clustering techniques, which aim at par-
titioning the set of genes into subsets that are expressed
similarly across different conditions. Indeed, clustering has
been demonstrated to identify functionally related families
of genes [2, 9, 6, 11, 15, 29]. Similarly, clustering meth-
ods can be used to divide a set of cell samples into clusters
based on their expression profile. In [1] this approach was
applied to a set of colon samples which was divided into two
groups, one containing mostly tumor samples, and the other
containing mostly normal tissue samples.



Clustering methods, however, do not use any tissue anno-
tation (e.g., tumor vs.normal) in the partitioning step. This
information is only used to asses the success of the method.
Such methods are often referred to as unsupervised. In con-
trast, supervised methods, attempt to predict the classifica-
tion of new tissues, based on their gene expression profiles
after training on examples that have been classified by an
external “supervisor”.

The purpose of this work is to rigorously assess the po-
tential of classification approaches based on gene expres-
sion data. We present a novel clustering based classification
methodology, and apply it together with two other recently
developed classification approaches, Boosting [23, 13] and
Support Vector Machines [8, 28] to two data sets. Both sets
involve corresponding tissue samples from tumor and nor-
mal biopsies. The first is the data set of colon cancer [1],
and the other is a data set of ovarian cancer (an extension of
the data set reported in [26]). We use established statistical
tools, such as leave one out cross validation (LOOCV), to
evaluate the predictive power of these methods in the data
sets.

One of the major challenges of gene expression data is
the large number of genes in the data sets. For example,
one of our data sets includes almost 100,000 clones. Many
of these clones are not relevant to the distinction between
cancer and tumor and introduce noise in the classification
process. Moreover, for diagnostic purposes it is important
to find small sets of genes that are sufficiently informative
to distinguish between cells of different types. To this end
we suggest a simple combinatorial error rate score for each
gene, and use this method to select informative genes. As
we show, selecting relatively small subsets of genes can dras-
tically improve the performance. Moreover, this selection
process also isolates genes that are potentially intimately
related to the tumor makeup and the pathomechanism.

To realistically assess the performance of such methods
one needs to address the issue of sample contamination. Tu-
mor and normal samples may dramatically differ in terms
of their cell-type composition. For example, in the colon
cancer data [1], the authors observed that the normal colon
biopsy also included smooth muscle tissue from the colon
walls. As a result, smooth muscle related genes showed high
expression levels in the normal samples compared to the tu-
mor samples. This artifact, if consistent, could contribute
to success in classification. To eliminate this effect we re-
move the muscle specific genes and observe the effect on the
success rate of the process.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the principle classification methods we
use in this study. These include two state of the art meth-
ods from machine learning, and a novel approach based on
clustering algorithm of [2]. In Section 3, we describe the two
data sets, the LOOCYV evaluation method, and evaluate the
classification methods on the two data sets. In Section 4
we address the problem of gene selection. We propose a
simple method for selecting informative genes and evaluate
the effect of gene selection on the classification methods. In
Section 5, we examine the effect of sample contamination
on possible classification. We conclude in Section 6 with a
discussion of related works and future directions.

2 Classification Methods

In this section, we describe the main classification meth-
ods that we will be using in this paper. We start by for-
mally defining the classification problem. Assume that we

are given a training set D, consisting of pairs (z;,l;), for
i =1,...,m. Each sample z; is a vector in RY that de-
scribes expression values of N genes/clones. The label I;
associated with z; is either —1 or +1 (for simplicity, we will
discuss two-label classification problems). A classification
algorithm is a function f that depends on two arguments,
the training set D, and a query z € RY, and returns a pre-
dicted label { = fo(z). We also allow for no classification
to occur if x is either close to none of the classes or when
it is too borderline for a decision to be taken. Formally,
this is realized by allowing [ to be —1 , +1 or 0, the latter
representing an unclassified query. Good classification pro-
cedures predict labels that typically match the “true” label
of the query. For a precise definition of this notion in the
absence of the unclassified option assume that there is some
(unknown) joint distribution P(z,l) of expression patterns
and labels. The error of a classification function fD(~) is
defined as P(fp(z) # 1). Of course, since we do not have
access to P(:), we cannot precisely evaluate this term and
use estimators instead. When unclassified is accepted as a
possible output one needs to consider the costs/penalties of
the various outcomes in analyzing the value of a classifica-
tion method. For a comprehensive discussion of classifica-
tion problems see [3, 10, 22].

2.1 Nearest Neighbor Classifier

One of the simplest classification algorithms is the nearest
neighbor classifier [10]. The intuition is simple. To classify
a query z, find the most similar example in I} and predict
that z has the same label as that example. To carry out
this algorithm we need to define a similarity measure on
expression patterns. In our experiments, we use the Pearson
correlation as a measure of similarity (see, e.g., [11]).
Formally, let
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be the Pearson correlation between two vectors of expression
levels. Given a new vector z, the nearest neighbor classifi-
cation procedure searches for the vector z; in the training
data that maximizes ky(z,z;), and returns l;, the label of
zi.

This simple non-parametric classification method does
not take any global properties of the training set into consid-
eration. However, it is surprisingly effective in many types
of classification problems. We use it in our analysis as a
strawman, to which we compare the more sophisticated clas-
sification approaches.

2.2 Using Clustering for Classification

Recall that clustering algorithms, when applied to expres-
sion patterns, attempt to partition the set of elements into
clusters of patterns, so that all the patterns within a clus-
ter are similar to each other, and different from patterns in
other clusters. This suggests that if the labeling of patterns
is correlated with the patterns, then unsupervised cluster-
ing of the data (labels not taken into account) would cluster
patterns with the same label together and separate patterns
with different labels. Indeed, such a result is reported by
Alon et al. [1] in their analysis of colon cancer. Their study
(which we describe in more detail in Section 3) involves gene
expression patterns from colon samples that include both



tumors and normal tissues. Applying a hierarchical clus-
tering procedure to the data, Alon et al. observe that the
topmost division in the dendrogram divides samples into
two groups, one predominantly tumor, and the other pre-
dominantly normal. This suggests that for some types of
classification problems, such as tumor vs. normal, cluster-
ing can distinguish between labels. Following this intuition,
we build a clustering based classifier. We first describe the
underlying clustering algorithm and then present the classi-

fier.

2.2.1 The clustering algorithm

The CAST algorithm, implemented in the BioClust analysis
software package [2], takes as input a threshold parameter ¢,
which controls the granularity of the resulting cluster struc-
ture, and a similarity measure between the tissues.! We say
that a tissue v has high similarity to a set of tissues C , if
the average similarity between v and the tissues in C is at
least t. Otherwise, we say that v has low similarity to C .
CAST constructs the clusters one at a time, and halts when
all tissues are assigned to clusters. Intuitively, the algorithm
alternates between adding high similarity tissues to C , and
removing low similarity tissues from it. Eventually, all the
tissues in C have high similarity to C , while all the tissues
outside of C have low similarity to C . At this stage the
cluster C is closed, and a new cluster is started (See [2] for
complete description of the algorithm).

Clearly, the threshold value ¢, has great effect on the re-
sulting cluster structure. As t increases, the clusters formed
are smaller. At the extreme case, if ¢ is high enough, each
tissue would form a singleton cluster. Similarly, as ¢ de-
creases, the clusters tend to get larger. If ¢ is low enough,
all tissues are assigned to the same cluster.

2.2.2 Clustering based classification

As described above, the threshold parameter ¢ determines
the cohesiveness and the number of the resulting clusters. A
similar situation occurs in other clustering algorithms. For
example, in hierarchical clustering algorithms (e.g., [1, 11]),
the cutoff “level” of the tree controls the number of clus-
ters. In any clustering algorithm, it is clear that attempting
to partition the data into exactly two clusters will not be
the optimal choice for predicting labels. For example, if the
tumor class consists of several types of tumors, then the
most noticeable division into two clusters might separate
“extreme” tumors from the milder ones and the normal tis-
sues, and only a further division will separate the normals
from the milder tumors.

For the purpose of determining the right parameter to be
used in clustering data that contains some labeled samples
we propose a measure of cluster structure compatibility with
a given label assignment. The intuition is simple: on the one
hand, we want clusters to be uniformly labeled and therefore
penalize pairs of samples that are within the same cluster
but have different labels; on the other hand, we do not want
to create unnecessary partitions and therefore penalize pairs
of samples that have the same label, but are not within the
same cluster.

Formally, we define the compatibility score of a cluster
structure with the training set as the sum of two terms.
The first is the number of tissue pairs (v, u) such that v and

'In this work we use the Pearson correlation between gene ex-
pression profiles as the similarity measure. However, any similarity
measure can be used.

u have the same label, and are assigned to the same clus-
ter. The second term is the number of (v, u) pairs that have
different labels, and are assigned to different clusters. This
score is also called the matching coefficient in the literature
[12]. To handle label assignments defined only on a subset of
the data we restrict the comparison to count pairs of exam-
ples for which labels are assigned (the matching coeflicient
for a submatrix is computed).

Using this notion, we can optimize, using a binary search,
the choice of clustering parameters to find the most compat-
ible clustering. That is: we consider different threshold val-
ues, t; use CAST to cluster the tissues; measure the compat-
ibility C(t) of the resulting cluster structure with the given
label assignment; and finally, choose the clustering that has
maximal C(t). Thus, although the clustering algorithm is
unsupervised, in the sense that it does not take into account
the labels, we use a supervised procedure for choosing the
clustering threshold. We also emphasize that this general
idea can be applied to any parameter dependent clustering
method, and is not restricted to our particular choice.

To classify a query sample we cluster the training data
and the query, maximizing compatibility to the labeling of
the training data. We then examine the labels of all elements
of the cluster the query belongs to and use a simple major-
ity rule to determine the unknown label. The intuition is
that the query’s label should agree with the prevailing label
in its cluster. Various majority rules, taking into account
statistical confidence can be used. When confidence is too
low the query is labeled as unclassified. The stringency of
this test determines the strictness of our classification rule.
In the current experiment we use the most liberal rule, i.e.
a query is unclassified only if there is an equal number of
elements of each label in its cluster. The choice of majority
rule depends on the cost of non-classification vs. the cost of
misclassification.

2.3 Large-Margin Classifiers

The cluster-based approach we discussed in the previous sec-
tion attempts to find inherent structure in the data (i.e.,
clusters of samples) and uses this structure for prediction.
We can also use direct methods that attempt to learn a de-
cistion surface that separates the positive labeled samples
from the negatively labeled samples.

The literature of supervised learning discusses a large
number of methods that learn decision surfaces. These meth-
ods can be described by two aspects. First, the class of
surfaces from which one is selected. This question is often
closely related to the representation of the learned surface.
Examples include linear separation (which we discuss in
more detail below), decision-tree representations, and two-
layer artificial neural networks. Second, the learning rule
that is being used. For example, one of the simplest learn-
ing rules attempts to minimize the number of errors on the
training set.

Application of direct methods in our domain can suffer
from a serious problem. In gene-expression data we expect
N, the number of measured genes, to be significantly larger
than M, the number of samples. Thus, due to the large num-
ber of dimensions there are many simple decision surfaces
that can separate the positive examples from the negative
ones. This means that counting the number of training set
errors is not restrictive enough to distinguish good decision
surfaces from bad ones (in terms of their performance on
examples not in the training set).

In this paper, we use two methods that received much



recent attention in the machine learning literature. Both
methods attempt to follow the intuition that classification
of examples depends not only on the region they are in, but
also on a notion of margin: how close are they to the decision
surface. Classification of examples with small margins is not
as confident as classification of examples with large margins.
(Given slightly different training data, the estimated deci-
sion surface moves a bit, thus changing the classification of
points which are close toit.) This reasoning suggests that we
should select a decision surface that classifies all the training
examples correctly with large margin. Following the same
argument, given the learned decision surface and an unla-
beled sample z, we can set a threshold on the margin of x for
classification. If z is closer to the surface then the allowed
threshold, we mark is as unclassified. Again, the threshold
will depend on the relative costs of the different outcomes.
The basic intuition of large margin classifiers is developed
in quite different manners in the following two approaches.

2.3.1 Support Vector Machines

Support vector machines (SVM) were developed in [8, 28].
A tutorial on SVMs can be found in [5]. The intuition for
support vector machines is best understood in the example
of linear decision rules. A linear decision rule can be repre-
sented by a hyperplane in RY such that all examples on the
one side of the hyperplane are labeled positive and all the
examples on the other side are labeled negative. Of course,
in sufficiently high-dimensional data we can find many linear
decision rules that separate the examples. Thus, we want to
find a hyperplane that is as far away as possible from all the
examples. More precisely, we want to find a hyperplane that
separates the positive examples from the negative ones, and
also maximizes the minimum distance of the closest points to
the hyperplane. This question can be posed as a quadratic
program (see Appendix A), and can be solved efficiently.
The resulting hyperplane can be written as a weighted sum
of the training examples, z;, and the classification of a new
example z can be calculated using inner products with the
example vectors, (z,z;). This treatment can be generalized
to deal with training sets that are not linearly separable.
We refer the reader to [5] for details.

It i1s clear that linear hyperplanes are a restricted form
of decision surfaces. One method of learning more expres-
sive separating surfaces is to project the training examples
(and later on queries) into a higher-dimensional space, and
learn a linear separator in that space. For example, if our
training examples are in R', we can project input values
to the vector (x,xz). A linear separator in the projected
space is equivalent to learning an interval in the original
representation of the training examples.

Thus, we can fix a projection ® : RY — R to higher di-
mensional space, and get more expressive decision surfaces.
In this case, the classification rule for z will be composed of
the inner products (®(z), ®(z;)). Moreover, for many pro-
jections there are kernel functions that compute the result
of the inner product. A kernel function & for a projection ®
satisfies k(z,y) = (®(z), ®(y)). Given a legal kernel func-
tion, we can use it without knowing or explicitly computing
the actual mapping ®.

To summarize, if we want to learn expressive decision
surfaces, we can choose a kernel function, and use it instead
of inner-product in the execution of the SVM optimization.
This is equivalent to learning a linear hyperplane in the pro-
jected space.

In this work we consider two kernel functions:

e The linear kernel ki (z,y) = (=, y).
e The quadratic kernel k2 (z,y) = ((z,y) + 1)2.

The rational for using these simple kernels, is that since our
input space is high dimensional, we can hope to find a simple
separation rule in that space. We therefore test the linear
separator, and the next order separator as a comparison to
check if higher order kernels can yield better results.

Note that the quadratic kernel is strictly more expres-
sive than the linear one: any decision surface that can be
represented with ki (-, ) can also be represented with k2 (-, -).
Nonetheless, it is not obvious that the more expressive rep-
resentation will always perform better. Given a larger set of
decision surfaces to choose from, this procedure is more sus-
ceptible to overfitting, i.e. learning a decision surface that
performs well on the training data but performs badly on
test data.

2.3.2 Boosting

Boosting was initially developed as a method for construct-
ing good classifiers by repeated calls to “weak” learning
procedure [13, 23]. The assumption is that we have ac-
cess to a “weak learner” that given a training set D), con-
structs a function fp (x) The learner is weak in the sense
that the training set error better than that of random guess.
Formally, we assume that fp(z) classifies at least 1/2 +
1/poly(m) of the input space correctly.

In this paper, we use a fairly simple weak learner, that
finds simple rules of the form:

. d
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where z is an expression profile (e.g., a tissue to be classi-
fied), j is an index of a gene, z[j] is the expression value of
the y’th gene in the vector z, t is a threshold corresponding
to gene j, and d € {+1, —1} is a direction parameter. Such a
rule is called a decision stump. Given a dataset D, we learn
decision stumps by exhaustively searching all genes, and for
each gene searching over all thresholds and directions, and
finally return the combination that has the smallest number
of errors.?

Boosting uses the weak learning procedure (in our case,
the decision stump learner) to construct a sequence of clas-
sifiers fi,..., fr, and then uses a weighted vote among these
classifiers. Thus, the prediction made by the boosting algo-
rithm has the form :

h(z) = sign()_ w;f;(z)),

J

>t
<t

——
)

where w; are the weights assigned to the classifiers.

The crux of the algorithm is the construction of the se-
quence of classifiers. The intuition is simple. Suppose that
we train the weak learner on the original training data D
to get a classifier fi(z). Then, we can find the examples in
D that are classified incorrectly by fi. We want to force
the learning algorithm to give these examples special atten-
tion. This is done by constructing a new training data set
in which these examples are given more weight. Boosting
then invokes the weak learner on the reweighted training set

?Note that for each gene, we need to consider only m rules, since
the gene takes at most m different values in the training data. Thus,
we can limit our attentions to mid-way points between consecutive
values attained by the j’th gene in the training data.



Input:

o A data set of m labeled examples

{(z1,l), ..., (Zm, lm)}

o A weak learning algorithm L.

Initialize the distribution over the data set:
Di(zi)=1/m
Fort=1,2,...,T

e Call L with distribution Dy;
Get back a hypothesis h;.
o Calculate the error of h;:

€ = ZD(mi)l{lz‘ # h(z:)}

o Set wy = %log%
o Set the new distribution to be:

Dij1(zi) Dt(xi)ew’l’h’(l’)
such that D41 will sum to 1.

QOutput: The final hypothesis

h(z) = sign(z wihy(z))

Figure 1: The AdaBoost algorithm.

and obtains a new classifier. Examples are then reweighted
again, and the process is iterated. Thus, boosting adaptively
reweights training examples to focus on the “hard” ones.”
In this paper, we use the AdaBoost algorithm of Freund and
Schapire [13]. This algorithm is described in Figure 1.

In practice boosting is an efficient learning procedure
that usually has small number of errors on test sets. The
theoretical understanding of this phenomenon uses a notion
of margin that is quite similar to the one defined for SVMs.
Recall, that boosting classification is made by averaging the
“votes” of many classifiers. Define the margin of example z;

to be
m; =1; Z w; fi(zi).
J

By definition, we have that if m; > 0, then h(z;) = l;, and
thus z; is classified correctly. However, if m; is close to 0,
then this classification is “barely” made. On the other hand,
if m; is close to 1, then a large majority of the classifiers
make the right prediction on z;. The analysis of Schapire
et al. [20, 24] shows that the generalization error of boosting
(and other voting schemes) depends on the distribution of
margins of training examples. Schapire et al. also show
that repeated iterations of AdaBoost continually increase
the smallest margin of training examples. This is contrasted
with other voting schemes that are not necessarily increasing
the margin for the training set examples.

3More precisely, boosting distorts the distribution of the input
samples. For some weak learners, like the stump classifier, this can
be simulated by simply reweighting the samples.

3 Evaluation

In the previous section we discussed several approaches for
classification. In this section we examine their performance,
on experimental data.

3.1 Data Sets

Descriptions of the two datasets studied follow. Both of
these data sets involve comparing tumor and normal samples
of the same tissue.

Colon cancer data set. This data set is a collection
of expression measurements from colon biopsy samples re-
ported by Alon et al. [1]. The data set consists of 62 samples
of colon epithelial cells. These samples were collected from
colon-cancer patients. The “tumor” biopsies were collected
from tumors, and the “normal” biopsies were collected from
healthy parts of the colons of the same patients. The final
assignments of the status of biopsy samples were made by
pathological examination.

Gene expression levels in these 62 samples were measured
using high density oligonucleotide microarrays. Of the =
6000 genes detected in these microarray, 2000 genes were
selected based on the confidence in the measured expression
levels. The data, 62 samples over 2000 genes is available at
http://www.molbio.princeton.edu/colondata.

Ovarian cancer data set. This data set is a collec-
tion of expression measurements from 32 samples: 15 ovary
biopsies of ovarian carcinomas, 13 biopsies of normal ovaries,
and 4 samples of other tissues. Thus, the data set consists
of 28 samples labeled as tumor or normal. Gene expression
levels in these 32 samples were measured using a membrane-
based array with radioactive probes. The array consisted
of cDNAs representing approximately 100,000 clones from
ovarian clone libraries. For some of the samples, there are
two or three repeated hybridizations for error assessments.
In these cases, we collapsed the repeated experiments into
one experiment, represented by the average.

3.2 Estimating Prediction Errors

When evaluating the prediction accuracy of the classifica-
tion methods we described above, it is important not to use
the training error. Most classification methods will perform
well on examples they have seen during training. To get a
realistic estimate of performance of the classifier, we must
test it on examples that did not appear in the training set.
Unfortunately, since we have a small number of examples,
we cannot remove a portion of the examples from the train-
ing set, and use them for testing.

A common method to test accuracy in such situations
is cross-validation. To apply this method, we partition the
data into k sets of samples, Ci, ..., Ck (typically, these will
be of roughly the same size). Then, we construct a dataset
D; = D — Cj, and test the accuracy of fp,() on the samples
in C;. Having done this for all 1 < 1 < k£ we estimate the
accuracy of the method by averaging the accuracy in each
one of the cross-validation trials.

Cross-validation has several important properties . First,
the training set and the test set in each trial are disjoint.
Second, the classifier is tested on each sample exactly once.
Finally, the training set for each trial is (k—1)/k of the orig-
inal data set. Thus, for large k, we get a relatively unbiased
estimate of the classifier behavior given a training set of size
m.

There are several possible choices of k. A common ap-
proach is to set K = m. In this case, every trial removes a



Method Precent
correct incorrect unclassified
Colon
Clustering 88.7 11.3 0.0
Nearest Neighbor 80.6 19.4 0.0
SVM, linear kernel 77.4 12.9 9.7
SVM, quad. kernel 74.2 14.5 11.3
Boosting, 100 iter. 72.6 17.7 9.7
Boosting, 1000 iter. 72.6 17.7 9.7
Boosting, 10,000 iter. 71.0 19.4 9.7
Ovarian
Clustering 42.9 17.9 39.3
Nearest Neighbor 71.4 28.6 0.0
SVM, linear kernel 67.9 3.6 28.6
SVM, quad. kernel 64.3 3.6 32.1
Boosting, 100 iter. 89.3 10.7 0.0
Boosting, 1000 iter. 85.7 10.7 3.6
Boosting, 10,000 iter. 85.7 14.3 0.0

Table 1: Summary of classification performance of the differ-
ent methods on the two training sets. The tables shows the
precent of samples that were correctly classified, incorrectly
classfied, and unclassfied by each method in the LOOCV
evaluation. Unsupervised labels for margin based classifier
were decided by a fixed threshold on classification margin:
in SVM, 0.25, and in Adaboost, 0.05.

single sample and trains on the rest. This method is known
as leave one out cross validation (LOOCV). Other common
choices are k = 10 or k = 5. LOOCYV has been in use since
early days of pattern recognition (e.g., [10]). In some sit-
uations, using larger partitions reduces the variance of the
estimators (see [18]). In this work, since the number of sam-
ples is small, we use LOOCV.

Table 1 lists the accuracy estimates for the different meth-
ods applied to the two datasets. As we can see, the clus-
tering approach performs significantly better than the other
approaches on the colon cancer data set, but not so on the
ovarian data set. We can also see that quadratic SVM does
not perform as well as the linear SVM, probably because it
overfits the training data. The same phenomenon occurs in
Adaboost, where the classifiers are more accurate after 100
iterations than after 10000 iterations.

3.3 ROC Curves

Estimates of classification accuracy give only a partial in-
sight on the performance of a method. In our evaluation,
we treated all errors as having equal penalty. In many ap-
plications, however, errors have asymmetric weights. For a
general discussion of risk and loss considerations in classifi-
cation see, e.g, [22]. To set terminology for our particular
case, we distinguish false positive errors - normal tissues
classified as tumor, and false negative errors - tumor tissues
are classified as normal. In diagnostic applications, false
negative errors can be detrimental, while false positives may
be tolerated (since additional tests will be performed on the
patient).

To deal with asymmetric weights for errors, we introduce
the confidence parameter, 3. In clustering approaches, the
modified procedure labels a query sample as tumor if the
cluster containing it has at least a fraction 3 of tumors. In
a similar manner, we can introduce confidence parameters
for SVM and boosting approaches by changing the threshold
margin needed for positive classification.

ROC curves are used to evaluate the “power” of a clas-
sification method for different asymmetric weights (see, for
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Figure 2: ROC curves for methods applied to colon cancer
data set. The z-axis shows percentage of negative examples
classified as positives, and y-axis shows percentage of pos-
itive examples classified as positive. Each point along the
curve corresponds to the percentages achieved by a partic-
ular confidence threshold value by the corresponding clas-
sification method. FError estimates are based on LOOCV
trials.

example, [27]). A ROC curve plots the tradeoff between
the two types of errors as the confidence parameter varies.
Each point on the two dimensional curve corresponds to
a particular value of the confidence parameter. The (z,y)
coordinates of a point represent the fractions of negative
and positive samples that are classified as positive with this
particular confidence parameter. The extreme ends of the
curves are the most strict and most permissive confidence
values: with the strictest confidence value nothing is classi-
fied as positive, putting (0,0) on the curve; with the most
permissive confidence value everything is classified as pos-
itive, putting (1,1) on the curve. The path between these
two extremes shows how flexible the procedure is with re-
spect to trading-off error rates. The best case scenario is
that the path goes through the point (0,1). This implies
that for some confidence parameter, all positives are classi-
fied as positive, and all negatives are classified as negative.
That is - the procedure can be made very strict with respect
to false positive error, with no false negative price to pay.
ROC curves with large areas underneath mean that high
false positive stringencies can be obtained without much of
a false negative price.

In Figure 2 we plot the ROC curves for clustering, SVM
and boosting on the colon cancer data set. As we can see,
there is no clear domination among the methods. (The only
exception is SVM with quadratic kernel that is consistently
worse than the other methods.) The clustering procedure is
dominant in the region where misclassification errors of both
types are roughly of the same importance. However, SVM
with linear kernel and boosting are preferable in regions of
highly asymmetric error cost (both ends of the spectrum).
This may be due to the fact that the matching coefficient
score (see Section 2.2), which determines the cluster granu-
larity, treats both types of errors as having equal costs.

4 Gene Selection

It is clear that the expression levels of many of the genes that
are measured in our data sets are irrelevant to the distinc-
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tion between tumor and normal tissues. Taking such genes
into account during classification increases the dimension-
ality of the classification problem, presents computational
difficulties, and introduces unnecessary noise to the pro-
cess. Another issue with a large number of genes is the
interpretability of the results. If the “signal” that allows
our methods to distinguish tumor from normal tissues is en-
coded in the expression levels of few genes, then we might be
able to understand the biological significance of these genes.
Moreover, a major goal for diagnostic research is to develop
diagnostic procedures based on inexpensive microarrays that
have enough probes to detect diseases. Thus, it is crucial
to recognize whether a small number of genes can suffice for
good classification.

The problem of feature selection received a thorough
treatment in pattern recognition and machine learning. The
gene expression data sets are problematic in that they con-
tain a large number of genes (features) and thus methods
that search over subsets of features can be prohibitively ex-
pensive. Moreover, these data sets contain only a small num-
ber of samples, so the detection of irrelevant genes can suffer
from statistical instabilities.

To address these issues, we utilize measures of “rele-
vance” of each gene. In particular, we focus on a quantity
we call the threshold number of misclassification or TNoM
score of a gene. The intuition is that an informative gene has
quite different values in the two classes (normal and tumor),
and thus we should be able to separate these by a threshold
value. Formally, we seek the best decision stump for that
gene (as defined in Section 2.3.2), and then count the clas-
sification errors this decision stump makes on the training
examples. Also see Appendix B for a formal definition.

An immediate question to ask is whether genes with low
TNoM scores are indeed indicative of the classification of
expression. In other words, we want to test the statistical
significance of the scores of the best scoring genes in our data
set. We can measure significance by analyzing the distribu-
tion of scores for random labeling of samples, independent
of gene expression data. To estimate this distribution we
we use simulations. As we can see from Figure 3, the bet-
ter TNoM scores observed in the real data are extremely
unlikely in random data.

To evaluate the biological meaning of the high scoring
genes we have ordered the genes in both data sets, according
to their TNoM scores, and examined the genes at the top of
the list (those with better TNoM scores). Among the top
100 genes in the colon cancer data set there are a number of
genes that are interesting from the perspective of a potential
involvement in tumorigenesis including, for example, genes
involved in cell cycle regulation and angiogenesis. There
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Figure 3: (a) The distribution of gene
TNoM scores for the colon cancer
data set compared to the distribution
of scores in randomly labeled data.
1 (b) the same, for the 50 best scoring
1 genes.
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were also genes, for example (D63874) HMG-1 (human) and
(T55840) tumor-associated antigen L6 (human), that have
previously been found to have a particular association with
colorectal carcinomas [25, 30].

Among the top scoring 137 clones in the ovarian can-
cer data, there are 85 clones that match 8 cancer related
genes (potential markers or expressed in cancer cells) and
one gene that is related to increased metabolic rate (mito-
chondrial gene). The 8 genes are keratin 18 (breast cancer),
pyruvate kinase muscle 2 (hepatoma), thymopoietin (cell
proliferation), HE4 (ovarian cancer), SLPI (many different
cancers, among them lung, breast, oropharyngeal, bladder,
endometrial, ovarian and colorectal carcinoma), ferritin H
(ovarian cancer), collagen 1A1 (ovarian cancer, osteosar-
coma, cervical carcinoma), and GAPDH (cancers of lung,
cervix and prostate). In addition, 2 clones with no homol-
ogy to a known gene are found in this selection. Given the
high number of cancer related genes in the top 137, it is
likely that these novel genes exhibit a similar cancer-related
behavior. We conducted expression validation for GAPDH,
SLPI, HE4 and keratin 18 which confirmed the elevated ex-
pression in some ovarian carcinomas compared to normal
ovarian tissues.

4.1 Classifying with Selected Subsets

When using gene selection, we need to pre-process the train-
ing data to select genes. Then, the classification procedure
is applied using the training data restricted to the subset of
selected genes. The gene selection stage is given a parameter
k, which determines the largest error-score allowed. It then
selects all genes that have a smaller or equal error score on
the training data. alternatively, a p-value approach can be
taken: all genes with scores which are very rare in random
data are selected.

To evaluate performance with gene selection, we have to
be careful to jointly evaluate both stages of the process: gene
selection and classification. Thus, in each cross-validation
trial, gene selection is applied based on the training exam-
ples in that trial. Note, that since the training examples are
different in different cross validation trials, we expect the
number of selected genes to depend on the trial.

Figure 4 describes the performance of some of the meth-
ods we discussed above when we vary the stringency of the
selection process.

In the colon data set, gene selection leads to mixed re-
sults. Some methods, such as clustering, perform slightly
worse with fewer genes, while others, such as SVM, perform
better with smaller set of genes. On the other hand, in the
ovarian data set, gene selection leads to impressive improve-
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Figure 5: ROC curves for three methods that are applied to
the ovarian data set with TNoM score threshold set to 3

ment in all methods. All methods perform well in the region
between threshold 3 (avg. 173 clones) to 6 (avg. 4375 clones).
Note that both Boosting and SVM perform well even with
fewer clones.

Figure 5 shows an ROC curve for Clustering approach,
Boosting, and quadratic SVM with threshold of 3 (linear
SVM has similar curve to quadratic SVM, and thus was
not plotted). As we can see, although all methods have
roughly the same accuracy with this subset of genes, their
ROC profile is strikingly different. These curves clearly show
that the Clustering approach makes false positive errors,
while all the other approaches make false negative errors.

5 Sample Contamination

Cancer classification based on array-based gene expression
profiling may be complicated by the fact that clinical sam-
ples, e.g. tumor vs. normal, will likely contain a mixture
of different cell types. In addition, the genomic instability
inherent in tumor samples may lead to a large degree of

random fluctuations in gene expression patterns. Although
both the biological and genetic variability in tumor samples
have the potential to lead to confusing and difficult to inter-
pret expression profiles, gene expression profiling does allow
us to efficiently distinguish tumor and normal samples, as
we have seen in the previous sections. However, the presence
of different cell types within and between samples could lead
to identification of genes that strongly affect cluster forma-
tion but which may have little to do with the process being
studied, in this case tumorigenesis. For example, in the case
of the colon cancer data set presented above, a large number
of muscle-specific genes were identified as being character-
istic of normal colon samples both in our clustering results
and in the results of Alon et al. [1]. This is most likely due
to a higher degree of smooth muscle contamination in the
normal versus tumor samples.

This raises the concern that our classification may be bi-
ased by the presence of muscle specific genes. To test this
hypothesis, we attempted to construct data sets that avoid
genes that are suspected in introducing bias. We listed
the top 200 error-score ranking genes in the colon cancer
data set, and identified muscle-specific genes. These include
(J02854) myosin regulatory light chain 2, smooth muscle
isoform (human); (T60155) actin, aortic smooth muscle (hu-
man); and (X12369) tropomyosin alpha chain, smooth mus-
cle (human)that are designated as smooth muscle-specific
by Alon et al.’s analysis, and (M63391) desmin (human),
complete cds; (D31885) muscle-specific EST (human); and
(X7429) alpha 7B integrin (human) which are suspected to
be expressed in smooth muscle based on literature searches.

An additional form of “contamination” is due to the high
metabolic rate of the tumors. This results in high expres-
sion values for ribosomal genes. Although such high expres-
sion levels can be indicative of tumors, such a finding does
not necessarily provide novel biological insight into the pro-
cess, nor provide a diagnostic tool since ribosomal activity
is present in virtually all tissues. Thus, we also identified
ribosomal genes in the top 200 scoring genes.

Figure 6 shows the performance of the clustering ap-
proach on three data sets: the full 2000 gene data set, a
data set without muscle specific genes, and a data set with-
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Figure 6: Curves showing the predictive performance of clus-
tering methods in the original Alon et al. data set, and
data sets where muscle specific, and ribosomal genes were
removed. All estimates are based on LOOCYV evaluation.
These results show that even without the obvious contam-
inations, our methods are successful in reliably predicting
tissue type.

out both muscle specific and ribosomal genes. As the learn-
ing curves show, the removal of genes affects the results only
in cases using the smallest sets of genes. From error score
threshold of 10 (avg. 9.1 genes) and higher, there is no sig-
nificant change in performance for the procedure. Thus,
although muscle specific genes can be highly indicative, the
classification procedure performs well even without relying
on these genes.

Although the muscle contamination did not necessarily
alter the ability of this gene set to be used to classify tumor
vs. normal samples in this case, it will continue to be impor-
tant to account for possible affects of tissue contamination
on clustering and classification results. Experimental de-
signs that include gene expression profiles of tissue and/or
cell culture samples representative of types of tissue con-
taminants known to be isolated along with different types
of tumor samples (for example see Perou et al. [21]), can
be utilized to help distinguish contaminant gene expression
profiles from those actually associated with specific types of
tumor cells.

6 Conclusions

In this paper we examined the question of tissue classifica-
tion based on expression data. Our contribution is four-fold.
First, we introduced a new cluster-based approach for classi-
fication. This approach builds on clustering algorithms that
are suitable for gene expression data. Second, we performed
rigorous evaluation of this method, and of known methods
from the machine learning literature. These include large
margin classification methods (SVM and AdaBoost) and the
nearest-neighbor method. Third, we highlighted the issue of
sample contamination and estimated the sensitivity of our
approach to sample variability. Differences in tissue biopsies
could theoretically affect the quality of any given classifica-
tion method. Studying this issue, we observed no significant
contaminating tissue bias in the colon cancer data set. Fi-
nally, we investigated the issue of gene selection in expres-
sion data. As our results for the ovarian data set show, a

large number of clones can have a negative impact on predic-
tive performance. We showed that a fairly simple selection
procedure can lead to significant improvements in prediction
accuracy.

The work reported here is closely related to two recent
papers. First, Lander et al. [14] examined gene expression
profile differences in AML and ALL (two types of leukemia)
biopsies. They employ a scoring rule to select informative
genes and perform LOOCYV experiments to test a voting
based classification approach. Although their score for gene
selection and their classification method are different than
ours, their main conclusions are quite similar in that they
get good classification accuracy with relatively small num-
ber of genes. Second, Brown et al. [4] use support vector
machines in the context of gene expression data. In con-
trast to our approach, they attempt to classify the genes
rather then samples. Thus, they deal with the dual classi-
fication problem. The characteristics of their classification
problem are quite different: many examples (i.e., thousands
of genes), and few attributes (i.e., expression in different
samples). We note that some of the approaches we used
in this work (e.g., clustering based classification) might be
applicable to this dual classification problem as well.

As noted above, the gene selection process we explored in
this paper is quite simplistic. In particular, it was based on
scoring single genes for relevance. Thus, the process might
select several genes that convey the same information, and
might ignore genes that add independent information. We
are currently studying more direct approaches to the selec-
tion of informative sets of genes. Identifying sets of genes
that give rise to efficient learned classifiers might reveal pre-
viously unknown disease related genes and guide further bi-
ological research.
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Support Vector Machines

A linear decision rule can be represented by a hyperplane in

RN

such that all examples on the one side of the hyperplane

are labeled positive and all the examples on the other side
are labeled as negative. Such a rule can be represented by
a vector w € RY and a scalar b that together specify the
hyperplane w - + b = 0. Classification for a new example
z is performed by computing sign(w - £ + b). Recall that
I‘w+b| is the distance from z to the line - w+b6 = 0. Thus,

[lw

if all points in the training data satisfy

l,;(xz‘ -w —I—b) >1 (1)



than all points correctly classified, and all of them have a
distance of at least 1/||w|| from the hyperplane. We can
find the hyperplane that maximizes the margin of error by
solving the following quadratic program:

Minimize ||w||*
Subject to li(z; - w+b) >1fori=1,...,m.

Such quadratic programs can be solved in the dual form.
This dual form is posed in terms of auxiliary variables «;.
The solution has the property that

w = Z ailiz;,
i
and thus, we can classify a new example z by evaluating

sign(z oz.'lZ'(xi,m) +b) (2)

In practice, there is a range of optimization methods that
can be used for solving the dual optimization problem. See
[5] for more details.

The SVM dual optimization problem and its solution
have several attractive properties. First, only a subset of the
training examples determine the position of the hyperplane.
Intuitively, these are exactly these samples that are at a
distance 1/||w]|| from the hyperplane. It turns out that the
dual problem solution assigns a; = 0 to all examples that
are not “supporting” the hyperplane. Thus, we only need
to store the support vectors x; for which a; > 0. (Hence the
name of the technique.)

Second, the dual form of the quadratic optimization prob-
lem involves only inner products of vectors in RY . In other
words, vectors x; do not appear outside the scope of an inner
product operation. Similarly, the classification rule (2) only
examines vectors in RY inside the inner product operation.
Thus, if we want to consider any projection ® : RY s RM |
then we can find an optimal separating hyperplane in the
projected space, by solving the quadratic problem with in-
ner products (®(z;), ®(z;)).

In many cases, we can perform the optimization in high-
dimensional spaces, by efficient computation of the inner
product in these spaces. A function k(z,y) = (®(z), ®(y))
is called a kernel function. For many projections, the ker-
nel function can be computed in time that is linear in N,
regardless of the dimension M.

B TNoM Score

The TNoM score is the relevance measure, for single genes,
that was employed in this work. We begin by the formal
definition. Given a vector v € {+,—}" and 1 <1 < m, let

@(¢) = the number of +’s in vy, ..., v;,

and
©(i) = the number of —’s in vy, ..., v;.

Let m4 = @(m) and m_ = &(m) be the number + and —
in v. Then let
M(i) = min (8() + m+ — 8() , BG) +m— - 8(1)), (3)

and

TNOM(U):JISHIiélm M(3). (4)

The index 1 that attains this minimum is, in fact, the best
decision stump for this vector, as described in Section 2.3.2.

To assess the relevance of gene expression patterns in
actual data, to the classification problem studied we want to
compare the TNoM score associated with each such pattern
to TNoM scores expected in random data. Let U € {+, —}™
be a random vector drawn uniformly over the set

the number of +’sin u = my,
ue{+—}": and

the number of —’s in u=m_.

To perform the stated comparison task we would like to
estimate

Prob(TNoM(U) < s),

for all 0 € s < min(m4,m_). We currently employ sim-
ulations for doing this. We have also developed a rigorous
recursive procedure that exactly computes these probabili-
ties. This will be discussed in future work.



