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Abstract

A central problem in learning in complex environments is bal-
ancing exploration of untested actions against exploitation of
actions that are known to be good. The benefit of exploration
can be estimated using the classical notion of Value of Infor-
mation—the expected improvement in future decision quality
that might arise from the information acquired by exploration.
Estimating this quantity requires an assessment of the agent’s
uncertainty about its current value estimates for states. In
this paper, we adopt a Bayesian approach to maintaining this
uncertain information. We extend Watkins’ Q-learning by
maintaining and propagating probability distributions over the
Q-values. These distributions are used to compute a myopic
approximation to the value of information for each action
and hence to select the action that best balances exploration
and exploitation. We establish the convergence properties
of our algorithm and show experimentally that it can exhibit
substantial improvements over other well-known model-free
exploration strategies.

1 Introduction

Reinforcement learning is a rapidly growing area of in-
terest in AI and control theory. In principle, reinforcement
learning techniques allow an agent to become competent sim-
ply by exploring its environment and observing the resulting
percepts and rewards, gradually converging on estimates of
the value of actions or states that allow it to behave optimally.
Particularly in control problems, reinforcement learning may
have significant advantages over supervised learning: first,
there is no requirement for a skilled human to provide training
examples; second, the exploration process allows the agent to
become competent in areas of the state space that are seldom
visited by human experts and for which no training examples
may be available.

In addition to ensuring more robust behavior across the
state space, exploration is crucial in allowing the agent to
discover the reward structure of the environment and to de-
termine the optimal policy. Without sufficient incentive to
explore, the agent may quickly settle on a policy of low
utility simply because it looks better than leaping into the�
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unknown. On the other hand, the agent should not keep ex-
ploring options that it already has good reason to believe are
suboptimal. Thus, a good exploration method should balance
the expected gains from exploration against the cost of trying
possibly suboptimal actions when better ones are available
to be exploited.

Optimal solution of the exploration/exploitation tradeoff
requires solving a Markov decision problem over information
states—that is, the set of all possible probability distributions
over environment models that can be arrived at by executing
all possible action sequences and receiving any possible per-
cept sequence and reward sequence. The aim is to find a
policy for the agent that maximizes its expected reward. Al-
though this problem is well-defined, given a prior distribution
over possible environments, it is not easy to solve exactly.
Solutions are known only for very restricted cases—mostly
the so-called bandit problems in which the environment has
a single state, several actions, and unknown rewards [3].

Section 2 discusses several existing approaches to explo-
ration, as well as the model-free Q-learning algorithm we use
as our underlying learning method. This paper presents two
new approaches to exploration:

Q-value sampling: Wyatt [17] proposed Q-value sam-
pling as a method for solving bandit problems. The idea is to
represent explicitly the agent’s knowledge of the available re-
wards as probability distributions; then, an action is selected
stochastically according to the current probability that it is
optimal. This probability depends monotonically not only
on the current expected reward (exploitation) but also on the
current level of uncertainty about the actual reward (explo-
ration). In this work, we extend this approach to multi-state
reinforcement learning problems. The primary contribution
here is a Bayesian method for representing, updating, and
propagating probability distributions over rewards.

Myopic-VPI: Myopic value of perfect information [8]
provides an approximation to the utility of an information-
gathering action in terms of the expected improvement in de-
cision quality resulting from the new information. This pro-
vides a direct way of evaluating the exploration/exploitation
tradeoff. Like Q-value sampling, myopic-VPI uses the cur-
rent probability distributions over rewards to control ex-
ploratory behavior.

Section 3 describes these two algorithms in detail, along
with the Bayesian approach to computing reward distribu-
tions. In Section 4 we prove convergence results for the
algorithms, and in Section 5 we describe the results of a



1. Let the current state be � .
2. Select
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an action � to perform.

3. Let the reward received for performing � be � , and the
resulting state be � .

4. Update �	�
���
��� to reflect the observation ����������������� as
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where � is the current learning rate.

5. Go to step 1.

Figure 1: The Q-learning algorithm.

number of experiments comparing them against other ex-
ploration strategies. In our experiments, myopic-VPI was
uniformly the best approach.

2 Q-Learning
We assume the reader is familiar with the basic concepts

of MDPs (see, e.g., Kaelbling et al. [9]). We will use the fol-
lowing notation: An MDP is a 4-tuple, *,+.-0/1-
2435-6287�9 where+ is a set of states, / is a set of actions, 283:*6;.<=?> 9 is a tran-
sition model that captures the probability of reaching state >
after we execute action @ at state ; , and 2 7 *6A8B ;�-�@�9 is a reward
model that captures the probability of getting reward A when
executing action @ at state ; .

In this paper, we focus on infinite-horizon MDPs with a
discount factor 0 CEDFC 1. The agent’s aim is to maximize
the expected discounted total reward GIHKJ�L�D L A LNM - where A L
denotes the reward received at step O . Letting PRQ�*6;S9 denote
the optimal expected discounted reward achievable from state; and TUQV*
;V-�@W9 denote the value of executing @ at ; , we have
the standard Bellman equations [2]:P Q *6;S9YX Z[@W\ < T Q *
;V-5@�9T Q *
;V-�@W9YX ] 7 A	^�2 7 *
A8B ;�-�@�9`_�DR] 3 2 3 *6; <=?> 9aP Q * > 9b-

Reinforcement learning procedures attempt to maximize
the agent’s expected reward when the agent does not know 283
and 2 7 . In this paper we focus on Q-learning [14], a simple
and elegant model-free method that learns Q-values without
learning the model 2 3 . In Section 6, we discuss how our
results carry over to model-based learning procedures.

A Q-learning agent works by estimating the values ofTUQV*
;V-�@W9 from its experiences. It then select actions based
on their Q-values. The algorithm is shown in Figure 1. If
every action is performed in every state infinitely often, andc is decayed appropriately, TI*6;�-�@�9 will eventually converge
to TdQ�*6;�-�@�9 for all ; and @ [15].

The strategy used to select an action to perform at each
step is crucial to the performance of the algorithm. As
with any reinforcement learning algorithm, some balance
between exploration and exploitation must be found. Two
commonly used methods are semi-uniform random explo-
ration and Boltzmann exploration. In semi-uniform random
exploration [16], the best action is selected with some prob-
ability 2 , and with probability 1 ef2 , an action is chosen
at random. In some cases, 2 is initially set quite low to
encourage exploration, and is slowly increased. Boltzmann

exploration [14] is a more sophisticated approach in which
the probability of executing action @ in state ; is:

Pr *
@�9gX h�i"jlkam <:npo0qJ < & h irjlk�m < & npo0q
where s is a temperature parameter that can be decreased
slowly over time to decrease exploration. In this approach,
the probability of an action being selected increases with the
current estimate of its Q-value. This means that sub-optimal
but good actions tend to be selected more often than clearly
poor actions.

Both these exploration methods are undirected, meaning
that no exploration-specific knowledge is used. A number
of directed methods have also been proposed, of which the
best known is interval estimation [10]. Most of the directed
techniques can be thought of as selecting an action to per-
form based on the expected value of the action plus some
exploration bonus [11]. In the case of interval estimation, we
assume a normal distributionfor the observed future values of
each action in each state, and select an action by maximizing
the upper bound of a 100 * 1 e c 9 % confidence interval (for
some confidence coefficient c ) over this distribution. The
exploration bonus for interval estimation is half the width
of the confidence interval. Other exploration bonuses have
been proposed, based on the frequency or recency with which
each action has been performed, or on the difference between
predicted and observed Q-values.

The exploration-specific information in the Interval Esti-
mation algorithm is strictly local in nature. The exploration
bonus is calculated only from the future values observed
from the current state. Exploration can also be done glob-
ally, selecting actions now that we believe will lead us to
less-explored parts of the state space in the future. We can
do this by backing up exploration specific information along
with the Q-values. Meuleau and Bourgine [11], propose
IEQL+, which is closely related to interval estimation in that
it backs up Q-values and uses them to compute a local explo-
ration bonus. Unlike interval estimation, IEQL+ also backs
up an exploration bonus and combines the two to compute
the new exploration value of the action.

For a survey of directed and undirected exploration tech-
niques, see [13].

3 Bayesian Q-learning
In this work, we consider a Bayesian approach to Q-learning
in which we use probability distributions to represent the
uncertainty the agent has about its estimate of the Q-value
of each state. As is the case with undirected exploration
techniques, we select actions to perform solely on the basis
of local Q-value information. However, by keeping and
propagating distributions over the Q-values, rather than point
estimates, we can make more informed decisions. As we
shall see, this results in global exploration, but without the
use of an explicit exploration bonus.

3.1 Q-Value Distributions
In the Bayesian framework, we need to consider prior dis-
tributions over Q-values, and then update these priors based
on the agent’s experiences. Formally, let t k�m < be a random
variable that denotes the total discounted reward received



when action @ is executed in state ; and an optimal policy is
follou wed thereafter. What we are initially uncertain about is
how t k�m < is distributed; in particular, we want to learn the
value TUQV*
;V-�@W9"XEGIHKt k�m < M .We start by making the following simplifying assumption:

Assumption 1: t kam < has a normal distribution.

We claim that this assumption is fairly reasonable. The
accumulated reward is the (discounted) sum of immediate
rewards, each of which is a random event. Thus, appealing to
the central limit theorem, if D is close to 1 and the underlying
MDP is ergodic when the optimal policy is applied, then t k�m <is approximately normally distributed.

This assumption implies that to model our uncertainty
about the distribution of t k�m < , it suffices to model a dis-
tribution over the mean v k�m < and the precision w k�m < of t k�m < .(The precision of a normal variable is the inverse of its vari-
ance, that is, w kam < X 1 xVy 2kam < . As it turns out, it is simpler to
represent uncertainty over the precision than over the vari-
ance.) Of course, the mean, v k�m < , corresponds to the Q-value
of *6;�-�@�9 .

Our next assumption is that the prior beliefs about t k�m <are independent of those about t k & m < & .Assumption 2: The prior distribution over v kam < and w kam < is
independent of the prior distribution over v k & m < & and w k & m < &for ;IzXE;:{ or @V{gzXE@ .

This assumption is fairly innocuous, in that it restricts only
the form of prior knowledge about the system. Note that this
assumption does not imply that the posterior distribution
satisfy such independencies. (We return to this issue below.)

Next we assume that the prior distributions over the pa-
rameters of each t k�m < are from a particular family:

Assumption 3: The prior 2�*,v k�m < -�w k�m < 9 , is a normal-gamma
distribution.

We will now define and motivate the choice of the normal-
gamma distribution. See [7] for more details.

A normal-gamma distribution over the mean v and the
precision w of an unknown normally distributed variable t is
determined by a tuple of hyperparameters |}X�~6v 0 -5��- c -���� .
We say that 2�*,vg-5w89"� NG *pv 0 -5��- c -���9 if2�*pvg-�w89"��w 1

2 h�� 1
2 �'� jN� � � 0 n 2 w4� � 1 hb� �

Standard results show how to update such a prior distribution
when we receive independent samples of values of t :

Theorem 3.1: [7] Let 2�*pvg-�w89�� NG *,v 0 -5��- c -���9 be a
prior distribution over the unknown parameters for a nor-
mally distributed variable t , and let A 1 -��S����-�A:� be � in-
dependent samples of t with � 1 X 1� J�LWA L and � 2 X
1� J L A 2L . Then 2�*pvg-�w�B�A 1 -��S����-5A � 91� NG *pv {0 -5� { - c { -�� { 9
where v`{0 X � � 0 � ��� 1� � � , �4{}X��!_�� , c {�X c _ 1

2 � , and�`{`X���_ 1
2 �"*
� 2 e?� 2

1 9�_ � � j � 1 � � 0 n 22 j � � � nThat is, given a single normal-gammaprior, the posterior after
any sequence of independent observations is also a normal-
gamma distribution.

Assumption 3 implies that to represent the agent’s prior
over the distribution of t kam < , we only need to maintain a tu-
ple of hyperparameters | k�m < X�~
v kam <0 -5� k�m < - c kam < -�� k�m < � . Given

Assumptions 2 and 3, we can represent our prior by a col-
lection of hyperparameters for each state ; and action @ .
Theorem 3.1 implies that, had we had independent samples
of each t k�m < , the same compact representation could have
been used for the joint posterior. We now assume that the
posterior has this form

Assumption 4: At any stage, the agent’s posterior overv k�m < and w k�m < is independent of the posterior over v k & m < &and w k & m < & for ;IzXE;b{ or @V{gzXE@ .

In an MDP setting, this assumption is likely to be violated;
the agent’s observations about the reward-to-go at different
states and actions can be strongly correlated—in fact, they
are related by the Bellman equations. Nonetheless, we shall
assume that we can represent the posterior as though the
observations were independent, i.e., we use a collection of
hyperparameters | kam < for the normal-gamma posterior for the
mean and precision parameters of each t k�m < .We exploit this compact representation in the Bayesian
Q-learning algorithm, which is similar to the standard Q-
learning algorithm, except that instead of storing the Q-valueT kam < , we now store the hyperparameters | k�m < . In the follow-
ing sections, we address the two remaining issues: how to
select an action based on the current belief state about the
MDP, and how to update these beliefs after a transition.

3.2 Action Selection

In every iteration of the Q-learning algorithm we need to
select an action to execute. Assuming that we have a prob-
ability distribution over TI*
;V-�@W9RX�v k�m < for all states ; and
actions @ , how do we select an action to perform in the cur-
rent state? We consider three different approaches, which we
call greedy, Q-value sampling, and myopic-VPI.

Greedy selection One possible approach is the greedy ap-
proach. In this approach, we select the action @ that maxi-
mizes the expected value GIH v k�m < M . Unfortunately, it is easy
to show that GIH v k�m < M is simply our estimate of the mean oft k�m < . Thus, the greedy approach would select the action
with the greatest mean, and would not attempt to perform
exploration. In particular, it does not take into account any
uncertainty about the Q-value.

Q-value sampling Q-value sampling was first described by
Wyatt [17] for exploration in multi-armed bandit problems.
The idea is to select actions stochastically, based on our
current subjective belief that they are optimal. That is, action@ is performed with probability given by

Pr *
@�X arg max< & v k�m < & 9gX Pr *N�`@ { zXR@ -�v kam <	� v kam < & 9X ��
� �

Pr *pv kam < X�  < 9d¡< &p¢£ < Pr *pv kam < & C�  < 9¥¤�  < (1)

The last step in this derivation is justified by Assumption 4
that states that our posterior distribution over the values of
separate actions is independent.

To evaluate this expression, we use the marginal density
of v given a normal-gamma distribution.
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Figure 2: Examples of Q-value distributions of two actions
for which Q-value sampling has the same exploration policy
even though the payoff of exploration in (b) is higher than in
(a).

Lemma 3.2: [7] If 2�*pvg-�w89"� NG *,v 0 -���- c -���9 , then

2�*pv�9"X�¦ �2 § ¨ 1
2 � � Γ j � � 1

2 nΓ j � nª© ��_ 1
2
��*pv[e«v 0 9 2 ¬ � j � � 1

2 n -
(2)

and

Pr *,v­C®\¯9°X�sU*�*
\�e­v 0 9 © � c� ¬ 1
2

: 2 c 9
where sU*6\ : ¤�9 is the cumulative t-distributionwith ¤ degrees
of freedom. Moreover, GIH v M X�v 0, and Var H v M X �� j � � 1 n .

In practice, we can avoid the computation of (1). Instead,
we sample a value from each 2�*,v k�m < 9 , and execute the action
with the highest sampled value. It is straightforward to show
that this procedure selects @ with probability given by (1). Of
course, sampling from a distribution of the form of (2) is non-
trivial and requires evaluation of the cumulative distribution± *,v­C®\¯9 . Fortunately, sU*
\ : ¤W9 can be evaluated efficiently
using standard statistical packages. In our experiments, we
used the library routines of Brown et al. [5].

Q-value sampling resembles, to some extent, Boltzmann
exploration. It is a stochastic exploration policy, where the
probability of performing an action is related to the distribu-
tion of the associated Q-values. One drawback of Q-value
sampling is that it only considers the probability that @ is
best action, and does not consider the amount by which
choosing @ might improve over the current policy. Fig-
ure 2 show examples of two cases where Q-value sampling
would generate the same exploration policy. In both cases,
Pr *pv < 2 � v < 1 91X 0 � 6. However, in case (b) exploration
seems more useful than in case (a), since the potential for
larger rewards is higher for the second action in this case.

Myopic-VPI selection This method considers quantita-
tively the question of policy improvement through explo-
ration. It is based on value of information [8]. Its application
in this context is reminiscent of its use in tree search [12],
which can also be seen as a form of exploration. The idea is
to balance the expected gains from exploration—in the form
of improved policies—against the expected cost of doing a
potentially suboptimal action.

We start by considering what can be gained by learning the
true value v�Qkam < of v kam < . How would this knowledge change
the agent’s future rewards? Clearly, if this knowledge does
not change the agent’s policy, then rewards would not change.

Thus, the only interesting scenarios are those where the new
knowledge does change the agent’s policy. This can happen
in two cases: (a) when the new knowledge shows that an
action previously considered sub-optimal is revealed as the
best choice (given the agent’s beliefs about other actions),
and (b) when the new knowledge indicates that an action that
was previously considered best is actually inferior to other
actions. We now derive the value of the new information in
both cases.

For case (a), suppose that @ 1 is the best action; that is,GIH v kam < 1
Mg² G³H v kam < & M for all other actions @V{ . Moreover sup-

pose that the new knowledge indicates that @ is a better action;
that is, v�Qk�m < � G³H v kam < 1

M . Thus, we expect the agent to gainv�Qkam < efGIH v k�m < 1
M by virtue of performing @ instead of @�Q .

For case (b), suppose that @ 1 is the action with the highest
expected value and @ 2 is the second-best action. If the new
knowledge indicates that v k�m < 1 C´GIH v k�m < 2

M , then the agent
should perform @ 2 instead of @ 1 and we expect it to gainGIH v kam < 2

M e­v�Qk�m < 1
.

To summarize this discussion, we define the gain from
learning the value of v�Qk�m < of v k�m < as:

Gain kam < *,v Qk�m < 9gX¶µ··¸ ··¹
GIH v k�m < 2

M e�v�Qk�m < if @UXE@ 1
and v�Qk�m < C®GIH v k�m < 2

Mv�Qk�m < e«GIH v kam < 1
M if @!zXE@ 1

and v�Qk�m < � GIH v k�m < 1
M

0 otherwise

where, again, @ 1 and @ 2 are the actions with the best and
second best expected values respectively. Since the agent
does not know in advance what value will be revealed forv Qkam < , we need to compute the expected gain given our prior
beliefs. Hence the expected value of perfect information
about v k�m < is:

VPI *6;�-�@�9"X ��
� �

Gain k�m < *6\¯9 Pr *pv kam < Xº\ 9�¤�\
Using simple manipulations we can reduce VPI *6;�-�@�9 to a
closed form equation involving the cumulative distribution
of v k�m < (which can be computed efficiently).

Proposition 3.3: VPI *6;�-�@�9 is equal to »I_¼*
GIH v kam < 2
M eGIH v kam < 1

M 9 Pr *pv k�m < 1 CºG³H v kam < 2
M 9 when @IX�@ 1, and it is equal

to »�_!*6GIH v k�m < M e}GIH v k�m < 1
M 9 Pr *pv kam <d� GIH v k�m < 1

M 9 when @½zXº@ 1,
where

»¾X �4¿
À Á Γ j �8¿6À Á � 1
2 npÂ � ¿6À Áj �8¿6À Á � 1

2 n Γ j �4¿
À Á n Γ j 1
2 n �4¿
À Á Â 2 � ¿6À Á © 1 _ G 2 H v kam < M2 c kam < ¬ � �8¿6À Á � 1

2 �
The value of perfect information gives an upper bound on

the myopic value of information for exploring action @ . The
expected cost incurred for this exploration is given by the
difference between the value of @ and the value of the current
best action, i.e., max < & GIHKTI*
;V-5@V{N9 M eºG³H T³*
;V-5@�9 M . This
suggests we choose the action that maximizes

VPI *
;V-5@�9"e�* max< & GIHKTI*
;V-�@ { 9 M e«GIHKTI*6;�-�@�9 M 9:�
Clearly, this strategy is equivalent to choosing the action that
maximizes: GIHKTI*
;V-�@W9 M _ VPI *6;�-�@�9:�



We see that the value of exploration estimate is used as a
wayÃ of boosting the desirability of different actions. When
the agent is confident of the estimated T -values, the VPI of
each action is close to 0, and the agent will always choose
the action with the highest expected value.1

3.3 Updating Q-values
Finally, we turn to the question of how to update the estimate
of the distribution over Q-values after executing a transition.
The analysis of the updating step is complicated by the fact
that a distribution over Q-values is a distribution over ex-
pected, total rewards, whereas the available observations are
instances of actual, local rewards. Thus, we cannot use the
Bayesian updating results in Theorem 3.1 directly.

Suppose that the agent is in state ; , executes action @ ,
receives reward A , and lands up in state > . We would like
to know the complete sequence of rewards received from> onwards, but this is not available. Let t	3 be a random
variable denoting the discounted sum of rewards from > . If
we assume that the agent will follow the apparently optimal
policy, then t	3 is distributed as t.3 m <:Ä , where @V3 is the action
with the highest expected value at > .

We might hope to use this distribution to substitute in some
way for the unknown future experiences. We now discuss
two ways of going about this.

Moment updating The idea of moment updating is, no-
tionally, to randomly sample values t 13 -����S��-�t �3 from our
distribution, and then update

± *
t k�m < 9 with the sampleA�_ÅD¯t 13 -��S����-�A�_ÅD¯t �3 , where we take each sample to have
weight 1� . Theorem 3.1 implies that we only need the first two
moments of this sample to update our distribution. Assuming
that � tends to infinity, these two moments are:� 1 X GIHKAÆ_?D¯t	3 M XEAÆ_ÅD¯GIHKt	3 M� 2 X GIHN*
A¾_�D¯t	3�9 2 M XºGIHKA 2 _ 2 D A't.3 _fD 2 t 23 MX A 2 _ 2 D¯A'GIHKt	3 M _ÅD 2 GIHKt 23 M
Now, since our estimate of the distribution of t 3 is a normal-
gamma distribution over the mean and variance of t	3 , we
can use standard properties of normal-gamma distributions
to compute the first two moments of t	3 .
Lemma 3.4: Let t be a normally distributed variable with
unknown mean v and unknown precision w , and let 2�*pvg-�w89"�
NG *,v 0 -5��- c -���9 . Then G³H t M XÇv 0, and GIHKt 2 M X � � 1� ^ �� � 1 _v 2

0.

Now we can update the hyperparameters | k�m < as though
we had seen a collection of examples with total weight 1,
mean � 1, and second moment � 2.

This approach results in a simple closed-form equation
for updating the hyperparameters for t k�m < . Unfortunately, it
quickly becomes too confident of the value of the mean v k�m < .To see this, note that we can roughly interpret the parameter �
as the confidence in our estimate of the unknown mean. The

1It is clear that the value of perfect information is an optimistic
assessment of the value of performing � ; by performing � once, we
do not get perfect information about it, but only one more training
instance. Thus, we might consider weighting the VPI estimate by
some constant. We leave this for future work.

method we just described updates v 0 and � with the mean of
the unknown reward, which is just A�_ÈD¯GIHKt	3 M , as if we were
confident of this being a true sample. Our uncertainty about
the value of t	3 is represented by the second moment � 2,
which mainly affects the estimate of the variance of t kam < .Thus, our uncertainty about t 3 is not directly translated to
uncertainty about the mean of t k�m < . Instead, it leads to higher
estimate of the variance of t kam < .The upshot of all this is that
the precision of the mean increases too fast, leading to low
exploration values and hence to premature convergence on
sub-optimal strategies.

One ad-hoc way of dealing with this problem is to use
exponential forgetting. This method reduces the impact of
previously seen examples on the priors by a constant (which
is usually close to 1) at each update. Due to space con-
siderations, we do not review the details of this forgetting
operation.

Mixture updating The problem described in the preceding
section can be avoided by using the distribution over t.3 in a
slightly different way. Let 2�*pv kam < -�w kam < B�tR9 be the posterior
distributionover v k�m < -�w k�m < after observing discounted rewardt . If we observed the value t	3!XÉ\ , then the updated
distribution over t k�m < is 2�*,v k�m < -�w k�m < BÊAU_ED¯\ 9 . We can
capture our uncertainty about the value \ by weighting these
distribution by the probability that t 3 X�\ . This results in
the following mixture posterior:

2 mix7 m 3 *,v k�m < -�w k�m < 9gX
��

� �
2�*,v k�m < -�w k�m < B'AÆ_ÅD¯\ 9p2�*
t	3¥XE\ 9�¤�\

Unfortunately, the posterior 2 mix7 m 3 *pv kam < -5w k�m < 9 does not have a
simple representation, and so updating this posterior would
lead to a more complex one, and so on. We can avoid this
complexity by approximating 2 mix7 m 3 *,v k�m < -�w k�m < 9 with a normal-
gamma distribution after each update.

We compute the best normal-gamma approximation by
minimizing the KL-divergence [6] from the true distribution.

Theorem 3.5: Let  �*,vg-5w49 be some density measure over v
and w and let Ë � 0. If we constrain c to be greater than 1 _�Ë ,
the distribution 2�*,vg-5w49¥� NG *,v 0 -���- c -���9 that minimizes the
divergence Ì$ÍÊ*
 �-62¯9 is defined by the following equations:v 0 X GÊÎ�H v�w M x�GÊÎ�HKw M� X ¦ G Î H v 2 w M efG Î HKw M v 2

0 ¨ � 1c X max * 1 _®Ë�-�Ï�* log G Î HKw M e�G Î H log w M 9�9� X c xVG�Î�HKw M
where Ï�*
\ 9 is the inverse of ÐÑ*
ÒV9ÆX log Ò eUÓ�*
ÒV9 , and Ó�*6\¯9°X
Γ & j)Ô nΓ j)Ô n is the digamma function.

The requirement that c ² 1 _[Ë is to ensure that c � 1 so that
the normal-gamma distributionis well defined. Although this
theorem does not give a closed-form solution for c , we can
find a numerical solution easily since Ð`*
ÒV9 is a monotonically
decreasing function [1].

Another complication with this approach is that it re-
quires us to compute GIHKw k�m < M , GIHKw kam < v kam < M , GIHKw k�m < v 2k�m < M and



GIH log w kam < M with respect to 2 mix7 m 3 *pv k�m < -�w kam < 9 . These expecta-
tionsÕ do not have closed-form solutions, but can be approxi-
mated by numerical integration, using formulas derived fairly
straightforwardly from Theorem 3.5.

To summarize, in this section we discussed two possible
ways of updating the estimate of the values. The first, mo-
ment update leads to an easy closed form update, but might
become overly confident. The second, mixture update, is
more cautious, but requires numerical integration.

4 Convergence
We are interested in knowing whether our algorithms con-
verge to optimal policies in the limit. It suffices to show that
the means v k�m < converge to the true Q-values, and that the
variance of the means converges to 0. If this is the case, then
both the Q-value sampling and the myopic-VPI strategies
will, eventually, execute an optimal policy.

Without going into details, the standard convergence proof
[15] for Q-learning requires that each action is tried infinitely
often in each state in an infinite run, and that J �� £ 0

c *6�`9gXÖ and J �� £ 0
c *6�`9 2 C Ö where c is the learning rate. If

these conditions are met, then the theorem shows that the
approximate Q-values converge to the real Q-values.

Using this theorem,we can show that when we use moment
updating, our algorithm converges to the correct mean.
Theorem 4.1: If each action @ is tried infinitely often in
every state, and the algorithm uses moment updating, then
the mean v kam < converges to the true Q-value for every state ;
and action @ .

Moreover, for moment updating we can also prove that the
variance will eventually vanish:
Theorem 4.2: If each action @ is tried infinitely often in
every state, and the algorithm uses the moment method to
update the posterior estimates, then the variance Var H v kam < Mconverges to 0 for every state ; and action @ .

Combining these two results, we see that with moment
updating, the procedure will converge on an optimal policy
if all actions are tried eventually often. This is the case when
we select actions by Q-value sampling.

If we select actions using myopic-VPI, then we can no
longer guarantee that each action is tried infinitely often.
More precisely, myopic VPI might starve certain actions and
hence we cannot apply the results from [15]. Of course, we
can define a “noisy” version of this action selection strategy
(e.g., use a Boltzmann distribution over the adjusted expected
values), and this will guarantee convergence.

At this stage, we do not yet have counterparts to Theo-
rems 4.1 and 4.2 for mixture updating. Our conjecture is
that the estimated mean does converge to the true mean, and
therefore similar theorems holds.

5 Experimental Results
We have examined the performance of our approach on sev-
eral different domains and compared it with a number of
different exploration techniques. The parameters of each al-
gorithm were tuned as well as possible for each domain. The
algorithms we have used are as follows:
Semi-Uniform Q-learning with semi-uniform random ex-

ploration.
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(c) Task 3. A navigation problem. ã is the start state. The
agent receives a reward upon reaching ä based on the number
of flags collected.

Figure 3: The three domains used in our experiments.

Boltzmann Q-learning with Boltzmann exploration.
Interval Q-learning using Kaelbling’s interval-estimation

algorithm [10].
IEQL+ Meuleau’s IEQL+ algorithm [11].
Bayes Bayesian Q-learning as presented above, using either

Q-value sampling or myopic-VPI to select actions, and
either Moment updating or Mixture updating for value
updates. These variants are denoted QS, VPI, Mom, Mix,
respectively. Thus, there are four possible variants of the
Bayesian Q-Learning algorithm, denoted, for example, as
VPI _ Mix.

We tested these learning algorithms on three domains:

Chain This domain consists of the chain of states shown in
Figure 3(a). It consists of six states and two actions @
and å . With probability 0.2, the agent “slips”and actually
performs the opposite action. The optimal policy for this
domain (assuming a discount factor of 0.99) is to do ac-
tion @ everywhere. However, learning algorithms can get
trapped at the initial state, preferring to follow the å –loop
to obtain a series of smaller rewards.

Loop This domain consists of two loops, as shown in Figure
3(b). Actions are deterministic. The problem here is that a
learning algorithm may have already converged on action@ for state 0 before the larger reward available in state 8 has
been backed up. Here the optimal policy is to do action å
everywhere.



1st Phase 2nd Phase
Domain Method Avg. Dev. Avg. Dev.
chainæ Uniform 1519.0 37.2 1611.4 34.7

Boltzmann 1605.8 78.1 1623.4 67.1
Interval 1522.8 180.2 1542.6 197.5
IEQL+ 2343.6 234.4 2557.4 271.3
Bayes QS+Mom 1480.8 206.3 1894.2 364.7
Bayes QS+Mix 1210.0 86.1 1306.6 102.0
Bayes VPI+Mom 1875.4 478.7 2234.0 443.9
Bayes VPI+Mix 1697.4 336.2 2417.2 650.1

loop Uniform 185.6 3.7 198.3 1.4
Boltzmann 186.0 2.8 200.0 0.0
Interval 198.1 1.4 200.0 0.0
IEQL+ 264.3 1.6 292.8 1.3
Bayes QS+Mom 190.0 19.6 262.9 51.4
Bayes QS+Mix 203.9 72.2 236.5 84.1
Bayes VPI+Mom 316.8 74.2 340.0 91.7
Bayes VPI+Mix 326.4 85.2 340.0 91.7

maze Uniform 105.3 10.3 161.2 8.6
Boltzmann 195.2 61.4 1024.3 87.9
Interval 246.0 122.5 506.1 315.1
IEQL+ 269.4 3.0 253.1 7.3
Bayes QS+Mom 132.9 10.7 176.1 12.2
Bayes QS+Mix 128.1 11.0 121.9 9.9
Bayes VPI+Mom 403.2 248.9 660.0 487.5
Bayes VPI+Mix 817.6 101.8 1099.5 134.9

Table 1: Average and standard deviation of accumulated
rewards over 10 runs. A phase consists of 1,000 steps in
chain and loop, and of 20,000 steps in maze.

Maze This is a maze domain where the agent attempts to
“collect” flags and get them to the goal. In the experiments
we used the maze shown in Figure 3(c). In this figure,ã marks the start state, ä marks the goal state, and ç
marks locations of flags that can be collected. The reward
received on reaching ä is based on the number of flags
collected. Once the agent reaches the goal, the problem
is reset. There are a total of 264 states in this MDP. The
agent has four actions—up, down, left, and right. There is
a small probability, 0.1, that the agent will slip and actually
perform an action that goes in a perpendicular direction.
If the agent attempts to move into a wall, its position does
not change. The challenge is to do sufficient exploration
to collect all three flags before reaching the goal.

The first two domains are designed so that there are sub-
optimal strategies that can be exploited. Thus, if the learning
algorithm converges too fast, then it will not discover the
higher-scoring alternatives. The third domain is larger and
less “tricky” although it also admits inferior policies. We use
it to evaluate how the various exploration stratgies scale up.

There are several ways of measuring the performance of
learning algorithms. For example, we might want to measure
the quality of the policy they “recommend” after some num-
ber of steps. Unfortunately, this might be misleading, since
the algorithm might recommend a good exploiting policy, but
might still continue to explore, and thus receive much smaller
rewards. We measured the performance of the learning al-
gorithms by the total reward collected during a fixed number
of time steps (Table 1). Additionally, we measured the dis-
counted total reward-to-go at each point in the run. More
precisely, suppose the agent receives rewards A 1 -�A 2 -��S����-5Abè
in a run of length é . Then we define the reward-to-go at time> to be J 3 &Nê 3 A 3 & D 3 & � 3 . Of course, this estimate is reliable
only for points that are far enough from the end of the run. In
Figure 4, we plot the average reward-to-go as a function of >
by averaging these values over 10 runs with different random
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(c) Results for the maze domain.

Figure 4: Plots of actual discounted reward ( Ò -axis) as a
function of number of steps ( \ -axis) for several methods in
three domains. The curves are avarege of 10 runs for each
method. The curves for chain and maze were smoothed.
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results show that in all but the smallest of domains
our methods are competitive with or superior to state of the
art exploration techniques such as IEQL+. Our analysis sug-
gests that this is due to our methods’ more effective use of
small numbers of data points. Results from the maze do-
main in particular show that our VPI-based methods begin
directing the search towards promising states after making
significantly fewer observations than IEQL+ and interval es-
timation. Overall, we have found that using mixture updating
combined with VPI for action selection gives the best perfor-
mance, and expect these to be the most valuable techniques
as we expand this work to model-based learning.

One weakness of our algorithms is that they have signif-
icantly more parameters than IEQL+ or interval estimation.
In the full version of the paper we analyze the dependence
of these results on various parameters. The main parameters
that seem to effect the performance of our method is the vari-
ance of the initial prior, that is, the ratio �� j � � 1 n . Priors with
larger variances usually lead to better performance.

6 Conclusion

We have described a Bayesian approach to Q-learning in
which exploration and exploitation are directly combined by
representing Q-values as probability distributions and using
these distributions to select actions. We proposed two meth-
ods for action selection — Q-value sampling and myopic-
VPI. Experimental evidence has shown that (at least for some
fairly simple problems) these approaches explore the state
space more effectively than conventional model-free learn-
ing algorithms, and that their performance advantage appears
to increase as the problems become larger. This is due to an
action selection mechanism that takes advantage of much
more information than previous approaches.

A major issue for this work is that the computational re-
quirements are greater than for conventional Q-learning, both
for action selection and for updating the Q-values. However,
we note that in most applications of reinforcement learning,
performing actions is more expensive tha computation time.

We are currently investigating ways to use a Bayesian
approach such as this with model-based reinforcement algo-
rithms. In this case, we explicitly represent our uncertainty
about the dynamics of the system to estimate the usefulness
of exploration. We are also investigating alternative action
selection schemes, and approximations that could be used
to reduce the computational requirements of this algorithm.
Finally, it should be possible to use function approximators
to extend this work to problems with large and/or continuous
state spaces. There is a well-understood theory of Bayesian
neural network learning [4, Ch. 10] that allows posterior
means and variances to be computed for each point in the
input space; these can be fed directly into our algorithm.

2We performed parameter adjustment to find the best-performing
parameters for each method. Thus the results reported for each
algorithm are probably somewhat optimistic. In the full version of
the paper we intend to also show the sensitivity of each method to
changes in the parameters.
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