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Abstract

Bayesian networks are graphical representa-
tions of probability distributions. Over the last
decade, these representations have become the
method of choice for representation of uncer-
tainly in artificial intelligence. Today, they play
a crucial role in modern expert systems, diag-
nosis engines, and decision support systems.
In recent years, there has been much inter-
est in learning Bayesian networks from data.
Learning such models is desirable simply be-
cause there is a wide array of off-the-shelf tools
that can apply the learned models as described
above. Practitioners also claim that adaptive
Bayesian networks have advantages in their
own right as a non-parametric method for den-
sity estimation, data analysis, pattern classifi-
cation, and modeling. Among the reasons cited
we find: their semantic clarity and understand-
ability by humans, the ease of acquisition and
incorporation of prior knowledge, the ease of in-
tegration with optimal decision-making meth-
ods, the possibility of causal interpretation of
learned models, and the automatic handling of
noisy and missing data.

In spite of these claims, methods that learn
Bayesian networks have yet to make the impact
that other techniques such as neural networks
and hidden Markov models have made in appli-
cations such as pattern and speech recognition.
In this paper, we challenge the research com-
munity to identify and characterize domains
where induction of Bayesian networks makes
the critical difference, and to quantify the fac-
tors that are responsible for that difference. In
addition to formalizing the challenge, we iden-
tify research problems whose solution is, in our
view, crucial for meeting this challenge.

1 Introduction

A Bayesian network 1s a graphical representation of the
joint probability distribution for a set of variables. The

representation was originally designed to encode the un-
certain knowledge of an expert [Wright, 1921; Howard
and Matheson, 1981; Pearl, 1988], and indeed today,
they play a crucial role in modern expert systems, di-
agnosis engines, and decision support systems [Hecker-
man et al.; 1995]. They also have become the represen-
tation of choice among researchers interested in uncer-
tainty in Al. One often-cited merit of Bayesian networks
is that they have formal probabilistic semantics and yet
can serve as a natural mirror of knowledge structures in
the human mind [Spirtes et al., 1993; Heckerman et al.,
1995; Pearl, 1995]).

A Bayesian network consists of two components. The
first is a directed acyclic graph in which each vertex cor-
responds to a random variable. This graph represents a
set of conditional independence properties of the repre-
sented distribution: each variable is probabilistically in-
dependent of its non-descendants in the graph given the
state of its parents. This graph captures the qualitative
structure of the probability distribution, and is exploited
for efficient inference and decision making. Thus, while
Bayesian networks can represent arbitrary probability
distributions, they provide computational advantage for
those distributions that can be represented with a simple
structure. The second component is a collection of local
interaction models that describe the conditional proba-
bility p(X;|Pa;) of each variable X; given its parentsPa;
(see Figure 1). Together, these two components rep-
resent a unique joint probability distribution over the
complete set of variables X [Pearl, 1988]. The joint dis-
tribution is given by the following equation:

n

p(X) = [ p(Xi|Pay) (1)

i=1

It can be shown that this equation actually implies
the conditional independence semantics of the graphical
structure given earlier.

Equation 1 shows that the joint distribution speci-
fied by a Bayesian network has a factored representation
as the product of individual local interaction models.
Sparse Bayesian networks therefore correspond to con-
cise representations of joint distributions. If the num-
ber of parents of any variable is bounded by a constant



k, then (for most reasonable representations of the lo-
cal interaction models, including all discrete models) the
Bayesian network requires a number of parameters that
is linear in the number of variables, instead of exponen-
tial for an unstructured representation. This observation
is, of course, directly relevant to the learning problem,
since concise parameterizations lead to statistically ef-
ficient learning—provided that the problem domain ad-
mits of a sparse structure of conditional dependencies.
The latter assumption is of course directly related to
the usefulness of Bayesian networks as models of human
knowledge structures.

SC s~C ~SC -~s-C

E | 0.9/ 0.3] 0.5/ 0.1

~E[ 0.1/ 0.7/ 0.5/ 0.9
Emphysema

(€Y (b)

PositiveXRay

Figure 1: (a) A simple probabilistic network showing
a proposed causal model. (b) A node with associated
conditional probability table. The table gives the condi-
tional probability of each possible value of the variable
Emphysema, given each possible combination of values
of the parent nodes Smoker and CoalMiner.

The characterization given by Equation 1 is a purely
formal characterization in terms of probabilities and con-
ditional independences. An informal connection can be
made between this characterization and the intuitive no-
tion of direct causal influence. It has been noted that if
the edges in the network structure correspond to causal
relationships, where a variable’s parents represent the
direct causal influences on that variable, then resulting
networks are often very concise and accurate descrip-
tions of the domain. Thus i1t appears that in many prac-
tical situations situations, a Bayesian network provides a
natural way to encode causal information. We can state
this more precisely as the Causal Markov Assumption
(CMA): if a network is constructed simply by connecting
variables to other variables that they directly causally
influence, then the resulting network interpreted accord-
ing to Equation 1 will correctly reflect the conditional
independences that actually hold in the domain.

The naturalness of using causal information directly in
constructing formally characterizable knowledge struc-
tures has made it possible to encode the knowledge of
many experts. As a result, Bayesian networks have
been incorporated into many expert systems, diagno-
sis engines, and decision-support systems [Heckerman
et al., 1995]. Nonetheless, it is often difficult and time-
consuming to construct Bayesian networks from expert
knowledge alone, particularly because of the need (in

most cases) to provide numerical parameters.

This observation, together with the fact that data is
becoming increasingly available and cheaper to acquire
has led to a growing interest in using data to learn both
the structure and probabilities of a Bayesian network.
Several groups have worked on learning structure from
scratch [Spirtes et al., 1993; Pearl, 1995; Friedman et al.,
1997] or with weak constraints such as variable order-
ing [Cooper and Herskovits, 1992, for example], while
others have worked on learning structure by refining an
initial model [Heckerman et al., 1994]. Learning proba-
bilities, which is non-trivial when the network contains
hidden variables or the dataset has missing values, can be
done by a variety of methods including EM [Lauritzen,
1991; Lauritzen, 1995; Spiegelhalter et al., 1993; Olesen
et al., 1992; Spiegelhalter and Cowell, 1992; Heckerman,
1996] and gradient-based methods [Laskey, 1990; Gol-
mard and Mallet, 1991; Neal, 1992; Russell et al., 1995].

These researchers have cited several benefits of using
the Bayesian-network representation, with its causal in-
terpretation, as a tool for learning:

1. Incorporation of prior knowledge. Bayesian net-
works facilitate the translation of human knowledge
into probabilistic form, making it suitable for refine-
ment by data.

2. Validation and insight. In many cases, a learned
Bayesian network can be given a causal interpre-
tation. Consequently, a Bayesian network is more
easily understood than “black box” representations
such as neural networks. As an immediate byprod-
uct, people will more readily accept the recommen-
dations of a Bayesian network than those of a model
justified only by its raw predictive performance. In
addition, users are more likely to gain insights from
Bayesian networks.

3. Learning causal interactions. Unlike purely proba-
bilistic relationships, causal relationships allow us
to make predictions given direct interventions or
manipulations of the world. Therefore, by learning
with Bayesian networks, there is a hope that we can
make better predictions in the face of intervention.
Learning causal relationships is crucial in scientific
discovery, where interventional studies are often ex-
pensive or impossible. Similarly, the ability to learn
causal relationships is crucial for intelligent agents
that must act in their environment on the basis of
acquired knowledge.

Other benefits of using Bayesian networks for learning
are derived from their probabilistic semantics. Because
sophisticated yet efficient methods have been developed
for using a Bayesian network to answer probabilistic
queries, they can be used both for predictive inference
and diagnostic (or abductive) inference. This is in con-
trast to standard regression and classification methods
(e.g., feed forward neural networks and decision trees)
that encode only the probability distribution of a tar-
get variable given several input variables. Whereas the
Bayesian-network representation can describe the casual



ordering in the domain, there are no restrictions as to
the directions of the queries. Thus, there is no inher-
ent notion of inputs and outputs of the network. This
property also allows Bayesian networks to reason effi-
ciently with missing values, by computing the marginal
probability of the query given the observed values. One
other cited benefit of the Bayesian-network representa-
tion, which derives from its probabilistic nature, is that
it can be used to determine optimal decisions.

Even though these claims are compelling, they have
yet to be given formal validation; nor have substantial
and tangible advantages been demonstrated in real ap-
plications. The purpose of this paper is therefore to
challenge researchers to characterize and quantify these
claims, including the specification of domains where they
made a difference in the efficiency of learning (e.g.,
through the use of prior knowledge), in the quality of
the resulting model (e.g., a new causal theory that is ac-
cepted by the experts), or in the deployment the system
(e.g., through combination with utility estimation).

We hope that this challenge will focus the research
community on a high-impact research agenda. We be-
lieve that in order to meet the challenge, at least three
kinds of activities will take place:

1. We believe that experience in applications provide
valuable lessons. Thus, we are interested in “suc-
cess stories,” that i1s papers that describe applica-
tions where learning Bayesian networks has led to
significant advantages over other methods. These
papers should attempt to distill the characteristics
of the problem that made Bayesian networks the
preferred solution.

2. We propose a series of “bake-offs” to experimen-
tally evaluate how Bayesian networks and alterna-
tive approaches can exploit prior knowledge, deal
with missing data, and learn causal models. These
bake-offs will allow for controlled study and evalua-
tion of the impact of the various alternatives. Sec-
tion 2 describes our proposal for organizing these
bake-offs and evaluating the results.

3. We identify specific technical research problems
whose solution is, in our view, crucial for meeting
the challenge. In Section 3, we outline these prob-
lems.

For a comprehensive assessment of the state of the art
of the field, we refer the reader to Heckerman (1996) as
well as the papers cited earlier.

2 Experimental Bake-Offs

As mentioned in the introduction, we propose a series of
bake-off competitions with the objective to evaluate the
extent to which the special features of Bayesian networks
benefit the learning task and the resulting models. To
this end, we will maintain a web site, where datasets,
background information about them, and evaluation cri-
terion will be made available. The site’s URL will be

http : //www. XXX.XXX.XXX/ YYY/bayes—challenge.html

We are currently assembling several collections of
datasets, both syntactic and real, for the bake-offs de-
scribed below. In order to preserve the validity of these
experiments, some of them will be done using “blind”
evaluation. That is, participants in the bake-off will
have access to a portion of the training data and will
have to register the learned models by a certain date.
The learned models will be tested on unseen data by the
central web server.!

Our hope is that these datasets will provide appro-
priate test beds for testing theories and new algorithms.
We encourage practitioners and researchers interested in
other induction methods to participate in these bake-offs
and to use these datasets.?

The exact evaluation criteria will be decided based on
inputs from participants and the discussions that will
follow the presentation of this challenge. These criteria
will include various error measures such as log-loss, cross-
entropy or KL distance, classification accuracy, predic-
tion success, etc. and will depend on the different learn-
ing strategies (e.g., batch learning and incremental learn-
ing).

V)Ve propose to focus these bake-offs on three issues: in-
corporation of background knowledge, handling of miss-
ing data, and learning causal interactions.
Background knowledge. The main problem with ex-
periments testing the influence of background knowledge
in the learning process is to make the expertise readily
available to all participants in a way that does not pro-
vide advantages to any particular learning method. (A
similar problem has arisen with experimental studies of
inductive logic programming methods; we expect to com-
pare notes.) We are currently considering two strategies.
The first one is to provide data about a domain famil-
iar enough that anybody can be regarded as an expert,
and define a prediction task in that domain. One such
domain is that of TV shows. Data could be provided
about shows, viewers characteristics etc., and the task
would be to predict the shows that new subjects will
like based on other shows they like. The second strategy
is to provide summary of background expert knowledge
in the form of free-form text and tables.

Missing data. The basic problem of coping with miss-
ing values and hidden variables in the data set i1s ad-
dressed very simply in Bayesian networks, because like-
lihoods can be computed no matter what subset of vari-
ables are available as evidence. The tricky problem
comes when when the data is missing due to specific
values that other variables take. In this case, the failure
to observe a variable may in itself be informative about
the true state of the world [Rubin, 1978]. In principle, a
successful induction algorithm would be able to take ad-

'This stricture is intended to get around the irresistible
tendency, noted during the Statlog project, for researchers to
“peek” at test data and report “best” results selected from
runs with different knob settings.

2Toward this end, we plan to submit these datasets to
both the UCI machine learning repository and the XXX
repository at Toronto.



vantage of a good model about the relationship between
the state of the world and what variables are missing.

For this challenge we will provide both synthetic data
and real-life data. The former allows controlled exper-
iments that account for the number of missing values
and the dependence of omissions on the true state of the
world. We also plan to provide datasets where the target
task involves a large amount of incomplete information.
Causal interactions. In this study, we will attempt to
learn cause and effect from observational studies. Ide-
ally, we will also have interventional data to verify the
real causal structure of the domain. We are currently in-
vestigating datasets in social sciences and epidemiology;
the University of Michigan survey data archive contains
thousands of data sets, some running into the gigabytes,
that might be very suitable. We will also try to pro-
vide synthetic data as follows. We will contact experts
that will provide us with causal models for their domain
(e.g., epidemiology), from which we will create synthetic
data. Since prior knowledge plays a significant role in
the induction of causal theories, these experts would also
provide summary of the prior knowledge they consider
reasonable for the domain they created (e.g., known tem-
poral ordering relations, possible latents causes, etc.).

We plan to evaluate the learned causal models as fol-
lows. First, we will measure how well they predict the
effects of interventions (using standard statistical mea-
sures). Second, we will measure what causal interaction
were identified. Finally, we will attempt to measure how
useful are the learned models for identifying profitable
interventional studies—that is, studies involving the ex-
ogenous manipulation of one or more variables in order
to establish causal relationships.

3 Technical Challenges

Many researchers are now concentrating on learning in
more expressive probabilistic models, including hybrid
(discrete and continuous) models [Lauritzen and Wer-
muth, 1989], mixed (undirected and directed) models
[Buntine, 1994; Cooper, 1995; Spirtes et al., 1995], dy-
namic Bayesian network models representing stochastic
processes [Russell et al., 1995], and stochastic gram-
mars [Stolcke and Omohundro, 1993]. Another impor-
tant problem is the specification of prior distributions
over parameters—most current work makes strong as-
sumptions such as such as parameter independence and
likelihood equivalence. MacKay (1992) and others are
working on hierarchical models that relax the assump-
tion of parameter independence. A third area of active
research is the development of efficient approximation al-
gorithms for probabilistic inference—a key component of
learning—including Monte-Carlo [Thomas et al., 1992]
and variational methods [Saul et al., 1996].

There are two technical challenges that we believe are
critical to the success of Bayesian networks and for which
much work needs to be done. One challenge is the effi-
cient handling of incomplete data. One important sub-
component of the first task is the creation of search

methods for Bayesian networks with hidden variables.
Clever search strategies are needed to constrain the in-
finite search space. In addition, learning with incom-
plete data is particularly difficult when the mere failure
to observe some variable is informative about the true
state of the world. For example, the fact that a patient
drops out of a drug study may suggest that the he or
she could not tolerate the effects of the drug. Several
researchers have developed basic principles and methods
for dealing with such situations, including Rubin (1978),
Robins (1986), Cooper (1995), Spirtes et al. (1995), and
Chickering (1995), but more work needs to be done to
connect these basic principles with graphical models and
to make these methods more efficient.

A second challenge is the creation of simple but ex-
pressive probability distributions for the local interaction
models in a Bayesian network. Most work on learning
with Bayesian networks concentrates on discrete vari-
ables where each variable is associated with a set of
multinomial distributions, one distribution for each con-
figuration of its parents. Thiesson (1995) discusses a
class of local likelihoods for discrete variables that use
fewer parameters. Geiger and Heckerman (1994) and
Buntine (1994) discuss simple linear local likelihoods for
continuous variables that have continuous and discrete
variables. Buntine (1994) also discusses a general class of
local likelihoods from the exponential family for variables
having no parents. Nonetheless, alternative likelihoods
for discrete and continuous variables are desired. Local
likelihoods with fewer parameters might allow for the se-
lection of correct models with less data (Friedman and
Goldszmidt, 1996). In addition, local likelihoods that ex-
press more accurately the data generating process would
allow for easier interpretation of the resulting models.
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