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Abstract

Conditional logics, introduced by Lewis and
Stalnaker, have been utilized in artificial in-
telligence to capture a broad range of phe-
nomena. In this paper we examine the com-
plexity of several variants discussed in the
literature. We show that, in general, de-
ciding satisfiability is PSPACE-complete for
formulas with arbitrary conditional nesting
and NP-complete for formulas with bounded
nesting of conditionals. However, we provide
several exceptions to this rule. Of particular
note are results showing that (a) when as-
suming uniformity (i.e., that all worlds agree
on what worlds are possible), the decision
problem becomes EXPTIME-complete even
for formulas with bounded nesting, and (b)
when assuming absoluteness (i.e., that all
worlds agree on all conditional statements),
the decision problem is NP-complete for for-
mulas with arbitrary nesting.

1 INTRODUCTION

The study of conditional statements of the form “If
... then ...” has a long history in philosophy [Sta68,
Lew73, Che80, Vel85]. In recent years these logics have
been applied in artificial intelligence to capture non-
monotonic inference [Del88, Bel89, KLM90, Bou92],
belief change [Gra9l, Bou92], counterfactual reason-
ing [Gin86], qualitative probabilities [Pea89, GP92],
and intentions and desires [Pea93, Bou94]. In general,
conditional logics provide a logical language to reason
about structures that contain some sort of ordering. In
this paper we present complexity results for a family of
conditional logics introduced by Lewis [Lew73, Lew74].
We also provide an overview of a completeness proof
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which substantially simplifies previous proofs in the
literature [Bur81].

Lewis’s construction starts with a set W of possi-
ble worlds, each one describing a possible way the
world might be. We associate with each possible world
w € W a preorder <,, over a subset W,, of W. Intu-
itively, W,, is the set of worlds considered possible at
w. There are a number of differing intuitions for what
is being represented by the <, relation. For example,
in counterfactual reasoning, <, is viewed as capturing
a measure of distance from w, so that w’ <, w” if w’
is more similar or closer to w than w’ is. In this vari-
ant it is usually assumed [Lew73] that the real world is
closest to itself. In nonmonotonic reasoning the <, re-
lation captures an agent’s plausibility ordering on the
worlds, so that w’ < w’ if w’ is more plausible than
w' according to the agent’s beliefs in w. Typically
(although not, for example, in [FH94a]) it is assumed
that the agent’s beliefs are the same in all the worlds
in W, so that <, is independent of w. The <,, rela-
tion is used to give semantics to conditional formulas
of the form ¢—1); such a formula is taken to be true
at a world w if all the <,,-minimal worlds satisfying ¢
also satisfy .

As these examples suggest, we can construct a num-
ber of different logics, depending on the assumptions
we make about <,,. In this paper, we focus on the fol-
lowing assumptions (all of which have been considered
before [Lew73, Bur81, Gra91, KS91]), which apply to
all we W:t

N Normality: Wy, # 0.

R Reflerivity: w e Wy,.

T Centering: w is a minimal element in W, i.e., for
all w' € W, we have w <, w'.2

"Whenever possible we adopt the naming scheme used
by Lewis [Lew73, pp. 120].

2Qur notion of centering is that used by Lewis [Lew73].
Other authors [KS91, Gra91] assume the stronger condition
of strict centering, that is w is the only minimal world in
<w. Our results for centering apply with minor technical
modifications to strict centering.



U Uniformity: W, is independent of w, i.e., for all
w € Wy, Wy = Wy,

A Absoluteness: <, is independent of w, i.e., for all
w' € Wy, Wy = W, and for all wy, wa € Wy,
we have wi <y ws if and only if wy <y ws.3

C Connectedness: all worlds in W,, are comparable
according to < ; i.e., for all wy, ws € Wy, either
Wy Xy Wz OF Wy Ny Wi.

Notice that centering implies reflexivity, which in turn
implies normality. Normality is a minimal assumption,
typically made in almost all applications of conditional
logics. As we mentioned earlier, centering is typically
assumed in counterfactual reasoning, while absolute-
ness is typically assumed in nonmonotonic reasoning.
Uniformity is assumed when, for example, the set of
possible worlds is taken to be the set of all logically
possible worlds (i.e., the set of all truth assignments).
Combinations of these conditions are used in the var-
ious applications of conditional logics. For example,
Boutilier’s [Bou92] work in nonmonotonic reasoning
assumes absoluteness and considers variants satisfy-
ing connectedness; similar assumptions are made in
[KLM90, GP92, Bel89]. Works on counterfactuals
(such as Grahne’s [Gra91]) typically assume center-
ing and uniformity. Katsuno and Satoh [KS91] con-
sider variants satisfying absoluteness, centering and
connectedness.

Completeness results have been obtained for the logics
corresponding to various combinations of these con-
straints [Lew73, Lew74, Bur81]. While we do present
completeness proofs here, using a proof that is sub-
stantially simpler than that of [Bur81], our focus is on
complexity-theoretic issues.

Burgess [Bur81] shows that any satisfiable conditional
formula is satisfiable in a finite structure. The struc-
tures he obtains are of nonelementary size.* To obtain
our complexity results we prove that if a formula is
satisfiable at all, it can be satisfied in a much smaller
structure. We start by showing that a formula with-
out nested conditionals is satisfiable if and only if it is
satisfiable in a polynomial-sized structure. Applying
the construction for formulas without nested condi-
tionals recursively, we show that, in general, a satisfi-
able formula with bounded nesting depth is satisfiable
in a polynomial-sized structure, and an arbitrary sat-
isfiable formula is satisfiable in an exponential-sized
structure. In most variants, this structure takes the

#Lewis [Lew73] distinguishes between a local definition
of uniformity and absoluteness and a global one. We adopt
the local one (i.e., “for all w' € Wy, ...”, rather than “for
all w' € W ...”), but it is easy to see that all our results,
including the axiomatization, also apply to the global def-
inition with essentially no change.

“Roughly speaking, a nonelementary function of n is of

the form 22° , where the height of the stack of 2’s is on
the order of n.

form of a tree, where each level of the tree corresponds
to one level of nesting. We show that checking whether
such a tree-like structure exists can be done in polyno-
mial space, without explicitly storing the whole tree in
memory. This gives a PSPACE upper bound for the
satisfiability problem for most variants of the logic.?

Can we do better? In general, no. We show that an
appropriate modal logic (either K,D or T depending
on the variant in question) can be embedded in most
variants of the logic.® The result then follows from
results of Ladner [Lad77, HM92] on the complexity of
satisfiability for these logics. There are exceptions to
the PSPACE results. For one thing, it already follows
from our “small model” results that for bounded-depth
formulas (in particular, depth-one formulas) satisfia-
bility is NP-complete. Moreover, in the presence of
absoluteness, every formula is equivalent to one with-
out nesting, so we can again get NP-completeness. In-
terestingly, the appropriate modal logic in the pres-
ence of absoluteness in the lower bound construction
mentioned above is S5, whose satisfiability problem is
also NP-complete [Lad77]. On the other hand, while
the assumption of uniformity seems rather innocuous,
and much in the spirit of absoluteness, assuming uni-
formity without absoluteness leads to an EXPTIME-
complete satisfiability problem, even for formulas with
bounded nesting.

Our results form an interesting contrast to those of
Eiter and Gottlob [EG92, EG93] and Nebel [Neb9l]
for a framework for counterfactual queries defined by
Ginsberg [Gin86], using an approach that goes back
to Fagin, Ullman, and Vardi [FUV83]. In this frame-
work a conditional query p>q is evaluated by modify-
ing the knowledge base to include p and then checking
whether ¢ is entailed. As shown by Nebel [Neb91] and
Eiter and Gottlob [EG92], for formulas without nested
conditionals, evaluating such a query is II5-complete.”
Roughly speaking, the reason for the higher complex-
ity is that once we prove an analogous small model the-
orem for this more syntactic approach, checking that
a formula is entailed by a theory is co-NP hard, while
in our case, checking that a formula is satisfied in a
small structure can be done in polynomial time. Eiter
and Gottlob [EG93] show that if we restrict to right-
nested formulas, without negations of nested condi-
tionals, then queries are still II5 complete. Finally,
Eiter and Gottlob show that once we move beyond

We assume some familiarity with complexity theory,
especially with the complexity classes NP, PSPACE, and
EXPTIME. See Section 4 for a review of these complexity-
theoretic notions.

5We assume familiarity with modal logic, especially the
logics K, D and T. See [HM92] for an overview of these
logics and their axiomatizations.

71_[5 is the complexity class that is characterized by de-
cision problems that can be determined in polynomial time
given an NP oracle. This class is believed to be harder than

9 NP, but simpler than PSPACE.



simple right-nesting, the problem becomes PSPACE-
hard; the complexity of queries for the full language is
not known. In contrast to these results, we show that
the language of simple right-nested conditionals is NP-
complete, and when negations are allowed, it becomes
PSPACE-complete.

The rest of the paper is organized as follows: In Sec-
tion 2 we formally define the logical language and its
semantics. In Section 3 we prove small model theo-
rems for the different variants. In Section 4 we prove
the complexity results. In Section 5 we provide an
axiomatization for each of the logics we consider and
sketch a completeness proof.

2 CONDITIONAL LOGIC

The syntax of the logic is simple: we start with a set &
of primitive propositions, and close off under A, =, and
— (where — is the conditional operator). We call the
resulting language £¢. We denote by £S the sublan-
guage of £ with bounded nesting, i.e., formulas in £¢
with no more than k level of nested conditionals. For
example, £§ contains propositional formulas without
any conditional sentences, and £{ contains p—¢ but
not p—(¢—r). Of course, we define the propositional
connectives V, = (material implication), and < (log-
ical equivalence) in terms of A and — in the standard
way.

We use the semantic representation suggested by Lewis
to capture conditionals [Lew73, Bur81]: A structure
M is a tuple (W, 7, R), such that W is a set of pos-
stble worlds, m maps each possible world to a truth
assignment over ®, and R is a ternary relation over
W. We think of the possible worlds as different ways
the world could be, or the different situations we
might be in. The relation R is a preorder on worlds:
(w,u,v) € R if u is as close/preferred/plausible as
v when the real world is w. We use the notation
u <y v to denote that (w,u,v) € R. We define
Wy = {uju <y v € R for some v € W}, thus, the
worlds in W, are those that are at least as plausible
as some world in W according to <,,. We require that
<w be a preorder, i.e., a reflexive and transitive rela-
tion, on W,,. As usual, we define u <, v if u <, v
and not v <y u.

We now provide semantics for formulas in £¢. The
truth of a propositional formula in a world w is deter-
mined by the truth assignment m(w). The truth of a
conditional formula is determined by the ordering <.
The intuition is that ¢—1 holds at w if all the minimal
(e.g., closest, most plausible) p-worlds satisfy ¢ (where
a p-world, of course, is a world where ¢ is true). Un-
fortunately, if W is infinite, it may not have minimal
p-worlds. Thus, the actual definition we use, which is
standard in the literature (see [Lew73, Bur81, Bou92]),

is more complicated. Roughly speaking, ¢—1 is true 3

if, from a certain point on, whenever ¢ is true, so is .
More precisely, p—1) is true at w if for every ¢-world
u in Wy, there is another world v such that (a) v is
at least as plausible as u, (b) v satisfies ¢ A9, and (c)
each p-world that is at least as plausible as v is also
a ¢-world. It is easy to see that if W, is finite, then
this is equivalent to saying that the minimal ¢-worlds
in W, satisfy .

Formally, we define the truth of ¢ € £ at a world w
in a structure M = (W, m, R) recursively:

E p, when p € @, if 7(w)(p) = true.
EoAyif (M,w) E ¢ and (M,w) = ¢.
= - if it is not the case that (M, w) | ¢.
E ¢—¢ if for any world u € W, if
,u) | ¢ then there is a world v, such that
v <y uand (M, v) E @Ay and there isno v/ <, v

such that (M, v) E ¢ A 9.

ExkkEx
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We say that ¢ is valid in M (resp., satisfiable in M) if
(M, w) = ¢ for all worlds w (resp., some world w) in
M.

We define the set of all possible structures as M. For
each combination of the constraints defined in the in-
troduction, we define the corresponding class of struc-
tures satisfying them. For example, MY 7TV is the
class of all structures satisfying normality, centering
and uniformity. For A C {N,R,T,A,U,C}, we say
that a formula ¢ is valid with respect to M~ written
MA = o, if  is valid in every structure M € M4,
Similarly, we say that ¢ is satisfiable in M4 if it is
satisfiable in some structure M € M#4.

3 SMALL MODEL THEOREMS

In this section we provide small model theorems for
the logics we examine, showing that if a formula ¢
is satisfiable, than it is satisfiable in a structure of
bounded size. These results play a crucial role in our
complexity considerations.

We start with some definitions. Given a formula ¢ €
L, we define Sub(p) to be the set of all subformulas
of ¢ and Sub®(p) = Sub(p) U{~¢ | ¥ € Sub(y)}.
Finally, let Subc(g) consist of all formulas in Sub(y)
of the form p—¢. It is easy to verify that |Sub(y)|
(the number of formulas in Sub(y)) is at most || (the
length of ¢, viewed as a string of symbols).

We begin by examining formulas without nested con-
ditionals. The first case is when ¢ is a conjunction
of a number of (non-negated) conditional statements
and one negated conditional statement. This case will
serve as a basis for the general case.

Lemma 3.1: Let ¢ = —(Yo—vp) A /\le(ipi—w;)
where ¥;, ¢ € LE. If ¢ is satisfiable in M, then ¢



1s satisfiable in a structure in M with at most k + 1
worlds which are totally ordered by <.

Proof: Assume we are given M € M and w such that
(M,w) E ¢. From the results of [Bur81], it follows
that, without loss of generality, we can assume that M
is finite (i.e., that M has only finitely many worlds).
Since (M, w) | = (o—1]), there is a a world wg such
that wo is a minimal ¥g-world in <, and satisfies =¢{,.
Let < be a total order over W, that is compatible
with <, in that if w; <, ws then w; < ws, such
that wo < w’ for any w' # wq satisfying . (Since
< is a total order, if w1 # wa, then either w; < ws
or we < wi.) Let w; be the minimal ¥;-world in W,
according to <, if there is a ¢;-world in W,,, and wqg
otherwise.

We now construct a new structure M’ = (W', 7', R').
Let W' = {wo,...,wx}, let @’ be the restriction of =
to W', and let R’ be such that for all w' € W', we
have W), = W' and w; <!, w; if and only if w; < w;.
It is easy to verify that (M', w') |E ¢ for all w' € W,
since if w; is the minimal v¥;-world according to <,
then by the construction of <, it must be a minimal
Yi-world in M according to <, and thus must also
satisfy ¢!, while wyq is the minimal ¢g-world and thus

(M, w') = =(Yo—=40). 1

We now use this construction to prove that any for-
mula without nesting is satisfiable if and only if it is
satisfiable in a polynomial structure.

Proposition 3.2: Let ¢ € LY. If ¢ is satisfiable in
M, then ¢ s satisfiable in a structure in M with at
most O(|Subc () |?) worlds.

Proof: Suppose that M € M and that (M, w) | ¢.
Again, by Burgess’s result, we can assume without
loss of generality that M is finite. Our goal is to
construct a small structure M’ such that for each
formula ¢ € Sub(p), we have (M,w) | ¢ if and
only if (M',w) = ¢. It clearly suffices to do this
for the primitive propositions and the formulas in
Subc (). We cannot use the construction of the previ-
ous lemma directly, because we may now have to deal
with more than one negated conditional. For example,
if (M, w) = —(p—q) A—(p——q), the structure M’ we
construct must have a minimal p-world satisfying ¢ and
a minimal p-world satisfying —¢. This cannot be done
by using one total order, as was done in the previous
lemma.

We solve the problem by considering the union of sev-
eral total orders, one for each negated conditional. Let
Neg = {¢—¢& € Sube(p) + (M,w) E —~(¢¥v—€)} and
let Pos = {¢y—¢& € Subc(y) : (M, w) = ¢—&}. Sup-
pose Neg = {47 —&7, ..., Yyp —€7}. From Lemma 3.1,
it follows that for each formula ¢ —¢(! € Neg, we
can construct a structure M; whose set of worlds W;

has size at most |[Subc(p)|, such that M; satisfies 4

—(¢P—¢€) and all the formulas in Pos. This gives us
| Neg| structures, one for each formula in Neg. Without
loss of generality, we can assume that the sets W; are
disjoint and do not contain w. The structure we are in-
terested in is essentially the disjoint union of the struc-
tures M;. More precisely, we take M' = (W', =, R'),
where W' is the union of the sets W; for 1 < i < |Neg|,
together with w. We define ' to be such that for each
world in w’ € W', the truth assignment 7'(w’) is the
same as the truth assignment in the structure that w’
was drawn from. Finally, we define R’ so that for all
w' € W', we have W!, = W' — {w}, and <, is the
union of the orderings in the structure Myeyr. (We
have defined <., ==, for all w’ € W', but this was not
necessary. Since we are dealing with depth-one nesting
here, all that matters in the proof is the definition of
=<w. We can redefine <,/ for w’ # w arbitrarily, with-
out changing the truth value of any formula in £
at w.) A straightforward induction on the structure
of formulas shows that for each formula ¢ € Sub(yp),
we have (M, w) | ¢ if and only if (M',w) E ¢. In
particular, because negated conditionals have an exis-
tential nature (i.e., 7(p—¢) holds if there is a minimal
p world satisfying —¢), each negated conditional in Neg
is satisfied at (M', w) because it is satisfied in one of
the total orders. On the other hand, the conditionals
in Pos hold at (M', w) since they hold in each of the
total orders. I

With minor changes the same construction applies to
all the variants we consider.

Corollary 3.3: Let ¢ € LY and let A be a subset
of {N,T,U, A, R,C}. If ¢ is satisfiable in M*, then
¢ is satisfiable in a structure in M with at most

O(|Subc (9)|?) worlds.

Proof: Suppose M € M* and (M, w) |= ¢. We now
build a structure of the appropriate size satisfying ¢.
If A C {U, A}, then we can just use the construction
of Proposition 3.2, since the structure M’ constructed
in that proof already satisfies absoluteness (and thus
uniformity). If C' ¢ A, then we can easily modify M’
so that it also satisfies whichever of N, T, or Risin A.
For example, if N € A, then M satisfies normality, so
Wy 1s nonempty and we can choose a minimal world
in W, and add it to W, as one of the minimal worlds.
If T'e A, then we can always choose w as the world
toadd. If R € Abut T ¢ A, we add w as a maximal
world in W,.

If C € A, then we use a different construction. For
each formula ¢—¢’' € Subc(p),

o if (M,w) | ¢—', then let wy—yy be a mini-
mal Y-world in W, if there are ¢-worlds in W,,;
otherwise take wy—sy/ to be w.

o if (M, w) E —(¢¥—'), then let wy—sys be a min-
imal ¥-world in W, that satisfies —¢’. (There
must be such a world since (M, w) | —=(¢p—¢').)



Let W = {w} U{wy—sy : p—)" € Sube(yp)}, and let
M' = (W', n', R'), where ©’ is the restriction of 7 to
W’ and R’ is the restriction of R to WW'. By construc-
tion, M’ has at most |Subc (¢)|+ 1 worlds. We leave it
to the reader to check that (M’ w) | . This simple
construction depends on the properties of connected
preorders. In particular, we need the property that
any minimal @-world is strictly more plausible than
all the non-minimal p-worlds. This is not true in the
general case. 1

What happens with formulas that have nested con-
ditionals? It turns out that the answer depends
on whether we assume absoluteness and/or unifor-
mity. We first consider the situation where we as-
sume absoluteness. The key observation here is that
if we assume absoluteness, since the ordering is the
same at all worlds, we can get rid of nested con-
ditionals. For example, in structures satisfying ab-
soluteness, the formula r—(¢—p)) is equivalent to
((g=p) A (r—true)) V (=(¢g—p) A (p— false)). In gen-
eral, the denested formula may be of length exponen-
tial in the original formula, but it can be rewritten as a
disjunction of formulas each of which does not have too
many new conditional subformulas. And since we need
to construct a structure satisfying only one of these
disjuncts, we conclude that a small structure suffices.
More precisely, we have:

Proposition 3.4: Let A be a subset of {N, T, U,
R, C}. Given a formula ¢ € LC, there are formulas
@1, 06 € LS such that MIAIVA = o o VE_ o)
Moreover, for i = 1,...,k, we have |Subc(p;)| <
5Sube (¢)]

From Proposition 3.4 and Corollary 3.3, we immedi-
ately get:

Corollary 3.5: Let A be a subset of {N,T,U, R,C}.
If o € L€ is satisfiable in MIAYYA then o s
satisfiable in a structure in MIAYYA with at most

O(|Sube(p)|?) worlds.

In structures that do not satisfy absoluteness, we
can still extend the ideas of Proposition 3.2 recur-
sively to get polynomial-sized structures for formulas
of bounded-depth nesting, where the polynomial de-
pends on the depth of nesting provided we do not also
assume uniformity.

Proposition 3.6: Let p € LS and let A be a subset of
{N,T,R,C}. If  is satisfiable in M, then ¢ is satis-
fiable in a structure in M with at most O(|Sub(y)|?*)
worlds.

Proof: We apply the construction of Proposition 3.2
recursively. Roughly speaking, at the top level of
the recursion, we treat all nested conditionals as new
primitive propositions. Applying the construction of

Figure 1: The structure for Proposition 3.6.

Proposition 3.2 we get the set W, . For each w' € W,
let ¢y, be the conjunction of all the propositions (in-
cluding the nested conditionals) that hold at w’. We
note that Subc(pw:) C Subc(p). We now apply the
procedure recursively to w’ and ¢, to construct W, ,.
We proceed in this manner, constructing a tree-like
structure (as shown in Figure 1), dealing with condi-
tionals nested ¢ deep at the ith level of the recursion.
Thus, we can stop at the kth level. Note that for w’, w”
in the structure, W/, is disjoint from W, ., if w’ # w".
Thus, this structure does not satisfy uniformity.

We now give a formal description of the construc-
tion. We define Basic;(¢) C ® U Subc(p) as the
set of primitive propositions and conditional state-
ments that are subformulas of ¢ and appear in-
side exactly ¢ levels of conditional nesting. For
example, if ¢ is (p—(¢g—7r)) A =((r—q)—r), then
Basico(p) = {p—(¢—r),(r—q)—r}, Basici(p) =
{p,q—r,r—q,r} and Basica(p) = {q,7}. We treat
formulas in Basic;41(yp) as primitive propositions dur-
ing the construction of the orderings at level .

We construct the tree-like structure in the following
fashion. The procedure gets as input a structure M,
a world w, and a formula ¢ such that (M,w) E ¢,
and returns a structure M’ such that (M’ w) E ¢.
Moreover, M’ contains at most O(|Subc (¢)|?*) worlds,
where £ is the depth of nesting in ¢. If ¢ is propo-
sitional then the structure M’ consists of the single
worlds w. If ¢ contains conditional formulas, then we



construct a tree with w as the root. The truth value
of any primitive proposition p € Basico(yp) is deter-
mined at w by w. Thus, we only need to satisfy condi-
tional formulas in Basicg(y). We apply the procedure
described in the proof of Proposition 3.2, treating ev-
ery formula in Basici(p) as a primitive proposition.
We get a structure MY of size O(|Subc(yp)|?), such
that 7% maps each world w' € WY to a truth as-
signment over Basici(p). Recall that the construction
of M" is such that each w’ € WY corresponds to a
world f(w') in Wy,. Moreover, for all ¥ € Basic;(yp),
pi¥ (w') () =true if and only (M, f(w')) | ¢.

For each w' € W] we define ¢, so that it describes the
truth value of all formulas in Basic;(¢) at w'. How-
ever, since we want to capture conditionals holding in
w’, we have to be careful; we use the corresponding
world f(w) in M to evaluate these conditionals. For-

mally, @y is defined as /\zpeBasicl(w), (M, f(w)) =y YA

/\weBasicl(q:), (M, f (")) lets =1, We note that
Subc (py') € Sube(yp), Basici(pw') C Basici1(p),
and that ¢, contains at most & — 1 levels of con-
ditional nesting. We now recursively apply the tree
construction procedure on (M, f(w')) and ¢, and get

a structure M®' such that (M w') £ @y

We now construct M'. Let W' contain w and all the
worlds in M for all w' € WY¥. Without loss of gen-
erality we can assume that the sets of worlds in M
are disjoint and do not contain w. We define 7’ to be
such that for each world w’ € W', the truth assign-
ment 7'(w’) is the same as the truth assignment in
the structure w’ is taken from. Finally, we define <,
according to the construction of M*, and <, for all
w' € W' — {w} to be the same as the ordering <, in
the structure w’ is taken from.

It i1s easy to see that this recursive procedure is well-
defined. At i level of recursion the depth of the
formula is at most k& — i, and thus the procedure
must terminate. It is also easy to verify, by induc-
tion, that (M',w') |E ¢. Finally, we show that the
structure M’ is not too large. The size of M’ is
O(|Sube (¢)|*-|M¥'|). According to the recursive con-
struction, |M¥'| = OgLSubc(go)P(k_l)). Thus, the size
of M'is O(|Subc(p)|**).

The procedure we described constructs structures in
M. If A is not empty we have to modify M’ to satisfy
the constraints in 4. This is done locally at each world
in the manner described in the proof of Corollary 3.3.

What happens if we have no bound on the nesting
depth? In this case we can get an exponential-sized
structure. The result without uniformity follows im-
mediately from Proposition 3.6, since the depth of
nesting in a formula ¢ is clearly bounded by |¢|. With
uniformity, we have to work a little harder; we leave

details to the full paper.

Proposition 3.7: Suppose ¢ € LS and A is a sub-
set of {N,T,R,C,U}. If ¢ is satisfiable in M*, then
¢ is satisfiable in a structure in M with at most
O(22|S“bc(“°)|) worlds.

The natural question to ask is whether this the best
we can guarantee. The answer is yes. Since the tech-
nique for proving this, which depends on the observa-
tion that we can embed various modal logics into con-
ditional logic, is also useful for proving lower bounds
on complexity, we go into a little detail here.

Let £% be the language with a single modal operator
K (which intuitively stands for knowledge). As usual,
we capture the semantics of knowledge in terms of an
accessibility relation, on which we can place various
restrictions. Thus, an epistemic structure N has the
form (W, m, K), where W is a set of worlds, = maps
each possible world to a truth assignment, and K is a
binary relation. We define |= in the standard way; in
particular,

o (N,w) = Kyp if (N,uw') | ¢ for all w’ such that
(w,uw') € K.

Let A be the class of all epistemic structures. We
add superscripts r, s, t, and e, respectively, to denote
restrictions on the K relation to reflexive, serial, tran-
sitive, and Euclidean relations, respectively.® For each
subset B of {r,s,t, e}, we let N'® denote the class of
epistemic structures where the K relation satisfies the
appropriate restrictions.

We can also define modal operators in the con-
text of conditional logic. Let g be an abbrevia-
tion for true—y, and let Og be an abbreviation for
(mp)—false. Tt is easy to verify that [e holds at w
exactly if all the minimal worlds according to <,, sat-
isfy ¢ and that Oy holds at w if all worlds in Wy,
satisfy . Traditionally [Lew73], & has been called
the inner modality and O has been called the outer
modality.

As we now show, the inner modality [J corresponds in
a precise sense to K. Under this correspondence, con-
ditions on =<, correspond to conditions on the binary
relation K. In particular, conditions N and R both cor-
respond to K being serial, T corresponds to K being
reflexive, and A corresponds to K being both transi-
tive and Euclidean. This intuition is made precise by
the theorem below.

Proposition 3.8: Given a formula ¢ € L%, let ¢*
be the result of replacing each K operator by 1. Let
A be a (possibly empty) subset of {N,R,T,A}, and let

8K is serial if for all w, there exists some w’ such that
(w,w") € K; K is Euclidean if for all u,v,w, if (u,v) € K
and (u,w) € K, then (v, w) € K.



B be the corresponding subset of {e,r,s,t}, where s
corresponds to N and R, v corresponds to T, and both
e and t correspond to A. Finally, let A’ be a subset
of {C}. Then ¢ is satisfiable in N'® in a structure of
size k if and only if ¢* is satisfiable in MAYA in q
structure of size k.

Proof: We show how to map epistemic structures sat-
isfying ¢ to structures satisfying ¢* and vice versa.

Recall that [y holds at w exactly when ¢ is true in
all the minimal worlds in W,,. Assume (M, w) = ¢*
for M = (W, m, R). Let N = (W, n,K) such that
(w1,wsz) € K if wy is minimal in W,,. It is easy
to check that (N,w) = ¢. Moreover, if M satis-
fies normality or reflexivity, then for every w; there
is at least one minimal ws, and thus K is serial. If
M satisfies centering, then w; is minimal in W,,,, and
thus K is reflexive. If M satisfies absoluteness, then
if wa € Wy,, then <, is the same as <,,. This
implies that if (wy,ws) € K and (wa,ws) € K then
(w1, ws) € K since wz must be minimal in W,,,. Sim-
ilarly, if (w1, wa), (w1, w3) € K then (wq, ws) is also in
K. Thus, K is transitive and Euclidean.

Now assume (N,w) = ¢ for N = (W, 7,K). We con-
struct a structure M = (W, m, R), where R is such that
for each world w, the set W, consists of all worlds
accessible from w according to K, and each of these
worlds is equally plausible. This ensures that the min-
imal worlds according to <,, are precisely the worlds
accessible from w, and guarantees that (N, w) | Ky if
and only if (M, w) |= Be. Moreover, if K is serial, then
Wy # 0 for all w, and thus M satisfies reflexivity (and
normality). If K is reflexive, then w is accessible from
w. Thus, w € W, in M, and hence minimal (since
all worlds in W,, are minimal). Finally, if K is both
transitive and Euclidean, then then it is well known
(see [HM92]) that we can assume without loss of gen-
erality that the same set of worlds is accessible from
each w € W. This implies that the ordering at each
world is the same. Thus, M satisfies absoluteness. |

In the presence of uniformity we can get similar re-
sults. However the reduction is less natural. Since
such a reduction does not play a role in our treatment
of structures satisfying uniformity, we omit the details
here.

Halpern and Moses [HM92] describe formulas in £
that can be satisfied only in exponential-sized struc-
tures in A, N7, and NV¢. (However, they can be satis-
fied in polynomial-sized structures in A'®*.) They also
show that once common knowledge is added to the
language, then there are formulas that have depth of
nesting two and can be satisfied only in exponential-
sized structures in A, A", and N¢. It turns out that
the outer modality behaves very much like common
knowledge in the presence of uniformity. More pre-
cisely, the statement Cy (“it is common knowledge

that ¢”) holds exactly when every world that is acces-
sible through repeated applications of K satisfies .
Similarly, D¢ holds at w when all worlds in W,, sat-
isfy . If we assume uniformity, then Og implies that
all worlds that are accessible by arbitrary level of con-
ditional nesting must satisfy /. This is close enough
to common knowledge to get the behavior needed for
constructing a proof similar to their construction for
common knowledge.

When we do not require uniformity, we immediately
get the following from the results of Halpern and Moses
and Proposition 3.8:

Corollary 3.9: Let A be a subset of {N, R, T, C}.
Then for each n, there is a formula @7t of size O(n?)
such that @7 that is satisfiable in M*, but only in
structures of size at least 2.

When we require uniformity we have to work a bit
harder. We can modify the construction Halpern and
Moses use for common knowledge to get the following
result; we leave the details for the full paper.

Proposition 3.10: Let A be a subset of {N, R, T,
C}. Then for each n, there is a formula @7 of size
O(n?) and using only depth-two nesting of conditionals
such that @ that is satisfiable in MAYUL but only
in structures of size at least 2".

4 COMPLEXITY RESULTS

In this section we examine the inherent difficulty of
deciding whether a formula is satisfiable. Checking
validity is closely related since ¢ is valid if and only
if =g is not satisfiable. We start with an overview of
the complexity-theoretic notions we need. For a more
detailed treatment of the topic, see [GJT9, HU79].

Complexity theory examines the difficulty of determin-
ing membership in a set as a function of the input size.
In our case we check if a formula ¢ is in the set of satis-
fiable formulas. Difficulty is measured in terms of the
time or space required to decide if a formula ¢ is sat-
isfiable as a function of |p|, the length of the formula.
The complexity classes we are interested in are NP,
PSPACE, and EXPTIME. These classes contain sets
such that deciding membership can be done in non-
deterministic polynomial time, polynomial space, and
exponential time, respectively.

To show that a set is in a complexity class we usually
describe a procedure that determine membership in
the set and conforms to the time or space restriction
of the class. Usually, we also want to show that a set
is not in an easier class. To do we show that the set
is hard in the class. A set A is hard in a class C if for
every set B € C, an algorithm deciding membership in
B can be easily obtained from an algorithm deciding



Table 1: The complexity of the satisfiability problem
for M4,

|AcA AUEA UcA AgA

LY NP NP NP
£¢ | NP NP EXPTIME
£¢ | NP PSPACE EXPTIME

membership in A. A set is complete with respect to a
complexity class C if it is both in C and C-hard.

We now turn to the complexity results. These results
are summarized in Table 1 (where each problem is
complete for the complexity class listed). For most
classes of structures of interest to us, deciding satisfi-
ability is NP-complete for Eg and PSPACE-complete
L€ . However, there are several exceptions to this rule:
absoluteness makes the problem easier and uniformity
makes it harder. Notice that all the other semantic
variants do not affect the complexity.

All the logical variants we examine contain the propo-
sitional calculus and thus checking satisfiability is NP-
hard. For the variants with polynomial-sized struc-
tures we see that deciding satisfiability is in NP: We
simply nondeterministically choose a structure and
then verify that it satisfies the formula. The verifica-
tion step is easily shown to be in polynomial time, pro-
vided the structure is polynomial-sized. Using Propo-
sition 3.2, Corollaries 3.3 and 3.5, and Proposition 3.6
we get the following theorem:

Theorem 4.1: Let A be a subset of {N, R, T, U, A,
C'}. Then the following problems are NP-complete:

(a) the problem of deciding whether a formula in L¢
is satisfiable in M4,

(b) the problem of deciding whether a formula in L€
is satisfiable in M*, if A contains A,

(¢) for a fized k > 0, the problem of deciding whether
a formula in LS is satisfiable in MAif A does
not contain U.

We now turn to the harder cases. As we showed in
Corollary 3.9 and Proposition 3.10, in all the remain-
ing variants there are formulas that are satisfiable only
in exponential-sized structures. We show that most of
these variants, except the ones satisfying uniformity,
are PSPACE-complete.

Theorem 4.2: If A is a subset of i;N, T,R,C}, the
problem of deciding if a formula in L~ is satisfiable in
M4 is PSPACE-complete.

Proof: The lower bound is an immediate corollary
of Proposition 3.8 and the fact (proved by Ladner

[Lad77, HM92]) that checking whether a formula in g

LK is satisfiable in A (resp., N7, N¢) is PSPACE-
hard.

For the upper bound we use the construction in Propo-
sition 3.7. We describe a polynomial space algorithm
that essentially searches through all the tree-like struc-
tures of the form described in the proof of Proposi-
tion 3.7. In order to simplify the description of this al-
gorithm we rely on the fact that NPSPACE (nondeter-
ministic polynomial space) is equivalent to PSPACE
[HU79]. Thus, we describe an algorithm that uses non-
deterministic choices and polynomial space.

The algorithm check-tree is given a world w and for-
mula ¢ and returns true if there is a tree-like structure
containing w such that w = ¢.

check-tree(w, ¢)
Guess a truth assignment at w to propositions in &
If p € LS, then

Let Wy, =0
Else,
Let n = [Subc ()]
Let Wy ={w11,...,Win,...,Wnn}

Let w; ; <w wi i exactly if j <k
For each w; ;,
Guess T; ; C Basici(p)
Let pu, ; = Nyer, , ¥ A /\weBasicl(w)—Tz,j Y
If check-tree(w; j, pu, ;) = false, then
return false.

Return the evaluation of ¢ at w (using the ordering =<,

and assuming ¢, ; is true at w; ;).
end.

This algorithm emulates the construction that we used
in the proof of Proposition 3.6. It guesses a structure
and then checks that ¢ evaluates to true in this struc-
ture. It starts by guessing a truth assignment at w.
If ¢ contains conditionals, then the algorithm guesses
a structure that contains |Subc(¢)|? worlds and de-
fines an ordering <,, over these worlds which is a dis-
joint union of |Subc(p)| total orders. It then guesses
a truth assignment in each of these |Subc ()| worlds
to the formulas in Basic;(¢). According to the proof
of Proposition 3.2, if ¢ is satisfiable (when we con-
sider formulas in Basicy(p) as propositions), it must
be satisfiable in such as structure. The algorithm then
verifies that the formulas assigned to each w; ; can be
satisfied using a recursive call. Finally, the algorithm
verifies that ¢ evaluates to true at w according to the
truth assignment at w and W, (using 7; ; to evaluate
formulas at each w; ; € Wy,).

We note that the space requirements of the algorithm
are the space requirements of all the instances that
are active at once. The maximal number of active
instances is exactly the recursion depth, i.e., the con-
ditional nesting depth in ¢. The space requirements in
each instance are O(|Sub(p)|?) for storing the sets T ;.
Thus, the space requirements for check-tree(p, w) are



O(lel"). 1

The remaining cases are those satisfying uniformity
but not absoluteness. Somewhat surprisingly, these
variants are harder than all the others. Roughly speak-
ing, this is because in the presence of uniformity, the
outer modality essentially allows us to express com-
mon knowledge.

Theorem 4.3: If A is a subset of {N,T,R,C}, the
problem of deciding if a formula in L~ is satisfiable in
MAYUY s EXPTIME-complete.

Proof: The lower bound is constructed in a similar
manner to the lower bound for logics of knowledge
and common knowledge of Halpern and Moses [HM92].
The basic idea is that we can simulate the execution
of an alternating polynomial-space Turing machine by
a sentence ¢ in £, such that ¢ is satisfiable if only if
the machine accepts the input, and ¢ is of polynomial
size.® We leave the details of this construction to the
full paper.

We prove the upper bound by modifying the algorithm
check-tree we described in the proof of Theorem 4.2.
The basic idea is straightforward: We try to modify
the tree-like structure M constructed by check-tree
to a structure M’ over the same set of worlds that sat-
isfies uniformity. The idea is to modify the preference
relation so that at each world w, the set W/ of worlds
considered possible consists of all worlds in the tree
except the root, and defining <!, so that the minimal
worlds in W, are exactly those in W,,. This mod-
ification guarantees that if (M, w) = —(¢—¢’) then
(M', w) = =(¢—'). Since there is a minimal ¢-world
in W,, that satisfies =1/’ the same world is also a mini-
mal ¢-world in W, . Moreover, if (M, w) | ¢¥—¢' and
there are some y-worlds in Wy, then (M', w) | ¢—¢/
for the same reasons. Unfortunately, this approach
runs into problems if there are no y-worlds in W, so
that ¥y»—’ holds vacuously at world w in structure
M. In that case, if there are some ¢-worlds in W,
(which is possible), then the conditional ¥y—1’ may
not be true at (M', w).

To avoid this problem we can decide in advance which
conditionals in Subc(¢) will be satisfied vacuously in
M. We initially nondeterministically choose a sub-
set V of Subc(p). We then modify check-tree so
that it searches structures where the only condition-
als that hold vacuously are those in V. The modified
check-tree ensures that no world satisfies i for each
formula ¥—’ € V. One side-effect of this change is
that we may get new conditionals at each level of re-
cursion, so the algorithm may not terminate. We avoid
this by using the fact that there are only an exponen-

°The class of sets recognizable by alternating
polynomial-space Turing machines is equal to EXPTIME
[CKS81].

tial number of formulas of the form ¢, ; that can be
given as an argument to check-tree. We leave details
to the full paper. Note that the modified check-tree
is no longer guaranteed to be in PSPACE. In the full
paper we show that it is guaranteed to be in EXP-
TIME. 11

4.1 RIGHT-NESTED FORMULAS

As mentioned in the introduction, a similar approach
to conditional logic is the framework of counterfactual
queries of [FUV83, Gin86]. Eiter and Gottlob [EG93]
show that the complexity of evaluating a query of the
form p1>(p2> ... (pn>q) . ..) is Il5-complete, and the
complexity of queries that allow negation on the right-
hand side is PSPACE-complete. Since right-nested
conditionals also appear in the conditional logic liter-
ature [Bou93, FH94b], it seems worth understanding
if right-nesting simplifies things here too.

We now define the language £$ of simple right-nested
conditionals and the language LS of (possibly negated)
right-nested conditionals. Let £¢ be the least lan-
guage such that if ¢, ¢’ € LS and ¥,¢1,..., ¢, € L§
(n > 0), then ¢ A ¢’, =, and Y1 — -+ - >, — ¢ are
in £¢. Let £% be the minimal language such that
if p,¢' € L7 and ¢ € L§ then ¢, 0 A ¢/, ~p, b—p
are in L. Thus p—¢—r is in both languages, and
p——(g—r) is in LE but not in LS.

Things are considerably simpler for £&. It is easy
to show that the satisfiability problem for £¢ is NP-
complete for all variants of the logic:

Theorem 4.4: Let A be a subset of {N, R, T, U, A,
C}. Then the problem of deciding whether a formula
in LS is satisfiable is NP-complete.

Proof: Using techniques similar to these of Proposi-
tion 3.2, it is easy to show that a formula in £¢ is
satisfiable if and only if it is satisfiable in a linear-size
structure. Thus we get the NP upper bound. The NP-
hardness is a result of the fact that £& contains the
propositional calculus. |

Things get more complicated when we consider the
language £&. In many cases this fragment is already as
complex as the full language. Recall that the PSPACE
lower bound in Theorem 4.2 is proved by a reduction
from modal logic. This reduction substitutes the [
modality for the modal operator K. However [y is
defined as true— . Thus, the reduction maps a modal
formula into a formula in £&. (Because modal formu-
las may be negated, the resulting formula may not be
in £¢.) Thus, we get the following corollary:

Corollary 4.5: If A is a subset of éN, T, R,C}, the
problem of deciding if a formula in L 1is satisfiable in
M4 is PSPACE-complete.

r



However, when we consider structures that satisfy uni-
formity, the satisfiability problem for formulas in £¢
is easier than satisfiability of formulas in the full lan-

guage.

Theorem 4.6: If A is a subset of {N,T,R,C}, the
problem of deciding if a formula in LS is satisfiable in
MAVUY s PSPACE-complete.

5 AXIOMATIZATION

Several axiom systems for variants of conditional logics
appear in the literature [Lew73, Lew74, Che80, Bur81,
Bel89, Gra9l, KS91]. We present an axiom system
for all the variants we introduced based on Burgess’s
[Bur81] axiomatization. In the full paper, we provide a
full completeness proof based on Burgess’s techniques,
but substantially simpler.

The basic axiom system, AX, contains the following
axiom schemata:

A0
Al

All the propositional tautologies

p—rp

A2 ((p—=v1) A(p—92)) = (p— (Y1 A i)

A3 (p—= (U1 A2)) = (p—¢1)

A4 ((pr—@2) A (1)) = (01 A p2) 20)
A5 ((p1—=Y) A(p2—1)) = ((p1 V p2) 2¥)

and the following inference rules:

MP From ¢ and ¢ = ¥ infer ¢.

RPE From ¢; < ¢s and ¢ infer ¢', where ¢/ differs
from 1 only by replacing some subformulas of ¢
of the form ¢ by ¢s.

The completeness proof works as follows. Given ¢ and
an extension AX’ of AX, we consider all the maxi-
mal consistent subsets, according to AX’, of Sub™ (y)
(where a maximal consistent set is an AX’-consistent
set which is not a strict subset of any other AX’-
consistent subset of Sub™(p)). We call a such a max-
imal consistent set an AX'-atom. (We henceforth
omit AX’ unless it is relevant to the discussion.) It
is easy to verify that each atom is complete in the
sense that for ¢ € Sub(p), either ¢ or —¢ must
be in the atom. TFor example, if ¢ is p A (¢g—7)
then Sub®™(¢) = {p,—w,q,~q,r,7r, g=r, =(g—r),
pA(g—r), ~(pA(g—r))}. Theset {p, ¢, -r, 2 (¢g—r),
=(pA(¢—7))} might be an atom (depending on AX'),
but {-p,¢,—r,q—r,p A (¢—7)} cannot be an atom
since —p and p A (¢—r) are inconsistent. Similarly,
{p, ¢} is not atom since it is not maximal. In the fol-
lowing discussion let «, 8, and v stand for atoms and
A stand for a set of atoms. We slightly abuse notation
and use « both as a set (e.g., ¢ € a) and as a formula
(e.g., @ = ) which is the conjunction of all members
of a.
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Given «,f(, and A we define Prefer,y. (8, a, A) if
BA—(aV\ A=V A) is consistent according to AX'.
The intuitive account is that a world where 3 holds is
consistent with an ordering that makes worlds where o
holds strictly preferred to worlds satisfying one of the
atoms in A. We will use this definition to construct
all the preorders that are consistent with each possible
world.

Given AX’ and ¢, we construct a structure M =

(W, m, R) as follows:

e We set W to be the set of tuples (v, A) where
v & A. Given w = (v, A) we define y(w) = 7.

o We set m(w)(p) = true if and only if p € y(w).
e For any world w, we construct <,, by setting

Wy = {(y, 4) € W[Preferyx (y(w), A,7)}

1"

and setting w' <, w’ if v’ = (¥, 4), w

(,YII’AII)’ and AII U {,}///} g AI.

The intuition is simple: A world w = (v, A) represents
a world satisfying 4 that is intended to be strictly
preferred to all worlds that satisfy one of the atoms
in A. We define 7 so that it assigns truth values
to primitive propositions according their values in 7.
The set W, contains all the worlds (y’, A’) such that
Preferyx:(7v,7', A"), i.e., it is consistent with + that
(7', A’) is strictly preferred to worlds satisfying one of
the atoms in A. The definition of < implements this
intuition: if (v, A") <w (¥, A”) then 4" € A’. This
matches our intuition since (y/, A’) is intended to be
preferred to worlds satisfying atoms in A’. We also
demand that A” C A’, this ensures that <, will be
transitive. It implies that if (v, A”) <w (", A"),
then v € A” C A’ and also A" C A” C A’. Thus,
(v, A) < (4", A").

We now show that each world w in M satisfies y(w).
Since the details of this proof are essentially the same
as Burgess’s proof [Bur81, p. 82], we leave the details
to the full paper.

Lemma 5.1: Let AX' be an extension of AX and let
© € LY. Let M be the structure constructed above.
For any w € W and ¢ € Subt (), ¢ € y(w) if and
only if (M, w) E ¢.

Using this lemma it is easy to prove the following the-
orem:

Theorem 5.2: If ¢ € L, then ¢ is valid in M if
and only if Fax ¢.

Proof: It is easy to check the soundness of AX in M.
Thus, if Fox ¢, then ¢ must be valid in M. For the
other direction, assume that ¢ is consistent with AX.
Then there is an atom « such that ¢ € «, and from
Lemma 5.1 we get that (M, (o, 0)) E . 1



We note that this construction is much simpler than
Burgess’s even though the proof of Lemma 5.1 is al-
most identical to Burgess’s proof. The main difference
is that Burgess constructs a tree-like structure of fi-
nite but nonelementary size. OQur construction, on the
other hand, uses the same stock of worlds to construct
the ordering for each world. The resulting structure is
of doubly-exponential size. (We note that our results
from Section 2 show that this can be improved, since
only an exponential-sized structure is needed for sat-
isfiability.) The fact that the structure is not tree-like
allows us to give completeness proofs for properties
such as uniformity and reflexivity that cannot be sat-
isfied in tree-like structures.

The following axioms characterize the various seman-
tic conditions we have considered. These axioms ap-
peared originally in [Lew73] and [Bur81].

AN (Normality) —(true— false)
AR (Reflexivity) Op = ¢
AT (Centering) Oy = ¢1°
AU (Uniformity) (O = O00¢p) A (-0 = O-0¢)
AA (Absoluteness)
(p=¢ = O(p=¢)) A (=(p—=9) = O(p—=y))
AC (Connectedness)(p1 V @2)—=—ps = ((¢1 V
¥) =) V(¥ V p2) )

The next results shows that each axiom captures ex-
actly the corresponding condition:

Theorem 5.3: Let ¢ € L and let A be a subset of
{N, R, T, U, A, C} and A the corresponding subset
of {AN, AR, AT, AU, AA, AC}. Then ¢ is valid in
M if and only if Faxua ¢

Proof: In the full paper we provide the details of this
proof. The essence of the proof is showing that each
axiom forces the constructed structure to satisfy the
semantic condition. This is straightforward in the case
of absoluteness, uniformity and normality. The other
cases require a little more care; we leave details to the
full paper. I

6 CONCLUSIONS

In this paper we analyzed the complexity problem for
conditional logics. As we observed in the introduction,
such logics are now being used in many areas of arti-
ficial intelligence. The techniques we have introduced
in this paper (especially the results in Section 3) can
applied to frameworks that combine conditional log-
ics with other modalities. For example, in [FH94a]
we use these results to derive complexity results for
a logic that contains both conditionals and epistemic
modalities.

0T he axiom for strict centering is Hp < .
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We did not attempt, in this work, to isolate tractable
fragments of the logic. This is certainly an important
aspect of any analysis of formal method in artificial
intelligence [Lev86, Lev88]. We note that all the log-
ics we examined are intractable because they contain
the propositional calculus. It is certainly feasible that
there are nontrivial fragments that do not contain the
propositional calculus that are tractable (e.g., results
in the style of Kautz and Selman’s analysis of default
logic [KS89]). We plan to pursue this issue in the fu-
ture. We note that the methods used in this paper are
certainly relevant to such an investigation.
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