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ABSTRACT 
Controlled experiments, also called randomized experiments and 

A/B tests, have had a profound influence on multiple fields, 

including medicine, agriculture, manufacturing, and advertising. 

While the theoretical aspects of offline controlled experiments 

have been well studied and documented, the practical aspects of 

running them in online settings, such as web sites and services, 

are still being developed. As the usage of controlled experiments 

grows in these online settings, it is becoming more important to 

understand the opportunities and pitfalls one might face when 

using them in practice. A survey of online controlled experiments 

and lessons learned were previously documented in Controlled 

Experiments on the Web: Survey and Practical Guide (Kohavi, et 

al., 2009). In this follow-on paper, we focus on pitfalls we have 

seen after running numerous experiments at Microsoft.  The 

pitfalls include a wide range of topics, such as assuming that 

common statistical formulas used to calculate standard deviation 

and statistical power can be applied and ignoring robots in 

analysis (a problem unique to online settings). Online experiments 

allow for techniques like gradual ramp-up of treatments to avoid 

the possibility of exposing many customers to a bad (e.g., buggy) 

Treatment. With that ability, we discovered that it’s easy to 

incorrectly identify the winning Treatment because of Simpson’s 

paradox.  

Categories and Subject Descriptors 
G.3 Probability and Statistics/Experimental Design: controlled 

experiments, randomized experiments, A/B testing. 
I.2.6 Learning: automation, causality. 

General Terms 
Management, Measurement, Design, Experimentation, Human Factors. 

Keywords 
Controlled experiments, A/B testing, e-commerce, Simpson’s 

paradox, robot detection 
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1. INTRODUCTION 
Almost any questions can be answered, cheaply, quickly 

and finally, by a test campaign. And that's the way to 

answer them – not by arguments around a table. Go to 

the court of last resort – the buyers of your product 

– Claude Hopkins, Scientific Advertising (1923) 

Sir Ronald A. Fisher led the development of statistical 

experimental design while working at the Rothamsted 

Agricultural Experimental Station near London, England in the 

1920s. His work had “profound influence on the use of statistics, 

particularly in the agricultural and related life sciences” 

(Montgomery, 2005). Over 70 years later, the esoteric field has 

grown mainstream: Forbes published an article on MultiVariable 

Testing titled “The New Mantra: MVT” (Koselka, 1996). The 

article begins with the following two sentences: “If you haven't 

yet applied multivariable testing to your business, get moving. 

Whether you run a factory, a mail-order house or a hospital, it will 

probably improve your performance.” Montgomery (2005) wrote 

that “Applications of designed experiments have grown far 

beyond the agricultural origins. There is not a single area of 

science and engineering that has not successfully employed 

statistical designed experiments.”  

Toyota’s famous production system with the principle of ongoing 

hypothesis testing of improvements often requires reconfiguration 

of the work area. The fascinating story in Learning to Lead at 

Toyota (Spears, 2004) describes how ideas are continuously tested 

even though reconfigurations of the work area are expensive: “75 

[experiments]…required relocating material stores and moving 

the light curtains, along with their attendant wiring and computer 

coding. These changes were made with the help of technical 

specialists….” With software, testing new hypotheses is much 

easier; code can be modified and restored much more easily than 

physical artifacts. The web provides an unprecedented opportunity 

to evaluate ideas quickly using controlled experiments.  

Controlled experiments typically generate large amounts of data, 

which can be analyzed using statistical and data mining 

techniques to gain deeper understanding of the factors influencing 

the outcome of interest, leading to new hypotheses and creating a 

virtuous cycle of improvements. Multiple lessons learned from 

deploying controlled experiments online and analyzing them were 

documented in the Practical Guide to Controlled Experiments on 

the Web (Kohavi, et al., 2007) and its longer version (Kohavi, et 

al., 2009). In this follow-on paper, we focus on pitfalls learned in 

the last three years, and especially in our last year, as we ramped 

up and ran numerous controlled experiments across multiple web 

sites at Microsoft.  

The goal of the KDD industrial track is to “highlight challenges, 

lessons, and research issues arising from deploying KDD 
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technology.” This paper focuses on important lessons, described 

as pitfalls, and related challenges we have identified. The pitfalls 

are all “real” in the sense that we experienced them and spent 

significant time working around them and documenting them so 

that you can avoid them.  

The paper is organized as follows. Following a brief overview and 

definitions in Section 2, we review issues with choosing an OEC, 

the Overall Evaluation Criterion for experiments in Section 3. In 

Section 4 we highlight that computation of confidence intervals 

when reporting percent effects is not accurate and show how to 

compute these for combinations of metrics. In Section 5 we point 

out that for families of metrics the standard statistical formulas for 

computing variances fail to give the correct result because the 

independence assumption is violated. We recommend using 

Bootstrap, which is compute-intensive. In Section 6 we warn 

readers about occurrences of Simpson’s paradox, a common 

problem when ramping-up experiments. Sections 7 warns about 

robots and proposes a novel way to evaluate whether robots that 

impact experimental results. Sections 8 warns about audits, 

instrumentation and controlling all differences. We conclude the 

paper with a short summary. 

2. CONTROLLED EXPERIMENTS 
In the simplest controlled experiment, often referred to as an A/B 

test, users are randomly exposed to one of two variants: Control 

(A), or Treatment (B), shown in  

Figure 1. This section mirrors the terminology and basic 

hypothesis testing overview as provided in Controlled 

Experiments on the Web: Survey and Practical Guide (Kohavi, et 

al., 2009) where additional motivating examples and multiple 

references to the literature are provided. 

The terminology for controlled experiments varies widely in the 

literature. Below we define key terms used in this paper and note 

alternative terms that are commonly used.  

Overall Evaluation Criterion (OEC) (Roy, 2001). A quantitative 

measure of the experiment’s objective. In statistics this is often 

called the Response or Dependent Variable (Mason, et al., 1989; 

Box, et al., 2005); other synonyms include Outcome, Evaluation 

metric, Performance metric, or Fitness Function. Experiments 

may have multiple objectives and a scorecard approach might be 

taken, although selecting a single metric, possibly as a weighted 

combination of such objectives is highly desired and 

recommended (Roy, 2001 p. 50). A single metric forces tradeoffs 

to be made once for multiple experiments and aligns the 

organization behind a clear objective. A good OEC should not be 

short-term focused (e.g., clicks); to the contrary, it should include 

factors that predict long-term goals, such as predicted lifetime 

value and repeat visits.  

Variant. A user experience being tested by being exposed to one 

of several variants, which include the Control and one or more 

Treatments. 

Experimental Unit. The entity over which metrics are calculated 

before averaging over the entire experiment for each variant. 

Sometimes called an item. The units are assumed to be 

independent. On the web, the user is a common experimental unit. 

It is important that the user receive a consistent experience 

throughout the experiment, and this is commonly achieved 

through randomization based on user IDs stored in cookies. 

Throughout this paper, we will assume that randomization is by 

user. 

Null Hypothesis. The hypothesis, often referred to as H0, that the 

OECs for the variants are not different and that any observed 

differences during the experiment are due to random fluctuations. 

Confidence level. The probability of failing to reject (i.e., 

retaining) the null hypothesis when it is true.  

Power. The probability of correctly rejecting the null hypothesis, 

H0, when it is false. Power measures our ability to detect a 

difference when it indeed exists.  

A/A Test. Sometimes called a Null Test. Instead of an A/B test, 

you exercise the experimentation system, assigning users to one of 

two groups, but expose them to exactly the same experience. An 

A/A test can be used to (i) collect data and assess its variability 

for power calculations, and (ii) test the experimentation system 

(the Null hypothesis should be rejected about 5% of the time 

when a 95% confidence level is used). 

 
 

Figure 1: High-level flow for an A/B test  

Standard Deviation (Std-Dev). A measure of variability, 

typically denoted by 𝜎.  

Standard Error (Std-Err). For a statistic, it is the standard 

deviation of the sampling distribution of the sample statistic 

(Mason, et al., 1989). For a mean of 𝑛 independent observations, 

it is 𝜎 / 𝑛 where 𝜎  is the estimated standard deviation. 

Statistical Significance. To evaluate whether the Overall 

Evaluation Criterion differs for user groups exposed to Treatment 

and Control variants, a statistical test can be done. If the test 

rejects the null hypothesis, which is that the OECs are not 

different, then we accept a Treatment as being statistically 

significantly different. We will not review the details of the 

statistical tests, as they are described very well in many statistical 

books (Mason, et al., 1989; Box, et al., 2005; Keppel, et al., 

1992). 

3. The Overall Evaluation Criterion 
To run a controlled experiment, one needs to decide on the OEC, 

or the Overall Evaluation Criterion, the key metric that is going to 

be compared. For web sites, our recommendation is to tie that 

metric to a long-term goal, such as using customer lifetime value. 

For example, a retail site might want to optimize not just short-

term revenues, but also for long-term indicators of loyalty and 

increasing wallet share: increase in repeat visits and purchases, 

signing up for e-mails, and purchasing from multiple departments. 

Sometimes, when getting the true metric is hard, sites will use a 

surrogate metric as the following example shows. 
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3.1 Office Online Example 
Microsoft’s Office Online site (http://office.microsoft.com) had 

the following design (Control), shown in Figure 2. 

The areas with red around them are “revenue generating links,” 

which had a certain probability of leading to a sale of the Office 

suite. Tracking the actual purchase was hard, so the team settled 

on a surrogate OEC, which was “clicks on revenue generating 

links.” They ran a controlled experiment, where the new treatment 

had a new design as shown in Figure 3. 

 

Figure 2: The Control 

 

 

Figure 3: The Treatment 

The team thought that the new design would win on the OEC: 

clicks on revenue generating clicks, marked in red.  However, the 

new design had 64% fewer clicks on those links. The experiment 

by itself was useful because the team thought their new design 

would perform better on OEC, and they now had to adjust their 

intuition, so it was a good learning experience. 

However, there is a serious flaw with the OEC: clicks are a 

reasonable approximation to sales only if the conversion rate from 

click to purchase is the same in the old and new designs. The new 

version had the price shown on the page, and it sent more 

qualified users who are willing to spend $149.95, thus having a 

significantly higher conversion rate.  

Another common problem with OECs that we have seen is a local 

focus. For example, measuring the click-through rate on a small 

area of the page, ignoring the impact on other areas of the page. 

A final example is picking an OEC like “time on site.” It may 

initially seem like a good OEC, but we have examples where a 

new feature was introduced that was so hard to use that it slowed 

users’ effectiveness, growing their time on the site, but for the 

wrong reason. 

The litmus test for an OEC should be: is it possible to do 

something simple (sometimes clearly dumb) and wrong that will 

improve the OEC but not meet the real business goal? If that is 

easy, how do you know that your complicated feature is not 

improving the OEC because it has a small “dumb” component? 

Here is why the above OECs do not pass the litmus test. 

1. Office online click-throughs on revenue generating 

links. The OEC assumes that the conversion rate from a 

click to purchase is fixed. One can create a link labeled 

“Free download for 60 days” that will do wonders to the 

OEC, but the conversion will be much lower than a 

“Buy for $149.95” link. Is this ultimately going to 

generate more revenues? Unclear. 

2. Click-through on a small area of the site (e.g., slot). It’s 

easy to make an area stand out by making it a bold, with 

a different background, maybe even flashing. More 

people might click in the short term, but what about the 

whole-page click-through rate? What about long-term 

value? 

3. Time on site. By making things harder to find or making 

navigation harder, users might stay longer on the site, 

but leave frustrated. 

 

Pitfall 1:  Picking an OEC for which it is easy to beat the 

control by doing something clearly “wrong” from a 

business perspective. 

 

We want to caution against overcorrecting here. Sometimes 

picking a simple OEC is a good way to start experimenting, 

without worrying about the perfect OEC. When the MSN home 

page wanted to display an additional ad, we helped pick a simple 

OEC that looked at immediate revenue impact due to reduced 

click-throughs on the page, ignoring long-term effects such as slot 

blindness. The idea was negative even under this simple and 

conservative OEC, so it would have been worse under more 

sophisticated versions (Kohavi, et al., 2009). 

3.2 Support Sites are Challenging 
Many support sites provide an explicit feedback mechanism in the 

form of inline and/or pop-up surveys that allow users to rate their 

experience in terms of factors such as relevance and usability. 

These ratings are problematical. Such surveys are subject to non-

response bias, wherein the sample of respondents is not 

representative of the total user population. It is well known that 

users with negative attitudes towards the company or product, or 

who have had an unsatisfactory experience, are more likely to 

respond to such surveys.(Hill, et al., 2007). Hill and his co-authors 

note that the minimum response rate needed to correct for non-

response bias is 30%(p. 84). Given that the observed response 

rates for online support sites we have worked with is in the low 

http://office.microsoft.com/
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single digits, we assert that online surveys are not a suitable 

source of input for Overall Evaluation Criteria. 

Prior research to infer user interest based on implicit actions used 

an instrumented browser, such as the Curious Browser (Claypool, 

et al., 2001). The researchers found that time spent on a page and 

the amount of scrolling on a page has a strong correlation with 

explicit interest, while individual scrolling methods and mouse-

clicks are ineffective in predicting explicit interest. Later research 

also noted that how a user exited a result or ended a search session 

is important (Fox, et al., 2005). 

Setting the OEC to time spent on page (dwell time) fails the 

litmus test noted in pitfall 1. For example, in a Microsoft health 

related site, a widget was redesigned to make health articles more 

accessible. Time spent on pages and total session time increased 

(satisfying the objective), but drilling down to the reasons, the 

new widget in the Treatment was used less often than the one in 

the Control. Users may have been more confused, thus taking 

longer to find what they need. 

We also ran an experiment on Microsoft’s support site, 

support.microsoft.com, where dwell time was the OEC. However, 

it was not clear at all whether the lower times were due to the user 

experience improving or users giving up. 

Finding a good general OEC for support sites is challenging. We 

do want to mention that limited experiments are still possible. For 

example, a particularly successful support site experiment we ran 

involved the test of a rudimentary personalization feature. The 

support.microsoft.com site contained a top center “Instant 

Answers” module with links to common support issues selected 

by the site editors. We tested a new treatment that personalized 

these links by the browser and operating system versions of the 

user’s HTTP header. The treatment performed over 50% better 

than the control on the OEC of Click-through rate, without 

decreasing the clickthrough rate for the whole page. 

4. CONFIDENCE INTERVALS 
It is useful to give a confidence interval for the difference in the 

means of the Treatment and Control in addition to the results of 

the hypothesis test. The confidence interval provides a range of 

plausible values for the size of the effect, whereas the hypothesis 

test only determines if there is a statistically significant difference 

in the means. The formula for the confidence interval for the 

difference in two means is fairly straightforward (Box, et al., 

2005). 

For many online metrics, the difference in the means is so small 

that percent change has much more intuitive meaning than the 

absolute difference. For example, for a recent experiment we ran, 

the Treatment effect for clickthrough rate was 0.00014. This 

translated to a 12.85% increase for the Treatment. The latter 

number was much more meaningful to decision makers. The 

percent difference is calculated as the delta between the means of 

the Treatment and Control divided by the mean for the Control 

times 100%. 

Forming a confidence interval around the percent change is not a 

straightforward extension of the confidence interval for the 

absolute effect. The reason is we are now dividing by a random 

quantity. The initial derivation of this interval is due to Fieller 

(1940) and the formulas are shown in Kohavi et al (2009). We 

would not want to use a log or other transformation since business 

owners may reject results that are not expressed in the same units 

they are familiar with and percent increase has a natural business 

interpretation. 

These formulas assume the covariance between the Treatment and 

Control mean is zero, which will be true in a controlled 

experiment when the randomization is carried out properly.  

OECs may be a combination of metrics, or key performance 

indicators (KPIs). This combination could be either  

1) A linear combination of metrics 

2) A nonlinear combination of metrics that have the same basis1 

or 

3) A nonlinear combination of metrics that do not have the 

same basis. 

In the first case, the mean and variance of the OEC can be 

calculated from the means and variance of the metrics using the 

standard formulas and the confidence intervals are the usual 

symmetric confidence intervals using the normal distribution. 

In the second case, one can calculate the OEC for each 

experimental unit then calculate the mean and variance of the 

OEC values across experimental units and then the confidence 

intervals. 

The third case is more challenging, but we can use Rao’s result: 

(1973 p. 387).  If the OEC is a general function of k primary 

metrics, i.e. OEC = g(X1, X2, …, Xk), and if g(.) is a totally 

differentiable function of k variables, if (X1, X2, …, Xk) 

asymptotically follow a joint Normal distribution with means 1, 

,…k, and covariances ij, i, j = 1,…k, then the OEC will 

asymptotically follow a Normal distribution with mean g1, 

,…k) and variance  

 𝜎2 𝑂𝐸𝐶 =    𝜎𝑖𝑗

𝜕𝑔

𝜕𝑋𝑖

𝜕𝑔

𝜕𝑋𝑗

𝑘

𝑗 =1

𝑘

𝑖=1

 (1)  

Provided 𝜎2 𝑂𝐸𝐶  is not zero and that g1, ,…k) exists. The 

totally differentiable requirement leaves out many functions 

where truncation or discretization is utilized. We also have to 

assume the sample sizes are large enough for g(X1, X2, …, Xk) to 

have a Normal distribution.  

Pitfall 2:   Incorrectly computing confidence intervals 

for percent change and for OECs that involve a 

nonlinear combination of metrics 

5. METRICS, STANDARD DEVIATIONS 

AND POWER 
To compute statistical significance for different metrics of 

interest, we need to estimate the variance of the OEC. After 

running thousands of A/A tests, we discovered that variances for 

some metric families are inaccurately estimated using the standard 

statistical formulas. Specifically, the variance for click-through 

rate (CTR), defined as (sum of clicks)/(sum of page views) for the 

Treatment or Control for the time period of the experiment was 

significantly underestimated. In these cases, we have found the 

Bootstrap method (Efron, 1993) to be an excellent way to estimate 

the variance. The bootstrap is a resampling technique with 

                                                                 
1 Two metrics have the same basis if they are calculated over the 

same experimental unit. For example, page views per user-day 

and clickthroughs per user-day have the same basis, user-day. 
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replacement where the parameter of interest is calculated for each 

sample drawn and then we calculate the variance of these 

estimates. We currently take 1000 bootstrap samples. We 

recommend that you compare the formula variance for any metric 

with the Bootstrap estimate if you are not sure the formula for the 

variance is accurate. We now routinely use the bootstrap method 

to estimate variances whenever the experimental unit used in the 

calculation of the metric is different from the one used in the 

random assignment to the variants. For example, our standard 

method of random assignment is to assign users to Treatment or 

Control using a user ID stored in the cookie. Then we will use the 

bootstrap estimate for the variance of any metric that does not 

have user as the experimental unit (e.g. clicks per user-day or 

session).  Care must be taken in the calculation of variance and 

power. The metrics may be considered in two categories: those 

where the experimental unit is the same as the randomization unit 

(referred to below as per user metrics) and those where it is not. 

5.1 Per User Metrics 
It is difficult to calculate the power for per user metrics because 

these metrics accumulate over time and most have increasing 

means and standard deviations, e.g., clicks per user and page 

views per user. A metric that is a ratio for each user (e.g. 

clickthrough rate) does not necessarily have an increasing mean 

and standard deviation, but the standard deviation of the mean 

does not decrease with the square root of the sample size as 

normally expected (Kohavi, et al., 2009). 

The best way to calculate the power for these metrics is to run an 

A/A test prior to the A/B test to get the mean and standard 

deviation for different lengths of test. One can then interpolate or 

extrapolate to get the approximate power. 

5.2 Non-Per User Metrics 
Metrics, such as those with an experimental unit of user-day or 

session, have the complication that the experimental units are not 

independent, even if the averages and standard deviations are not 

increasing. Below are three examples of non-per user metrics. 

 User-day metrics are those where user’s behavior during 

24 hour time periods are averaged, e.g. page views per 

user per day. 

 Session metrics are defined during a period of user 

activity and are separated by periods of inactivity, 

customarily 30-minutes. We can then look at metrics, 

such as clicks or page views per session. 

 Click-through rate defined for the duration of the 

experiment. Business users tend to focus on this metric, 

although we found that it to be very sensitive to robots.  

There is usually some positive correlation between experimental 

units for these metrics and sites that have more loyal customers 

(higher return rate) have higher correlations. Ignoring the 

correlations leads to underestimation of the standard deviation. 

We have been using Bootstrapping to estimate the standard 

deviation for these metrics and getting good results, validated 

through A/A tests. 

The only class of metrics where the power and standard deviation 

calculations are straightforward are conversion rates for users. For 

example, the percent of users who purchase an item or the percent 

of users who click on a link. These metrics follow the Bernoulli 

distribution when randomization is by user. 

Pitfall 3:  Using standard statistical formulas for 

computations of variance and power.  

6. SIMPSON’S PARADOX 
One of our recommendations for running online controlled 

experiments is to start an experiment with a small percentage of 

users assigned to the Treatment(s) and ramp that percentage 

(Kohavi, et al., 2007). One of the problems with ramp-up is that 

an analysis of the Control and Treatment that includes two or 

more periods with different percentages assigned to the treatment 

can be incorrect due to Simpson’s paradox (Simpson, 1951; 

Malinas, et al., 2004; Wikipedia: Simpson's Paradox, 2008). 

Table 1 shows a simple example, where a website has one million 

visitors per day, on each of two days: Friday and Saturday. On 

Friday, the experiment runs with 1% of traffic assigned to the 

Treatment, and then on Saturday that percentage is raised to 50%. 

Even though the treatment has a conversion rate that is better on 

Friday (2.30% vs. 2.02%) and a conversion rate that is better on 

Saturday (1.2% vs. 1.00%), if the data is simply combined over 

the two days, it would appear that the Treatment is performing 

worse (1.20% vs. 1.68%). 

Table 1: Conversion Rate for two days.  

Each day has 1M customers, and the Treatment (T) is better 

than Control (C) on each day, yet worse overall 

 
Friday 

C/T split: 99%/1% 

Saturday 

C/T split: 50%/50% 
Total 

C 
20,000

990,000
= 2.02% 

5,000

500,000
= 1.00% 

25,000

1,490,000
= 1.68% 

T 
230

10,000
= 2.30% 

6,000

500,000
= 1.20% 

6,230

510,000
= 1.20% 

 

There is nothing wrong with the above math. It is mathematically 

possible that 
𝒂

𝒃
<

𝑨

𝑩
 and that 

𝒄

𝒅
<

𝑪

𝑫
 while 

𝒂+𝒄

𝒃+𝒅
>

𝑨+𝑪

𝑩+𝑫
. The reason 

this seems unintuitive is that we are dealing with weighted 

averages, and the impact of Saturday, which was a day with an 

overall worse conversion rate, impacted the Treatment more. 

Here are other examples from controlled experiments where 

Simpson’s paradox may arise: 

1. Users are sampled. Because there is concern about getting 

a representative sample from all browser types, the 

sampling is not uniform, and users with some browsers 

(e.g., Opera, Netscape) are sampled at higher rates. It is 

possible that the overall results will show that the 

Treatment is better, but once the users are segmented into 

the browser types, the Treatment is worse for all browser 

types. 

2. An experiment runs on a web site that is implemented in 

multiple countries, say US and Canada. The proportions 

assigned to the Control and Treatment vary by country 

(e.g., the US runs at 1% for the Treatment, while the 

Canadians do power calculations and determine they need 

50% for the Treatment). If the results are combined, the 

Treatment may seem superior, even though if the results 

were broken down by country, the Treatment will be 

inferior. This example directly mirrors the ramp-up 

example shown previously. 
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3. An experiment is run at 50/50% for Control/Treatment, 

but an advocate of the most valuable customers (say top 

1% in spending) is concerned and convinces the business 

that this customer segment should be kept stable and only 

1% will participate in the experiment. It is possible that the 

experiment will be positive overall, yet it will be worse for 

both the most valuable customers and for the non-valuable 

customers. 

4. An upgrade of the website is done for customers in data 

center DC1 and customer satisfaction improves. A 2nd 

upgrade is done for customers in data center DC2, and 

customer satisfaction there also improves. It is possible 

that the auditors looking at the combined data from the 

upgrade will see that overall customer satisfaction 

decreased.  

While occurrences of Simpson’s paradox are unintuitive, they are 

not uncommon, and we have seen them happen multiple times in 

real life.  Possible solutions include: (i) paired t-tests where each 

pair (Control, Treatment) is chosen from a period where the 

proportions were stable; and (ii) using weighted combinations.  

The simplest solution, which we use, is to throw away the data 

from the ramp-up period, which is usually short relative to the 

experiment. 

Pitfall 4:  Combining metrics over periods where the 

proportions assigned to Control and Treatment vary, or 

over subpopulations sampled at different rates 

7. ROBOTS IMPACT RESULTS 
Web sites are accessed not only by human users but also by robots 

such as search engine crawlers, email harvesters and botnets. The 

traffic generated by robots is not representative of the human 

population (e.g., excessive clicks and page views in patterns that 

differ from human patterns) and can cause misleading results. 

Robots should be excluded from experiments focused on 

improving the human experience whereas humans should be 

excluded from experiments focused on the robot experience (e.g., 

for Search Engine Optimization). In practice, however, identifying 

robots is difficult (Tan, et al., 2002; Kohavi, et al., 2004; 

Bomhardt, et al., 2005; Bacher, et al., 2005; Wikipedia: Internet 

bot, 2008; Wikipedia: Botnet, 2008). 

For example, in an experiment on the MSN portal, where a small 

change was done to only one module, we found that the click-

through rate on several areas of the page were statistically 

significantly different. Since the change was small and localized 

to one area of the page, we were surprised to see significant 

differences in unrelated areas. Upon deeper investigation, we 

found that the differences were caused by robots that accept 

cookies and execute JavaScript. Executing code in JavaScript is 

one of the most common characteristics that separate humans 

from robots, and some web analytic vendors even claim that page 

tagging using JavaScript is so robust that no additional robot 

detection should be done. Yet in this case these robots were 

executing JavaScript “onclick” events, which fire on the MSN 

portal when users click a link on a web page, at extremely high 

rates of about 100 per minute for durations of 2.5 hours. 

Robots implemented by automating browsers such as Internet 

Explorer or Firefox support all of the functionality of those 

browsers including cookies and JavaScript. Furthermore, when 

such a robot runs from a machine also used by a human, both the 

robot and human will typically share the same cookies. If the user 

identity is stored in a cookie (very common), then the user appears 

to be schizophrenic, acting like a human at certain times and like a 

robot at others. 

For experimentation, we are primarily concerned with removing 

robots that cause a bias. If the traffic from a robot is distributed 

across the variants of an experiment in an unbiased way, then the 

presence of the robot adds noise to the data and reduces the power 

of the experiment but does not invalidate the results. Robots that 

are seen as multiple unique users due to resetting their cookies or 

running from multiple machines do not introduce bias. Robots that 

act like a single user and consistently generate traffic for a single 

variant, however, can create a significant bias. For example, if a 

robot consistently assigned to variant A generates an excessive 

number of clicks, it may cause A to have a statistically 

significantly higher click-through rate than B even if B is 

preferred by human users. 

Although it is difficult to identify all robots in general and there is 

no clear way to evaluate how good a robot detection algorithm 

performs on real data, controlled experiments can provide such a 

unique evaluation function, at least for the robots most critical for 

analysis: those that can skew the results by accepting cookies and 

behave like extreme users. The novel evaluation scheme we 

propose is to use A/A tests, where users are split into Control and 

Treatment, but there is no systematic difference between the two 

versions they are exposed to. The Null hypothesis in an A/A test 

should be rejected about 5% of the time when a 95% confidence 

level is used. If this does not hold true, then there is a bias 

introduced by extreme behavior of users, which are most likely 

robots being assigned to a particular variant. Multiple A/A tests 

must be run in order to have confidence whether biased robots 

exist in the data. However, an interesting observation is that these 

don’t have to be live A/A tests. It is sufficient to run tests post-hoc 

("offline") by re-randomizing users and assigning them to 

Control/Treatment and evaluating the hypothesis that they are the 

same. We are now developing heuristics to detect robots, but it is 

a significant challenge.  

Pitfall 5:  Neglecting to filter robots 

8. AUDITING THE ANALYSES 
It is critical to validate the collection of user behavior data, the 

assignment of users to experiment variants, and the calculation of 

metrics. While running experiments on numerous websites, we 

have encountered problems in every stage of the analysis pipeline 

that have led to incorrect results. This section describes the 

validation steps we developed to detect data quality and analysis 

problems. 

8.1 Logging Test 
After instrumenting the application (e.g., website) to send user 

behavior data to the experimentation system, a logging test should 

be run to validate that the data is being properly recorded. There 

are several ways to do this validation and ideally all should be 

used: 

8.1.1 Compare with system of record 
Most websites already send user behavior data to a reporting 

system or other system of record. Data loss or corruption can 

often be detected by comparing the data received by the 

experimentation system with the system of record. If possible, it is 

best to do a detailed record-by-record comparison between the 

two systems. This allows flagging specific records captured by 
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only one of the systems which can lead to insights if there is a 

collection problem. Otherwise, doing comparisons of aggregate 

values (e.g., received X page views in a particular hour) can still 

provide a high level sanity check. If the experimentation system 

uses data directly from the system of record and there is no 

alternative data collection system, then the other techniques 

discussed below are still applicable. 

It is interesting to point out that in a few cases our audits found 

serious problems with the Microsoft “system of record.” Some of 

these systems have complicated ETL (Extract-Transform-Load) 

processes and have evolved over the years. Our relatively simple 

logging infrastructure has fewer opportunities to lose data. 

8.1.2 Compare with generated data 
For many applications including websites, end user behavior can 

be simulated through software. Comparing the simulated user 

actions with the collected user behavior data is a powerful 

validation technique. Since you know exactly what data should be 

received, it is easy to identify missing, extra or corrupted data. 

This is in contrast to comparing with a system of record which 

itself may have unreliable data. 

One challenge with this technique is mimicking the diversity of 

end users. In the case of a website, end users may be located 

around the world, have different internet connections speeds and 

use different web browsers which may all impact the reliability of 

data collection. Certain applications may also maintain state for 

end users (e.g., shopping cart, order history, wish list, contacts, 

etc.) which can be difficult to mimic. 

Nevertheless, this technique has proven quite useful in practice 

even with very simple simulated data. We have identified several 

data collection bugs since we started using this technique after a 

couple of experiments failed due to incorrectly logged data. 

8.1.3  Look for unexpected patterns 
Typically, there are certain patterns that we expect to find in the 

data. For example, most websites have more traffic during the day 

and on weekdays than they do during the night and on weekends. 

When the patterns observed in the data do not match the expected 

patterns for the application then it casts doubt on the validity of 

the data and raises a flag that a deeper investigation may be 

necessary. Since such patterns are highly application specific, it is 

important to work with the business owners to understand the 

expected behavior. 

Here are some of the patterns we've found useful to look at: 

1. Volume of data over time. One of the most useful patterns 

to look at is the count of observations (e.g., page views) 

received over time. An outage in either the data 

collection system or the application itself will appear as a 

drop in data volume. Also, as noted above, comparing the 

observed data with the pattern expected by the business 

can identify potential data collection problems. 

2. Number of new and repeat users over time. Seeing fewer 

repeat users than expected may indicate a bug where the 

user identifier is regenerated causing repeat users to 

appear as new users. 

3. Ratios of related observations over time. Observations 

such as page views and clicks in a website are typically 

proportional to each other. An abnormal change the ratio 

of such observations is a likely indication of either a data 

collection problem or a robot that only generates data for 

one of the two observations. 

4. Dimensional analysis. All of the above patterns can be 

broken down by dimensional attributes for additional 

insight. For example, breaking down the patterns by the 

web browser used (e.g., IE6, IE7, Firefox 2, Firefox 3, 

etc.) may highlight problems that appear in some 

browsers but not in others. 

8.2 A/A Test 
Distributing end users across the variants of an experiment both 

consistently and without bias are critical requirements for running 

valid controlled experiments. Each user must consistently receive 

the same variant over the course of the experiment in order to 

minimize inconsistent experiences and primacy effects. Each 

variant must be given to an unbiased set of users in order to make 

the comparison between variants valid. If there is a bias where 

users of Internet Explorer 7 are more likely to receive variant A 

than B, for example, the comparison between those variants is 

impacted not only by the difference between the variants but also 

the difference between browser versions. 

While a logging test helps to validate that data is being properly 

recorded, it will not detect problems due to end users being 

incorrectly assigned to variants. An A/A test, however, can be 

used for that purpose. The application code used to assign users to 

variants and execute the appropriate variant must be the same as it 

would if the variants were different. Running an experiment in 

this configuration allows us to perform a number of sanity checks 

to validate that the experimentation apparatus itself is functioning 

properly. 

Verifying that each end user consistently received a single variant 

can be done by injecting variant specific information into the user 

behavior data. For example, if users in variant A should receive 

page X but users in variant B should receive page Y then 

recording the URL (X or Y) in a page view observation allows 

checking whether any user received the wrong page. 

A critical sanity check is to verify that users are divided between 

the variants in the appropriate ratio. For example, if each variant 

is configured to be assigned to 50% of users (recommended to 

maximize the statistical power in A/B tests) then check that the 

actual percent of users assigned to each variant is not statistically 

significantly different from 50%. This check can also be done on 

sub-populations in order to detect an assignment bias. The 

browser bias described above could be detected by performing 

this test on browser versions. In addition to looking at the number 

of distinct users assigned to each variant, we have also found it 

useful to look at the amount of data generated by those users. This 

will detect data collection bugs that impact the variants differently 

(e.g., data collection only being enabled for the Treatments and 

not for the Control). 

Finally, by making the variants identical we know that there 

should be very little difference in the metrics measured for each 

variant during the experiment. Specifically, 95% of metrics should 

have no statistically significantly difference between the variants 

when a 95% confidence interval is used to determine statistical 

significance. If too many (or too few) metrics are statistically 

significantly different between the variants of an A/A test then the 

results are suspect and further investigation is warranted. 

8.3 Offline A/A Test 
As mentioned in Section 7, we initially developed the idea of an 

"offline" A/A test as a mechanism to evaluate robot detection 
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algorithms. However, we have found this technique to be useful in 

uncovering other metric calculation problems as well. 

When we first attempted to validate our results using offline A/A 

tests we found that 30% (as opposed to the expected 5%) of 

metrics where statistically significant. Standard formulas 

underestimated the standard deviation for many of the metrics we 

calculate as discussed in Section 4. 

It is important to note that offline A/A tests identify very different 

problems than normal A/A tests. An offline A/A test finds 

problems with the calculation of metrics whereas a normal A/A 

test detects variant assignment bugs and biased data collection. 

8.4 Rich Instrumentation 
Rich server and client side instrumentation is required for 

comprehensive analysis of online experiments. 

8.4.1 Collect data at referrer and destination points 
To get a full picture of users’ behavior, it is important to collect 

data at all referrer and destination points in online applications. 

For example, if you only record the behavior of users once they 

click through to a secondary page, you will be missing 

information about users who never clicked through in the first 

place. The following example illustrates this concept: 

A team we worked with wanted to test a new version of a Flash-

based navigation component on its homepage. Clickable areas 

within the existing and experimental versions of the Flash 

component served to direct users to content pages deeper within 

the site. The team elected not to instrument the home page or the 

Flash component but to rely solely on page views on destination 

pages (with referrers other than the home page filtered out) to 

measure their OEC of click-throughs from the Flash control to 

destination pages. 

Because we were limited to destination page view data with 

referrer information, we only knew the performance of the old and 

new variants conditioned on the event that the user clicked on the 

Flash control at all. The problem here is that some users may 

dislike one of the versions of the Flash control so much that they 

never click at all. Lacking a page view observation on the home 

page, we could not get a complete record of user behavior. 

Rich server and client side instrumentation is required for 

comprehensive analysis of online experiments. 

8.4.2 Over-instrumenting is better than under-

instrumenting 
Collecting more observations than required for computing your 

metrics and OEC can help identify implementation bugs that can 

bias experiment results. For example, by collecting server side 

page request observations we were able to identify an issue in 

which FireFox was requesting each page twice due to an IMG tag 

with an empty SRC attribute on the page. 

In contrast to our advice to collect rich observational data, we do 

not advocate the reporting of long lists of metrics. Providing too 

many results allows people to cherry pick the ones that support 

their favored outcome while ignoring the results that do not 

support it. Remember that when using a 95% confidence level, 

one out of twenty results will show significance due to random 

chance. 

Pitfall 6:  Failing to validate each step of the analysis 

pipeline and the OEC components 

9. Control is Crucial 
It is all too easy to allow the variants you are comparing to differ 

in some way besides the feature you want to test. For example, if 

you are using client side redirect through JavaScript to show the 

content of the Treatment and not the Control, you may have an 

extra delay on in the Treatment. This will likely cause a decrease 

in click-through rate and other metrics. Of course any experiment 

where there is a redirect or other delay in one variant and not the 

others will be biased. Our recommendation is to choose an 

approach to experimentation that does not require a redirect, but if 

you need to use that method you should include the redirect in all 

variants you are testing. 

Another common mistake experimenters make is when a site 

conducting an experiment has frequent updates (e.g. news or other 

content) and these updates are not made equally to all variants. 

One experiment we ran involved a test of headline placement on 

the MSN homepage. The headlines being shown were intended to 

be same in Treatment and Control, but in a different order.  

However, one of the headlines was different for a seven hour 

period. A graph of the hourly clickthrough rate (CTR) for two 

days of this experiment is given in Figure X with the red box 

highlighting the seven hour period. 

 

Figure 4: Click-through Rate for Video module 

 

The Treatment was significantly better than the Control before 

taking this seven hour period out of the analysis but there was no 

difference once it was removed. 

Pitfall 7:  Forgetting to control for all differences, and 

assuming that humans can keep the variants in sync 

10. SUMMARY 
Good judgment comes from experience, and 

and a lot of that comes from bad judgment.  

 -- Will Rogers 

Controlled experiments have had profound influence on multiple 

fields, including medicine, agriculture, manufacturing, and 

advertising. Their widespread adoption in software development 

of web sites and services is just beginning. We reviewed pitfalls 

we have seen in running experiments at Microsoft over the last 

three years since the Experimentation Platform team was formed. 

We started off with pitfall 1 related to the most important decision 

when running an experiment: the Overall Evaluation Criterion. 
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Too many OECs that we have seen fail our suggested litmus test. 

While the statistics can be computed correctly, one needs to ask 

whether the right metric is being optimized, especially if there are 

plans to run a series of experiments to optimize the OEC. Pitfall 2 

warns about computing confidence intervals for percent effects 

and how to combine metrics. Pitfall 3 warns about using standard 

statistical formulas for computing variances; we switched to 

Bootstrap estimates when we realized the problem. Pitfall 4 warns 

that without more complicated analyses, it is too easy to reach 

incorrect conclusions because of Simpson’s paradox; other well-

intentioned sampling techniques can likewise lead to incorrect 

conclusions. Pitfall 5 warns about robots, which have dramatic 

impact on results sometimes. Pitfalls 6 and 7 highlight the 

importance of audits and controlling for all differences. 

Knowing these pitfalls can increase the trust in controlled 

experiments and help organizations build better software by 

making data-driven decisions.  

ACKNOWLEDGMENTS 
We would like to thank members of the Experimentation Platform 

team at Microsoft, especially Randy Henne, Andrew Hesky, 

David Messner, and Justin Wang. We thank Jennifer Abdo for her 

feedback.  Special thanks to David Treadwell and Ray Ozzie; 

without their support the experimentation platform would not 

have existed. 

REFERENCES 
Bacher, Paul, et al. 2005. Know your Enemy: Tracking Botnets. 

The Honeynet Project. [Online] March 13, 2005. 

http://www.honeynet.org/papers/bots/. 

Bomhardt, Christian, Gaul, Wolfgang and Schmidt-Thieme, 

Lars. 2005. Web Robot Detection - Preprocessing Web Logfiles 

for Robot Detection. [book auth.] Maurizio Vichi, et al. New 

Developments in Classification and Data Analysis. s.l. : Springer, 

2005. 

Box, George E.P., Hunter, J Stuart and Hunter, William G. 

2005. Statistics for Experimenters: Design, Innovation, and 

Discovery. 2nd. s.l. : John Wiley & Sons, Inc, 2005. 0471718130. 

Claypool, Mark, et al. 2001. Inferring user interest. IEEE 

Internet Computing. 2001, Vol. 5, pp. 32-39. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5967. 

Efron, Bradley and Robert J. Tibshirani. 1993. An Introduction 

to the Bootstrap. New York : Chapman & Hall, 1993. 0-412-

04231-2. 

Fieller, E C. 1940. The Biological Standardization of Insulin. 

Supplement to the Journal of the Royal Statistical Society. 1940, 

Vol. 7, 1, pp. 1-64. 

Fox, Steve, et al. 2005. Evaluating implicit measures to improve 

web search. ACM Transactions on Information Systems (TOIS). 

2005, Vol. 23, 2, pp. 147-168. 

http://portal.acm.org/citation.cfm?id=1059981.1059982. 

Hill, Nigel, Roche, Greg and Allen, Rachel. 2007. Customer 

Satisfaction: The Customer Experience Through the Customer 's 

Eyes‎. s.l. : Cogent Publishing, 2007. 

Hopkins, Claude. 1923. Scientific Advertising. New York City : 

Crown Publishers Inc., 1923. 

Keppel, Geoffrey, Saufley, William H and Tokunaga, Howard. 

1992. Introduction to Design and Analysis. 2nd. s.l. : W.H. 

Freeman and Company, 1992. 

Kohavi, Ron, et al. 2009. Controlled experiments on the web: 

survey and practical guide. Data Mining and Knowledge 

Discovery. February 2009, Vol. 18, 1, pp. 140-181. http://exp-

platform.com/hippo_long.aspx. 

Kohavi, Ron, et al. 2004. Lessons and Challenges from Mining 

Retail E-Commerce Data. 2004, Vol. 57, 1-2, pp. 83-113. 

http://ai.stanford.edu/~ronnyk/lessonsInDM.pdf. 

Kohavi, Ron, Henne, Randal M and Sommerfield, Dan. 2007. 
Practical Guide to Controlled Experiments on the Web: Listen to 

Your Customers not to the HiPPO. The Thirteenth ACM SIGKDD 

International Conference on Knowledge Discovery and Data 

Mining (KDD 2007). August 2007, pp. 959-967. http://exp-

platform.com/hippo.aspx. 

Koselka, Rita. 1996. The New Mantra: MVT. Forbes. March 11, 

1996, pp. 114-118. 

Malinas, Gary and Bigelow, John. 2004. Simpson's Paradox. 

Stanford Encyclopedia of Philosophy. [Online] 2004. [Cited: 

February 28, 2008.] http://plato.stanford.edu/entries/paradox-

simpson/. 

Mason, Robert L, Gunst, Richard F and Hess, James L. 1989. 
Statistical Design and Analysis of Experiments With Applications 

to Engineering and Science. s.l. : John Wiley & Sons, 1989. 

047185364X . 

Montgomery, Douglas C. 2005. Design and Analysis of 

Experiments. 6th edition. s.l. : John Wiley & Sons, Inc, 2005. 0-

471-66159-7. 

Rao, C. Radhakrishna. 1973. Linear Statistical Inference and Its 

Applications. 2nd. s.l. : John Wiley & Sons, Inc., 1973. 

Roy, Ranjit K. 2001. Design of Experiments using the Taguchi 

Approach : 16 Steps to Product and Process Improvement. s.l. : 

John Wiley & Sons, Inc, 2001. 0-471-36101-1. 

Simpson, Edward H. 1951. The Interpretation of Interaction in 

Contingency Tables. Journal of the Royal Statistical Society, Ser. 

B. 1951, Vol. 13, pp. 238–241. 

Spears, Steven J. 2004. Learning to Lead at Toyota. Harvard 

Business Review. May 2004, pp. 78-86. 

Tan, Pang-Ning and Kumar, Vipin. 2002. Discovery of Web 

Robot Sessions based on their Navigational Patterns. Data Mining 

and Knowledge. 2002, Vol. 6, 1, pp. 9-35. 

http://citeseer.ist.psu.edu/article/tan02discovery.html. 

Wikipedia: Botnet. 2008. Botnet. Wikipedia. [Online] 2008. 

[Cited: February 28, 2008.] http://en.wikipedia.org/wiki/Botnet. 

Wikipedia: Internet bot. 2008. Internet Bot. Wikipedia. [Online] 

2008. [Cited: February 28, 2008.] 

http://en.wikipedia.org/wiki/Internet_bot. 

Wikipedia: Simpson's Paradox. 2008. Simpson's paradox. 

Wikipedia. [Online] 2008. [Cited: February 28, 2008.] 

http://en.wikipedia.org/wiki/Simpson%27s_paradox. 

 


