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Abstract

For many web usage mining applications like, e.g., user

segmentation, it is crucial to compare navigation paths of

di�erent users. We model user navigation path fragments

by generalized subsequences that take into consideration

local deviations but still sketch the global user naviga-

tional behaviour. This paper presents a new algorithm

of apriori type for mining all generalized subsequences of

user navigation paths with prescribed minimal occurence

from a given database.

1 Introduction

E-commerce needs web usage mining that aims at

considering di�erent phases of consumer behaviour,

extending the focus from classical buying behaviour

analysis to data mining of di�erent kinds of con-

tacts with (potential) customers. User navigation

paths in the web or even fragments of visits of web-

sites establish an important source of information.

For most higher level analytical tasks and applica-

tions like user segmentation, recommender systems

etc., paths of di�erent users have to be compared.

Most path distances can be viewed as ordinary dis-

tance measures on a feature space of path fragments.

As this space turns out to be high-dimensional and

sparsely populated, dimension reduction schemes are

needed. One such scheme consists in selecting the

subspace spanned by frequent path fragments.

There are di�erent kinds of fragments: The sim-

plest kinds of fragments are occurences of single

pages or set of pages in a user path. Frequent

page sets can be mined by the standard apriori al-

gorithm (see Agrawal and Srikant (1994)). As sub-

sets neglect the sequential structure of user paths,

better choices for path fragments are subsequences.

Frequent contiguous subsequences can be mined by

a well known variant of the apriori algorithm (see

Agrawal and Srikant (1995) with modi�cations by

Srikant and Agrawal (1996)). Borges and Levene

(1998 and 1999) have developed algorithms for se-

quence mining on aggregated data. As a third kind

of path fragments generalized subsequences contain-

ing wildcards have been proposed in the web mining

literature (see Spiliopoulou (1999)). Generalized sub-

sequences sketch the global navigational behaviour of

users. Several algorithms exist to mine frequent gen-

eralized subsequences of a speci�ed type (called tem-

plates, i.e., subsequences with prescribed positions of

wildcards, see Spiliopoulou (1999) and Buechner et

al. (1999)). Other authors following a broader ap-

proach have constructed algorithms to �nd frequent

subsequences of pages with attached attributes and

relations (called generalized episodes, see Mannila

and Toivonen (1996)). While those algorithms are

perfectly suited for use in interactive analysis, a gen-

eral algorithm mining all frequent generalized subse-

quences (of a given minimal support) still is missing.

In this paper we describe a new algorithm that �lls

this gap.

2 Formal Background

Let R be an arbitrary set of resources extracted

from a webserver's log�le, where the navigational be-

haviour of anonymous visitors has been recorded, and

R?
:=
S

i2N
Ri [ f;g the set of �nite sequences of el-

ements of R (with ; as the empty sequence), here

used to model user paths. For a sequence x 2 R? the

length jxj is the number of symbols in the sequence

(jxj := n for x 2 Rn, j;j := 0). Let x; y 2 R? be two

such sequences. We say that x is a subsequence of y

(x � y), if there is an index i 2 f0; : : : ; jyj� jxjg with

xj = yi+j 8j = 1; : : : ; jxj. x is a strict subsequence

of y (x < y), if it is a subsequence of y but not equal

to y (x � y ^ x 6= y).

A pair of sequences x; y 2 R?
is overlapping on

k 2 N0 elements, if the last k elements of x are equal
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to the �rst k elements of y (xlast�k+i = yi 8i =

1; : : :k). (Note that if x and y are overlapping on k el-

ements, they are also overlapping on q 2 N0 elements

for q � k.) For such a pair of sequences x; y 2 R?

overlapping on k elements we de�ne the k-telescoped

concatenation of x and y to be

x+k y := (x1; : : : ; xlast�k; y1; : : : ; ylast)

= (x1; : : : ; xlast; yk+1; : : : ; ylast):

Note that any two sequences are 0-overlapping and

the 0-telescoped concatenation of two sequences is

just their arrangement one behind the other. For

a pair of sets of sequences X;Y � R? we denomi-

nate the set of k-overlapping pairs x 2 X; y 2 Y by

X �k Y and the set of k-telescoped sequences of all

k-overlapping pairs shortly as the set of k-telescoped

sequences of X and Y :

X +k Y := +k(X �k Y )

= fx+k y j x 2 X; y 2 Y are over-

lapping on k elementsg:

Now let S be a �nite list of such sequences x 2 R?

(allowingmultiplicities if di�erent users take the same

path). For an arbitrary sequence x 2 R? we denomi-

nate the relative frequency of sequences of S contain-

ing x as subsequence as support of x with respect to

S:

supS(x) :=
jfs 2 S j x � sgj

jSj

The task of searching all frequent subsequences in

the given list of sequences S means to �nd all se-

quences x 2 R? with at least a given minimal sup-

port, i.e. with supS(x) � minsup and minsup 2 R+

a given constant. As the support of subsequences of

a sequence is greater than or equal to the support

of the sequence itself, one can build frequent sub-

sequences recursively starting from the sequences of

length n = 1. With all sequences of length 1 as initial

set of candidates the algorithm performs two steps:

�rst, it computes the support values of all candidates

and selects those candidates as frequent subsequences

that satisfy the minimal support constraint; second,

it builds a new set of candidates of length n + 1

for the next step by trying to join frequent subse-

quences of length n in the following manner: two se-

quences c and d of length n are joined to a sequence

of length n+ 1 if they overlap on n� 1 elements, i.e.

(c2; : : : ; cn) = (d1; : : : ; dn�1); the joined sequence is

c+n�1 d. Algorithm 1 gives the formal description of

this procedure.

Algorithm 1 Apriori algorithm adapted for se-

quences

Require: set of items R (resources), list S of (�nite)

sequences (user paths) of elements of R, minimal

support value minsup 2 R+.

Ensure: set of frequent subsequences F :=
S

n2N
Fn

of the sequences of S with support of at least

minsup.

C := ffrg j r 2 Rg set of initial candidates,

n := 1.

while C 6= ; do

compute supS(c) 8c 2 C by counting the num-

ber of occurences of each c in S (one loop through

S).

Fn := fc 2 C j supS(c) � minsupg

C := Fn +n�1 Fn {compute new candidate se-

quences with length n+1}

n := n+ 1

end while

Please note, that for the special case of sequences

describing paths on a graph, in the �rst join step

only 0-overlapping pairs of sequences of length 1, i.e.,

pairs of nodes of the graph, have to be considered

that are linked by an edge. � This adaption of the

classical apriori algorithm for sets (see Agrawal and

Srikant (1994)) to sequences has �rst been published

by Agrawal and Srikant (1995) (with modi�cations

by Srikant and Agrawal (1996)). It has been used for

�nding subsequences in web mining paths by Chen et

al. (1996) and other authors afterwards (Viveros et

al. (1997), Chen et al. (1998), Cooley et al. (1999)).

3 Mining frequent generalized

subsequences

By a generalized sequence in R we mean a (�nite or-

dinary) sequence in the symbols R[ f?g with an ad-

ditional symbol ? 62 R called wildcard, such that no

two wildcards are adjacent:

Rgen
:= fx 2 (R [ f?g)? j 6 9i 2 N : xi = xi+1 = ?g

The wildcard symbol ? is used to model partially

indeterminate sequences, matching arbitrary subse-

quences. This notion of generalized sequence �rst

has been introduced in web mining literature by

Spiliopoulou (1998). For a generalized sequence x 2

Rgen we de�ne its length jxj as the length of the
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sequence in the symbols R [ f?g, i.e. jxj := n, if

x 2 (R [ f?g)n. Now let x; y 2 Rgen be two gen-

eralized sequences. We say that x matches y or y

generalizes x (y ` x), if there exists a mapping

m : f1; : : : ; jxjg ! f1; : : : ; jyjg

(called matching) with the following properties:

1. m maps indices of elements of x to indices of

elements of y that coincide or to a wildcard

(ym(i) = xi or ym(i) = ?).

2. m covers all indices of y of non-wildcard elements

(yi 2 R) m�1
(i) 6= ;).

3. m is weakly monotonic increasing.

4. m is even strictly monotonic at places where its

image does not belong to a wildcard

(m(i) = m(i + 1)) ym(i) = ?).

Please note that as the set of ordinary sequences R?

is a subset of the set of generalized sequences Rgen,

this also de�nes the notion of an ordinary sequence

matching a generalized sequence. Obviously match-

ings are not uniquely determined by two generalized

sequences x and y. A trivial example is ?A? ` AA

with the two matchings m1 = f(1; 1); (2; 2)g and

m2 = f(1; 2); (2; 3)g. Finally we carry over the no-

tions of subsequence and of k-telescoped concatena-

tion from ordinary sequences to generalized sequences

without any change. Note the di�erence between

A?C not being a subsequence of ABCD but match-

ing a subsequence of it (i.e. A ? C ` ABC and

ABC � ABCD).

Again, let S be a �nite list of ordinary sequences

(user paths) x 2 R?. For an arbitrary generalized

sequence x 2 Rgen we denominate the relative fre-

quency of sequences containing a subsequence which

matches x as support of x with respect to S:

supS (x) :=
jfs 2 S j 9y � s : x ` ygj

jSj

Now, mining frequent generalized subsequences is

the label for the task to �nd all generalized sequences

with at least a given minimal support. As we are

looking for subsequences anyway, we can narrow our

view to closed generalized subsequences, i.e. general-

ized subsequences without leading or trailing wild-

card (x 2 Rgen with x1; xlast 2 R), that we call path

fragments.

Up to now no general algorithm for �nding all fre-

quent generalized subsequences in a list of sequences

sequence length sequence length

ab. . . cd n+1 a?b. . . cd n+1

= ab. . . c n = a?b. . . c n

+n�1 b. . . cd n +n�2 b. . . cd n-1

ab. . . c?d n+1 a?b. . . c?d n+1

= ab. . . c n-1 = a?b. . . c n-1

+n�2 b. . . c?d n +n�3 b. . . c?d n-1

Table 1: Construction of closed generalized subse-

quences of length � 4.

is known. Spiliopoulou (1999) has invented an algo-

rithm for �nding frequent generalized subsequences

in a limited subspace of the search space: her gen-

eralized sequence miner (GSM) looks for generalized

sequences of a given length and wildcards at given

positions (such subspaces are described by so called

templates; see Buechner et al. (1999) for another ap-

proach using templates to limit the search space; tem-

plates are useful in the framework of interactive tools

like WUM, see Spiliopoulou and Faulstich (1998) and

Spiliopoulou et al. (1999)).

We present a modi�cation of the apriori algorithm

for sequences to path fragments, resulting in a gen-

eral algorithm for �nding frequent generalized subse-

quences. The idea is pretty simple. As we are looking

only at closed generalized sequences, the support of

any subsequence of such a closed generalized sequence

again is greater than or equal to the support of the

sequence itself. Now, as adjacent wildcards are not

allowed, we can get every path fragment of length

n+ 1 (for n � 3) as junction of two overlapping path

fragments of the kind described in table 1.

Thus, we only have to modify the join step of

the apriori algorithm for building new candidates of

length n+ 1 in such a way that we not only use the

frequent (closed generalized) subsequences of length

n but also those of length n� 1 from the step before,

and try all possible combinations. Closed general-

ized subsequences of length 3 containing a wildcard

have the form (x; ?; y) with x; y 2 R, shorter closed

generalized subsequences cannot contain wildcards.

Algorithm 2 gives the exact formulation of the nec-

essary comparisions. Of course, the computation of

the support values of the candidate generalized se-

quences also has to be modi�ed. The performance

characteristcs of the algorithm is the same as for the

apriori algorithm for ordinary sequences: to �nd se-

quences of length n, n loops through the database

have to be accomplished.
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Algorithm 2 Apriori algorithm adapted for gener-

alized sequences

Require: set of items R (resources), list S of (�nite)

sequences (user paths) of elements of R, minimal

support value minsup 2 R+.

Ensure: set of frequent (closed) generalized subse-

quences F :=
S

n2N
Fn of the sequences of S with

support of at least minsup.

C := ffrg j r 2 Rg set of initial candidates,

n := 1, F0 := ;.

while C 6= ; or Fn�1 6= ; do

compute supS(c) 8c 2 C by counting the num-

ber of occurences of each c in S (one loop through

S).

Fn := fc 2 C j supS(c) � minsupg

C := Fn +n�1 Fn {compute new candidate se-

quences with length n+1}

if n = 2 then {introduce wildcards}

C := C [ f(x; ?; y) j x; y 2 Fn�1g

else if n > 2 then {additional joins considering

wildcards}

C := C

[fx+n�2 y j (x; y) 2 Fn �n�2 Fn�1;

x2 = ?g

[fx+n�2 y j (x; y) 2 Fn�1 �n�2 Fn;

ylast�1 = ?g

[fx+n�3 y j (x; y) 2 Fn�1 �n�3 Fn�1;

x2 = ylast�1 = ?g

end if

n := n+ 1

end while

As algorithms of the apriori type return all sub-

sequences of the frequent sequences found, one often

prunes the result set by removing all subsequences of

a frequent sequence contained in the result set, thus

retaining only the "maximal" subsequences:

F := fc 2 F j 6 9d 2 F : c < dg

For generalized subsequences the algorithmalso re-

turns all generalizations of all subsequences found.

Reasonably one prunes the result set further, by re-

moving all generalizations of a sequence contained in

the result set, thus retaining only the "most concrete"

subsequences:

F := fc 2 F j 6 9d 2 F : c ` dg

We call these two pruning steps subsequence prun-

ing and generalization pruning, respectively.
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E �� �� F �� �� G H �� �� I �� �� J K �� �� L �� �� M

(a) site graph

nr path

1 ABEF(EB)CHIJ

2 ACBE(BC)HI(HC)D

3 BCJ(C)HI

4 ABG(B)E(B)CH(C)I(C)D

5 ABEFG(FEB)CH(C)JI

6 ACJ(C)D(C)B(C)HI

7 BEFG(FEB)CHIJ(IHC)DKLM

8 ABF(B)CIH(I)J

9 ADK(D)L(D)AB(A)CHI

10 ABEFG(FEBA)CJ(C)HI(HC)D

11 ABCD(C)HIJ(IHCD)M

12 CBF(BC)H(C)DK(DC)I(CDKDCHCB)E

(b) anaylzed paths

Figure 1: Example web site and example set of paths.

4 Example and application

Figure 1 shows a simple example web site and some

paths travelled on the site. Looking for ordinary fre-

quent subsequences by applying the apriori algorithm

for sequences (algorithm 1) does not give very useful

results here: one �nds the sequences CHI with a sup-

port of 8=12 and BCH with a support of 7=12. The

�rst sequence containing more than three resources

appears at support 5=12: EBCH.

Searching for frequent generalized sequences with

algorithm 2 results in the set of three sequences

with high support: B?C?H?I with support 12=12 and

two lightly more specialized sequences B?CH?I and

BC?H?I with support 11=12 and 10=12 respectively.

Of course, the algorithm �nds all literal subsequences

of these sequences as well as all more general se-

quences (like B?H?I etc.), but these less useful sub-

sequences are pruned by the two pruning steps (sub-

sequence pruning and generalization pruning) pre-

sented at the end of section 3. � Already this simple

example gives some insights into the good proper-

ties of generalized sequences: �rst, they are more ro-
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bust than ordinary sequences against artefacts com-

ing from navigation path construction steps; second,

they can cope with local deviations of the navigation

paths, thus resulting in longer paths with higher sup-

port values, i.e. they better sketch user navigational

behaviour in the large, contrary to local descriptions

by ordinary subsequences.

As the retrieval of frequent (generalized) subse-

quences is the hard part of the generation of asso-

ciation rules, we can easily apply our algorithm to

�nd associtation rules with prescribed minimal sup-

port and con�dence. An association rule is (described

by) a pair of (generalized) sequences x; y 2 Rgen with

the meaning that if x (the body of the rule) has oc-

cured then � under conditions to be explained in

the following � y (the head of the rule) will oc-

cur, too, where occurence is related to the under-

lying list S of sequences. We suggest di�erent in-

terpretations of the rule notation that all have their

origin in the web site traversal behaviour of users

as reconstructed via path completion and depicted

in S. First, x ! y �= x +1 y = (x1; : : : ; xlast =

y1; : : : ; ylast) which best corresponds to the usage of

ordinary navigation paths. Second, x y �= x ? y =

(x1; : : : ; xlast; ?; y1; : : : ; ylast), i.e., a wildcard is used

to combine x and y. Both cases can be handled with

the tools described so far. In addition to

supS(x! y) := supS(x+1 y) or

sup
S
(x y) := sup

S
(x ? y)

we need the con�dence

confS(x! y) :=
sup

S
(x+1y)

sup
S
(x)

or

confS(x y) :=
sup

S
(x?y)

sup
S
(x)

a number that counts the occurence of x+1 y or x?y

given x.

From early papers on web usage mining, the idea

of feeding back the usage information extracted from

the log�les to the hyperlink structure of the under-

lying website has been suggested as an application

of the results found by various data analysis tasks

(see Yan et al. (1996)). Recently this idea has been

revived by the name of recommender system mak-

ing use of frequent item sets and association rules

(see Mobasher (2000)). The paths of active users are

compared to the left sides (the bodies) of a rule set

previously extracted from the log�les and (parts of)

the right sides (the heads) of the matching rules with

highest con�dence are recommended via dynamically

included direct hyperlinks.

Using only sets of resources (and not sequences) as

the base for recommendations has the drawback of

neglecting the order of the navigation patterns, and,

thus, may result in directing users back to resources,

they might no longer have an interest in. On the

other hand, using ordinary subsequences as base for

recommendations retains the order information, but

only catches local navigational behaviour. General-

ized subsequences, i.e. path fragments, combine the

strengths of the two methods, retaining order and

not being bound to local behaviour (by allowing de-

viations).

Let us go back to our simple example from above

and look at user 9. Imagine he has already done

ADK(D)L(D)AB(A)C. Using frequent ordinary sub-

sequences we cannot recommend a next resource, be-

cause no subsequence of the frequent literal subse-

quences (CHI, BCH, BCHI and EBCH) can be found

in his partial path. But the subsequence B?C of the

frequent generalized subsequence B?C?H?I matches

a subsequence of the tail B(A)C of his partial path.

Thus, using the assocation rules B?C H and B?C I

(both with support and con�dence 1) we can recom-

mend H and I for subsequent browsing, exactly the

resources, he visits afterwards.

5 Outlook

Path fragments described by frequent closed gener-

alized subsequences are ideal candidates to describe

the user navigation path space, and thus the basis of

distance computations of user paths, which in turn

are necessary for clustering user paths. We will re-

port about user path clustering resting upon path

fragments in an upcoming paper.

References

AGRAWAL, R. and SRIKANT, R. (1994): Fast

Algorithms for Mining Association Rules. In:

Bocca, J.B., Jarke, M., and Zaniolo, C. (eds.):

Proceedings of the 20th International Conference

on Very Large Data Bases (VLDB'94), Septem-

ber 12-15, 1994, Santiago de Chile, Morgan Kauf-

mann, Chile, 487�499.

AGRAWAL, R. and SRIKANT, R. (1995): Min-

ing Sequential Patterns. In: Yu, P.S., and Chen,

A.L.P. (eds.): Proceedings of the Eleventh Inter-

national Conference on Data Engineering, March

5



6-10, 1995, Taipei, Taiwan, IEEE Computer So-

ciety, 3�14.

BORGES, J. and LEVENE, M. (1998): Mining

Association Rules in Hypertext Databases. In:

Agrawal, R. (ed.): Proceedings / The Fourth In-

ternational Conference on Knowledge Discovery

and Data Mining, August 27 - 31, 1998, New

York, New York, Menlo Park, Calif., 149�153.

BORGES, J. and LEVENE, M. (1999): Data

Mining of User Navigation Patterns. In: Proceed-

ings of the Workshop on Web Usage Analysis and

User Pro�ling (WEBKDD'99), August 15, 1999,

San Diego, CA, Springer, 31�36.

BUECHNER, A.G., BAUMGARTEN, M.,

ANAND, S.S., MULVENNA, M.D., and

HUGHES, J.G. (1999): Navigation Pattern

Discovery from Internet Data. In: Proceedings of

the Workshop on Web Usage Analysis and User

Pro�ling (WEBKDD'99), August 15, 1999, San

Diego, CA, Springer, 25-30.

CHEN, M.-S., PARK, J.S., and YU, P.S. (1996):

Data Mining for Path Traversal Patterns in a

Web Environment. In: Proceedings of the 16th In-

ternational Conference on Distributed Computing

Systems (ICDCS), May 27-30, 1996, Hong Kong,

IEEE Computer Society, 385�392.

CHEN, M.-S., PARK, J.S., and YU, P.S. (1998):

E�cient Data Mining for Path Traversal Pat-

terns. IEEE Transactions on Knowledge & Data

Engineering 10/2 (1998), 209�221.

COOLEY, R., MOBASHER, B., and SRIVAS-

TAVA, J. (1999): Web Mining: Information and

Pattern Discovery on the World Wide Web. In:

9th International Conference on Tools with Ar-

ti�cial Intelligence (ICTAI '97), November 3-8,

1997, Newport Beach, CA.

MANNILA, H., and TOIVONEN, H. (1996): Dis-

covering generalized episodes using minimal oc-

curences. In: The Second International Confer-

ence on Knowledge Discovery and Data Mining

(KDD '96), Portland, Oregon, August 2-4 1996,

146�151.

MOBASHER, B. (2000): Mining Web Usage

Data for Automatic Site Personalization. To ap-

pear in Studies in Classi�cation, Data Analysis,

and Knowledge Organization 2000.

SPILIOPOULOU, M. and FAULSTICH, L.C.

(1998): WUM: A Tool for Web Utiliziation

Analysis. In: Atzeni, P., Mendelzon, A., and

Mecca, G. (eds.): The World Wide Web and

Databases, International Workshop WebDB'98,

Valencia, Spain, March 27-28, 1998, LNCS 1590,

Springer, 184�203.

SPILIOPOULOU, M., FAULSTICH, L.C., and

WINKLER, K. (1999): A Data Miner Analyz-

ing the Navigational Behaviour of Web Users. In:

Proc. of the Workshop on Machine Learning in

User Modelling of the ACAI'99 Int. Conf., Creta,

Greece, July 1999.

SPILIOPOULOU, M. (1999): The Laborious

Way from Data Mining to Web Mining. Int. Jour-

nal of Comp. Sys., Sci. & Eng. 14 (1999), Special

Issue on �Semantics of the Web�, 113-126.

SRIKANT, R. and and AGRAWAL, R. (1996):

Mining Sequential Patterns: Generalizations and

Performance Improvements. In: Apers, P.M.G.,

Bouzeghoub, M., and Gardarin, G. (eds.): Ad-

vances in Database Technology - EDBT'96, 5th

International Conference on Extending Database

Technology, Avignon, France, March 25-29, 1996,

Proceedings. LNCS 1057, Springer.

VIVEROS, M.S., ELO-DEAN, S., WRIGHT,

M.A., and DURI, S.S. (1997): Visitor's Be-

haviour: Mining Web Servers. In: Proceedings of

the 1st International Conference on the Practi-

cal Application of Knowledge Discovery and Data

Mining, Blackpool 1997, 257�269.

YAN, T.W., JACOBSEN, M., GARCIA-

MOLINA, H., and DAYAL, U. (1996): From

User Access Patterns to Dynamic Hypertext

Linking. In: Fifth International World Wide Web

Conference May 6-10, 1996, Paris, France.

6


