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Abstract

Bayesian classi�cation addresses the classi�cation problem by learning the

distribution of instances given di�erent class values. We review the basic notion

of Bayesian classi�cation, describe in some detail the naive Bayesian classi�er,

and brie
y discuss some extensions.

C5.1.5.1 Introduction

The goal of classi�cation [link to section C5.1.1] is to classify an instance to a class

based on the value of several attributes. Many approaches to classi�cation attempt

to explicitly construct a function from the joint set of values of the attributes to

class labels. Example of such classi�ers include decision trees [link to section C5.1.3],

decision rules [link to section C5.1.4] and neural networks [link to section C5.1.4].

Bayesian classi�cation takes a somewhat di�erent approach to this problem. In this

approach, we approximate the joint probability distribution of the class and the at-

tributes: Pr(C;A1; : : : ; Ak), where C is a random variable describing the class, and

A1; : : : Ak are random variables describing the attributes. Thus, learning in Bayesian

classi�cation amounts to estimation of this joint probability distribution. After we

construct such an estimate, we classify a new instances by examining conditional
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probability of C given the particular attribute values, and returning the class that is

most probable.

The standard approach to Bayesian classi�cation uses the chain rule to decompose

the joint distribution:

Pr(C;A1; : : : ; Ak) = Pr(C) Pr(A1; : : : ; AkjC) (1)

The �rst term on the right hand side of (1) is the prior probability of the class labels.

These can be directly estimated from the training data, or from a larger sample of

the population. For example, we can often get statistics on the number of, say, breast

cancer occurrences in the general population. The second term on the right-hand side

of (1) is the distribution of attribute values given the class label. The estimation of

this term is usually more complex, and we elaborate on it below.

Once we have an estimate of Pr(C) and Pr(A1; : : : ; AkjC) we can use Bayes rule to

get the conditional probability of the class given the attributes:

Pr(CjA1; : : : ; Ak) = �Pr(C) Pr(A1; : : : ; AkjC); (2)

where � is a normalization factor that ensures that the conditional probability of all

possible class labels sums up to 1. (In practice, we do not need to explicitly evaluate

this factor because it is constant for a given instance.) Using (2) we can classify new

instances by combining the prior probability of each class with the probability of the

given attribute values given that class.

C5.1.5.2 Properties of Bayesian Classi�ers

Bayesian classi�cation does not attempt learn an explicit decision rule. Instead,

learning reduces to estimating probabilities. A consequence there are some di�erences

with other approaches to classi�cation. In this section, we brie
y touch on the main

ones.

A basic property that we often require is asymptotic correctness; the classi�cation

system should learn the best possible classi�er if we provide it with a su�cient number

of training instances, ignoring computational limitation.

It can be shown that induction of a Bayesian classi�er can be asymptotically opti-

mal (i.e., reaches the smallest possible classi�cation error given a su�ciently large
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training set) if the method of estimating Pr(A1; : : : ; AkjC) is consistent , that is will

converge to the true underlying conditional distribution given a su�ciently large sam-

ple. Thus, the asymptotic properties depend on our choice of methods for estimating

Pr(A1; : : : ; AkjC). Note that in contrast to some learning methods, in Bayesian clas-

si�cation it is possible that the class of hypotheses we consider contains an optimal

classi�er, and yet we would not learn it even with in�nite amount of data. This can

happen if the probabilistic model that correspond to this optimal classi�cation rule

does not provide the best approximation to the observed probability distribution.

This asymptotic guarantee suggests that if our knowledge about the domain leads us

to believe that a particular model (i.e., class of hypotheses) for Pr(A1; : : : ; AkjC) allow

for a good approximation of the true distribution, then we would expect the Bayesian

classi�er to perform well. On the other hand, this does not imply that an \unrealistic"

model, that does not give good approximation to the distribution, is necessarily a bad

classi�er. For example, the model used in the naive Bayesian classi�er of the next

section, makes unrealistic assumptions, yet often leads to competitive classi�cation

performance (Domingos & Pazzani 1997).

Probabilistic semantics of Bayesian classi�cation yield the following advantages over

other methods.

First, Bayesian classi�cation can be combined with principled methods for dealing

with asymmetric loss functions. For example, in cancer screening, a misdiagnosis of

a malignant tumor is more costly than a misdiagnosis of a benign tumor, since the

detection of cancer in early stage can dramatically improve the chances of curing

the cancer. To deal with such situations, we can rely on decision theory to provide

a principled methods for combine probability estimates with the utility (or cost) of

di�erent decisions. See, for example, Duda & Hart (1973) and Bishop (1995).

Second, probabilistic methods provide principled method for dealing with missing

values. Probability theory allows us to deal with missing values in classi�cation by

averaging over the possible values that the attribute might have taken. For exam-

ple, if the value of A1 is not provided, then the probability of Pr(A2; : : : ; AkjC) is
P
x2DOM(A1) Pr(A1 = x;A2; : : : ; AkjC). Using Bayes rule we can then compute the

conditional probability Pr(CjA2; : : : ; Ak) for classi�cation. Similar considerations ap-

ply training with missing values as well, although these come at some computational

cost; see Dempster, Laird & Rubin (1977) and Gelman, Carlin, Stern & Rubin (1995).

We note that this approach assumes that the values are missing at random, that is,
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that the process by which these values were removed does not depend on the actual

missing values, given the values we do observe (Rubin 1976). When this assumption

is not reasonable, then we have to either include a model of this hiding process (i.e.,

the probability that the values are missing) or use other approaches (see below).

Finally, probabilistic methods allow for use of prior knowledge and for combining

knowledge from other sources. The probabilistic semantics provides a clear way of

using prior knowledge about the domain, and knowledge gathered from other sources

(e.g., di�erent training data) in the classi�cation process. This knowledge can be used

in various ways. For instance, prior knowledge my determine the type of model we use

for estimating Pr(A1; : : : ; AkjC). In speech recognition, for example, the attributes

are measurements of the speech signal, and the probabilistic model is a Hidden Markov

Model (Rabiner 1990) that is usually composed from phoneme models. This highly

structured model is motivated by our prior knowledge on speech. Note that the choice

of model usually re
ect our knowledge about the process that generated the observa-

tions. In contrast, choice of model class (e.g., decision trees vs. neural networks) in

other classi�cation methods usually depends on the type of decision surface we expect

to learn and the amount of data we can learn with. Depending on the domain, either

way of thinking of the choice of models can be more natural.

Prior knowledge can be also used in other ways. For example, it can be used to de-

termine our prior estimate of probabilities. This leads to shifting our estimate toward

speci�c values. If training data for a particular parameter of the model is sparse, then

the �nal estimate is heavily dependent on the prior, and if there is su�cient training

data, then the �nal estimate is usually not sensitive to the prior. Additionally, the

probabilistic semantic, and the representation tools (such as probabilistic networks

[link to section C5.6] (Pearl 1988)) allow to combine learning with modeling assump-

tions and knowledge about the domain. That is, we might �x in advance part of the

model and learn the other parts.

C5.1.5.3 The Naive Bayesian Classi�er

We now turn to the question of estimating Pr(A1; : : : ; AkjC). This is a density esti-

mation problem, since we are attempting to learn the probability distribution of the

attributes among all the instances with the same label. We �rst note that we cannot

use counting to estimate this probability because most of the counts will be zero.
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To see this, suppose that all the attributes are binary. Then there are 2k possible

assignments to the attributes, and even for a moderate number of attributes, we do

not expect to see most of these assignments in the training data.

One way of addressing this problem, is to use the so called Naive Bayesian classi�er

(Duda & Hart 1973, Langley, Iba & Thompson 1992), sometimes called the Simple

Bayesian classi�er (Domingos & Pazzani 1997). We assume that each attribute is

independent of the rest given the value of the class. We easily establish that, given

this assumption, we can write

Pr(A1; : : : ; AkjC) = Pr(A1jC) � Pr(A2jC) � � �Pr(Ak j C) (3)

Now the estimation problem is easier, since we need to estimate the probability of

each attribute given the class independently of the rest. Combining (2) and (3), we

get the Naive Bayesian classier classi�cation rule:

Pr(CjA1; : : : ; Ak) = �Pr(C) Pr(A1jC) � � �Pr(AkjC); (4)

where, again, � is a normalization constant.

The probabilities above are estimated from the training set and the posterior proba-

bility for each class is computed. The prediction is made for the class with the largest

posterior probability. The model works well in areas where the conditional indepen-

dence assumption is likely to hold, such as medical domains (Kononenko 1993). In

recent years, the model was found to be very robust and continues to perform well

even in the face of obvious violations of this conditional independence assumption

(Domingos & Pazzani 1997, Kohavi & Sommer�eld 1995, Friedman 1997).

Estimating the probabilities can be done using simple frequency counts, but this

creates problems if the counts of an attribute and a class is zero because assigning

a probability of zero to one of the terms, Pr(AijC), causes the whole expression to

evaluate to zero and rule out a class. This is especially problematic when attributes

have many values and the distribution is sparse: several (or even all) classes get

a probability of zero. Several methods have been proposed to overcome this issue.

The zero probability can be replaced by a small constant, such as 0:5=n or Pr(C)=n,

where n is the number of instances in the training set (Clark & Niblett 1989, Kohavi,

Sommer�eld & Dougherty 1997). Another, more theoretically justi�ed, approach is to

apply a generalized Laplace correction (Cestnik 1990, Kohavi, Becker & Sommer�eld

1997).

Unknown (missing, null) values are commonly handled in one of two ways. In evaluat-
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Figure C5.1.5.1: Visualization of Naive Bayes in MineSetTM [link to section D2.2.5], showing
US census data for working adults. The attributes are sorted by their discrimination power.
For each continuous attribute the range is discretized. For each value (or range), the bar
height shows the evidence (log of the conditional probability). In this case, the label chosen
in the GUI was gross income over $50,000. The high bars indicate that there is most evidence
for people to earn over $50,000 when they satisfy one or more of the following criteria: they
are married; their age is between 36 and 61; their occupation is executive managerial or
professional specialist; their highly educated; they work over 40 hours a week, etc.

ing the probabilities Pr(AijC), when Ai is unknown, one can simply ignore the term,

which is equivalent to marginalizing over the attribute, something done in MLC++

[link to section D2.1.2] (Kohavi, Sommer�eld & Dougherty 1997). Another alterna-

tive is to estimate the probabilities from unknown values in the data. The second

alternative works better if there is a special meaning to a missing value (e.g., a blank

entry for the army rank of a person usually indicates the person did not serve in the

army).

An important advantage of Naive Bayes is that the simple structure lends itself

to comprehensible visualizations (Becker, Kohavi & Sommer�eld 1997, Kononenko

1993). Figure C5.1.5.1 shows an example visualization used in MineSet (Silicon

Graphics 1998, Brunk, Kelly & Kohavi 1997).

As can be expected from the form of (4), the decision surfaces learned by the Naive

Bayesian classi�er are of limited form. In particular, if the attributes are binary, then

it is easy to show that the decision between any two classes is made by a hyper-

plane. (Linear decision surface occur also when the attributes are nominal and the

conditional distributions are Gaussians.) This fact has been known since the 60's,
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Figure C5.1.5.2: Description of two Bayesian classi�ers for diabetes type classi�cation using

the probabilistic network representation: (a) the Naive Bayesian classi�er, (b) a TAN model

learned form data. The dashed lines are those edges required by the naive Bayesian classi�er.

The solid lines are the dependency edges between attributes that were learned Friedman et

al.'s algorithm.

e.g., Duda & Hart (1973), and has been frequently rediscovered. Notice, however,

that the decision rule learned by the Naive Bayesian classi�er would not, in general,

coincide with the ones learned by other linear methods, such as perceptrons.

C5.1.5.4 Alternative Approaches

There are several possible extensions of Bayesian classi�cation beyond the Naive

Bayesian classi�er. These works fall into several categories.

Work in the �rst category, such as that of Langley & Sage (1994) and of Kohavi

& John (1997), attempted to improve classi�cation accuracy by restricting attention

only to a subset of the attributes. This approach can reduce errors due to a strong

correlation among attributes by removing one or more of the correlated attributes.

Work in the second category (Ezawa & Schuermann 1995, Friedman, Geiger & Goldszmidt

1997, Kononenko 1991, Pazzani 1995, Sahami 1996) attempts to improve the clas-

si�cation accuracy by removing some of the independence assumptions made in the

Naive Bayesian classi�er. It turns out that probabilistic networks [link to section C5.6]

(also known as Bayesian networks) provides a useful language to describe such inde-

pendencies. Friedman et al. (1997) discuss several ways of using these networks for

Bayesian classi�cation. Figure C5.1.5.2(a) shows how the Naive Bayesian classi�er is

represented as a probabilistic network.
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For brevity, we will brie
y describe one of these approaches that Friedman et al. call

Tree-Augmented Naive Bayesian classi�er, or TAN, is based on ideas that go back

to Chow & Liu (1968). In this approach, instead of assuming that each attribute is

independent of the rest, we allow each one to depend on at most one other attribute.

An example of such a dependency structure, in a probabilistic network notation, is

shown in Figure C5.1.5.2(b). The choice of these dependencies implies a di�erent

decomposition of the attributes' joint distribution. For example, the decomposition

corresponding to the network shown in Figure C5.1.5.2(b) is

Pr(P;A; I;D;M;GjC) = Pr(P jC) Pr(AjP;C) Pr(IjA;C) Pr(DjI; C) Pr(M jI; C) Pr(GjI; C);

where we use the obvious abbreviation for each attribute name. In this augmented

dependency structure, an edge from Ai to Aj implies that the in
uence of Ai on the

assessment of the class variable also depends on the value of Aj. For example, in

Figure C5.1.5.2(b), the in
uence of the attribute \Glucose" on the class C depends

on the value of \Insulin," while in the naive Bayesian classi�er the in
uence of each

attribute on the class variable is independent of other attributes. These edges a�ect

the classi�cation process in that a value of \Glucose" that is typically surprising (i.e.,

Pr(gjc) is low) may be unsurprising if the value of its correlated attribute, \Insulin,"

is also unlikely (i.e., Pr(gjc; i) is high). In this situation, the naive Bayesian classi�er

will overpenalize the probability of the class variable by considering two unlikely

observations, while the augmented network of Figure C5.1.5.2(b) will not.

We are now faced with the question of how to choose the dependency arcs. Friedman

et al. describe a procedure that �nds the decomposition function that maximizes the

likelihood [link to section B5] of the data. In addition, this procedure has attrac-

tive computational properties, its running time is linear in the number of training

instances and quadratic in the number of attributes, k. The TAN method is a com-

promise between the complexity of the learned model and the generalization ability

and computational cost of learning the model. Because only pairwise interactions

are modeled directly, the learned model requires only estimates of pairs of attributes,

which are relatively robust and e�cient to compute. It is clear that in some domains

other points on this tradeo�s might be explored. In general, for more complex models,

it is NP-hard to �nd the maximal likelihood structure, and thus we need to resort to

some heuristic search. See ? for some work in these directions.

Finally, in the last category there are approaches that use domain speci�c models.

For example, speech recognition (Rabiner 1990) and protein classi�cation (Durbin,

Eddy, Krogh & Mitchison 1998) use specialized Hidden Markov models to learn the

distribution of the observed attributes (sound waves frequencies, and amino acids).
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Approaches in these categories rely on knowledge of special structure in the domain

to construct the density estimates.
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