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Abstract

We describe an experimental study of Op-

tion Decision Trees with majority votes. Op-

tion Decision Trees generalize regular deci-

sion trees by allowing option nodes in addi-

tion to decision nodes; such nodes allow for

several possible tests to be conducted instead

of the commonly used single test. Our goal

was to explore when option nodes are most

useful and to control the growth of the trees

so that additional complexity of little utility

is limited. Option Decision Trees can reduce

the error of decision trees on real-world prob-

lems by combining multiple options, with the

motivation similar to that of voting algo-

rithms that learn multiple models and com-

bine the predictions. However, unlike vot-

ing algorithms, an Option Decision Tree pro-

vides a single structured classi�er (one deci-

sion tree), which can be interpreted more eas-

ily by humans. Our results show that for the

tested problems, we can achieve signi�cant

reduction in error rates for trees restricted to

two levels of option nodes at the top. When

very large Option Decision Trees are built,

Option Decision Trees outperform Bagging in

reducing error, although the trees are much

larger and cannot be reasonably interpreted

by humans.

1 Introduction

Regular decision trees make a single test at each node

and trace a single path corresponding to test outcomes

until a leaf is reached and a prediction is made. Option

trees were introduced by Buntine (1992a) as a gener-

alization of decision trees. Option trees allow option

nodes, which replace a single decision by a set of deci-

sions. Classi�cation is done in a way similar to regular

decision trees, except that a rule is applied to option

nodes to combine the predictions of the children nodes.

There are several reasons why we can expect option

decision trees to outperform regular decision trees in

their prediction accuracy. The important ones are lim-

ited lookahead and stability. The common strategy for

building decision trees is top-down using one level of

lookahead. Speci�cally, an evaluation criterion scores

possible tests at a node based on the children the node

would have. Such limited lookahead prefers attributes

that score high in isolation and may overlook combi-

nations of attributes. Multi-ply lookahead is compu-

tationally expensive and has not proven itself useful

(Murthy & Salzberg 1995).

The second reason why option trees might be better

than regular decision trees is related to stability (bias-

variance) and risk reduction. Ali (1996, p. 106) de-

scribes the stability issue:

. . . it may happen that the candidate (e.g., a lit-

eral in a rule or a node in a decision tree) with

the highest information gain is anked by other

candidates that have \almost as much" informa-

tion gain. It may be that due to the inclusion or

exclusion of a few examples, in the training set,

the candidate that is truly the best appears to

be second best.

Breiman (1994, 1996) describes why decision trees are

especially unstable: a minor change in one split close

to the root will change the whole subtree below.

Several methods for combining classi�ers have been

proposed, including bagging, boosting, stacking, vot-

ing, averaging, ensembles (see Ali (1996) for a good re-

view and additional recent work in Stolfo (1996)). Un-

der these multiple-model schemes, multiple classi�ers



are generated and then combined into a �nal predic-

tor. The main disadvantage of these techniques is that

the resulting structures are hard to interpret. Breiman

(1996) wrote that \What one loses, with the [bagging

of] trees, is a simple and interpretable structure. What

one gains is increased accuracy."

While option trees have been previously investigated

by Buntine (1992a, 1992b), he proposed other modi-

�cations at the same time and Option Decision Trees

were not examined in isolation. Buntine (1992a) wrote

that \It is unknown how much smoothing, option trees

and multi-ply lookahead each contribute to the ob-

served gain in prediction accuracy." Oliver & Hand

(1995) described a study of several averaging alter-

natives in decision trees (path sets, fanned sets and

extended fanned sets) and selected the subtrees to av-

erage based on the path an instance takes to the leaf.

Earlier work of Kwok & Carter (1990) averages over

multiple trees, which are selected by users or auto-

matically in an attempt to limit the selected models

to high-posterior trees given the data.

This paper provides a detailed study of option trees,

showing how several parameters a�ect the tree size

and the resulting error rates. Interestingly, our con-

clusions describing when option nodes are most useful

di�er from Buntine's. While Buntine wrote that op-

tion nodes are most useful for small samples because

with large samples one test signi�cantly outranks the

others, we found option nodes to be more useful for

large nodes near the root of the tree. While Buntine

chose to retain tests within a factor of 0.005 of the best

test, we found it most useful to choose factors two or-

ders of magnitude larger, especially close to the root.

The Option Decision Trees used here and in Buntine's

study are di�erent (we conduct majority voting while

Buntine weighted them), but we believe our conclu-

sions might be relevant for other types of Option Deci-

sion Trees as well. Buntine (personal communication)

claimed that with Bayesian averaging, root options

usually got eliminated during pruning. Therefore, for

e�ciencies sake, Buntine often eliminated them in the

forward part of the search.

As we show later in the paper, the di�erent param-

eters for growing Option Decision Trees allow trad-

ing error rates for comprehensibility (as represented

by the number of nodes in the tree), and longer induc-

tion time. At one extreme are regular decision trees,

which are the smallest but least accurate on average.

At the other extreme are Option Decision Trees that

have three orders of magnitudemore nodes, but are the

most accurate. Although in theory the no-free-lunch

theorems imply that no algorithm can uniformly out-

perform others on all data sets, on the practical prob-

lems that we have tested, there exists a clear tradeo�.

Compared to Bagging, boosting, and similar voting

schemes that o�er the human a set of unrelated trees,

Option Decision Trees provide the human with a sin-

gle structure that is easier to interpret, albeit possibly

very large. Combined with interactive tools for prun-

ing options and subtrees, Option Decision Trees o�er

users a choice of a few good splits at nodes where there

is uncertainty. This would be particularly helpful near

the root, where option nodes are most important as

will be shown empirically.

2 Classifying Using Option Decision

Trees

Option Decision Trees are similar to regular decision

trees, except that they can contain option nodes in ad-

dition to regular decision nodes and leaf nodes. Fig-

ure 1 depicts part of an actual Option Decision Tree

that was created for the Tic-Tac-Toe domain with test-

set error rates at the nodes. The task is to classify

whether the end-game board is a \win for x." The

choice of the center square for the root node was signif-

icantly better than all others and hence it was chosen.

If the center square has an X or an O, there are reason-

ably good subsequent decisions to be made; however,

if the center square is blank, there are several choices

that rank close to each other and are hence chosen as

options (three corners and the middle-left square). A

few things to note:

1. The error rate for option 1, which had the highest

split evaluation, and would have been chosen in

place of the option node, is higher than the other

options.

2. The error rate for the option node is lower than

each child alone, an e�ect due to majority voting.

3. To create an equivalent tree using multiple models

(four trees), one would have to replicate the left

and right subtrees. Option Decision Trees provide

a compact representation for many possible trees.

Classi�cation of an instance I using Option Decision

Trees with majority voting is a recursive procedure

de�ned as follows:

1. For a leaf node, return the label predicted by the

leaf.

2. For a decision node N , let N

c

be the (unique) child

of node N that matches the test outcome for in-
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Figure 1: An example of an Option Decision Tree for the Tic-Tac-Toe data set. The root node is testing the center

square. When the center square is blank, there are several good choices, and they are all generated under an option node.

stance I at the node. For a test, say X < 30,

exactly one child node must match. The out-

put of the decision node is the label predicted by

node N

c

.

3. For an option node N , the predicted label is the

majority label of the label predicted by all chil-

dren of N (ties are broken arbitrarily).

An option node is like an or node in and-or trees.

It represents uncertainty in the decision process and

serves two purposes: it informs the human who is look-

ing at the tree of the uncertainty and shows \expert"

subtrees that each solve the problem and make a pre-

diction. From a Bayesian perspective, it reduces the

risk by \averaging" several choices.

3 Inducing Option Decision Trees

We begin by describing our induction algorithm and

then discuss several hypotheses in an attempt to un-

derstand when constructing option nodes is useful and

when such construction adds little value (or hurts). As

we will show, the tree growth has to be carefully con-

trolled to avoid creating unmanageable trees that both

exhaust memory and increase induction time.

3.1 The TDDT

op

Induction Algorithm and

Classi�er

TDDT

op

is a Top-DownDecision-Tree (TDDT) induc-

tion algorithm implemented inMLC

++

(Kohavi, Som-

mer�eld & Dougherty 1996) that creates option nodes.

The algorithm is similar to C4.5 (Quinlan 1993) with

the evaluation criterion being normalized information-

gain (information gain divided by log the number of

children). Unknowns were regarded as a separate

value. The algorithm grows the decision tree follow-

ing the standard methodology of choosing the best at-

tribute according to the evaluation criterion. After the

tree is grown, a pruning phase replaces subtrees with

leaves using the same pruning algorithm that C4.5

uses.

The principal modi�cation to the basic TDDT algo-

rithm is that instead of always selecting a single test,

when several tests evaluate close to the best test, the

TDDT

op

algorithm creates an option node. All the

data is sent to each child of an option node, which

then splits the data according to its predetermined

test. Since the votes are not weighted, it never makes

sense to create an option node with two children; hence

the minimum number of choices for an option node is

three (four or more choices are reasonable in multi-

class problems). The C4.5 pruning algorithm was

modi�ed so that the pessimistic error (used to eval-

uate whether to prune a node) of an option node was

the average of the pessimistic errors of its children.

3.2 The Experimental Methodology

For the initial study in this section, we compare the

TDDT algorithm and the TDDT

op

algorithm. In the

�nal comparison we add C4.5 (Quinlan 1993) and a

bagged version of TDDT.

The data sets used in our �nal experiment are a su-

perset of those used in Breiman (1996) taken from the

UCI repository (except that the heart database from

UCI we used did not match the CART version Breiman

used). Table 1 shows a summary of the characteristics

of the �les and the evaluation methodology. In the

�nal experiments we use the same methodology that



Data set Inst- Evaluation Attr- Clas-

ances train/test ibutes ses

Breast cancer (W) 699 10-CV 9 2

Credit (crx) 690 10-CV 15 2

DNA (nominal) 3,186 2,000/1,186 60 3

Glass 214 10-CV 9 6

Heart (Cleve) 303 10-CV 13 2

Ionosphere 351 10-CV 34 2

LED 3,200 200/3000 7 10

Letter 20,000 15,000/5,000 16 26

Pima Diabetes 768 10-CV 8 2

Satellite image 6,435 4,435/2,000 36 6

Shuttle 58,000 43,500/14,500 9 7

Soybean (large) 683 10-CV 35 19

Tic-Tac-Toe 958 10-CV 9 2

Waveform 5000 300/4700 21 3

Table 1: Characteristics of the data sets and the evalua-

tion method. 10-CV denotes 10-fold cross-validation in our

�nal study and 1/3-holdout in the initial study.

Breiman used in his study. In our initial study, we use

only the smaller �les and a single holdout (1/3-holdout

when the table says 10-CV); we did this in order to un-

derstand how to control tree growth before using large

data sets that generate very large trees. All algorithm

variants use the same training sets and test sets.

3.3 The Simplest Option Decision Tree

Algorithm

We begin with a simple version that creates an option

node whenever there are three or more attributes that

rate at least a multiplicative factor x, the option fac-

tor, of the best attribute on the evaluation criterion.

We ran TDDT

op

varying the option factor from 0.1 to

0.4, and imposed an arbitrary limit of �ve options per

node to control the tree size. Using an option factor of

0.5 increased the run-times dramatically so we stopped

at that point. Figure 2 shows a graph of the error rates

and error ratios relative to the simple TDDT. The av-

erage absolute error decreased from 20.92% for TDDT

to 19.70%, 19.66%, 18.20%, and 17.82% for the option

factor settings of 0.1, 0.2, 0.3, and 0.4, respectively.

The average relative error (the average of the relative

error with respect to TDDT for each data set) was

0.95, 0.96, 0.90, and 0.87, respectively. Using 0.4 as

the option factor produced huge trees; Soybean was

the extreme case, which increased from 68 nodes to

203,577 nodes, a factor of almost 3,000.

3.4 Where are Option Nodes Most Useful?

Option nodes can, in principle, be created anywhere

in the tree. We investigate where option nodes are

created and where they are useful for reducing error.
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Figure 3: A plot of the average number of options gener-

ated per node (see text for de�nition). The �les are sorted

to make the display meaningful in 3D.

On the one hand, the decision criteria commonly used

to choose the attribute to split on (and the thresh-

old for continuous attributes) are usually myopic and

look only at the children nodes of the splits being

considered. This would indicate that most crite-

ria are not very reliable near the root of the tree;

speci�cally, minor di�erences between two attributes

may not be good predictors of how good the sub-

trees will be. Furthermore, researchers have shown

(Ali 1996, Perrone 1993) that combiningmultiple mod-

els works best when the structures are not correlated

or when they are anti-correlated. By making di�er-

ent splits closer to the root, the subtrees below them

should be very di�erent and hence will not correlate

as much as would subtrees closer to the leaves.

On the other hand, making option nodes closer to the

leaves spreads the risk when there are few instances

and the evaluation criteria are unstable. Many of

the signi�cant improvements shown in Ali (1996, p.

141), for example, were shown for small data sets.

Ali & Pazzani (1995) also wrote that \For learning

tasks with few examples, greater classi�cation accu-

racy can be achieved by learning several concept de-

scriptions. . . ." Learning multiple models seems to be

more useful on small data sets.

We hypothesized that creating option nodes closer to

the root would be more useful. We tested this hypoth-

esis in three distinct ways:

1. We modi�ed TDDT

op

to induce option nodes

only at the last three levels of the tree (three being

an arbitrary cuto�). As in Brodley (1995), such a

decision has to be done after a subtree is built and
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Figure 2: Absolute error shown in bars with the left axis de�ning the range; relative error rates (with respect to TDDT)

shown using symbols with the right axis de�ning the range. Low bars are better and low relative errors (below 1) show

improvement. TDDT

op

-x denotes running with option factor of x.

pruned because we do not know in advance how

deep a tree will be after pruning. The algorithm

was modi�ed such that during the pruning phase,

each time a node is reached that is three levels

above the leaves, we rebuild the subtree using the

standard TDDT

op

algorithm. The average error

on the tested data sets was reduced from 20.92%

to 20.49%, with the average relative error rate at

0.99. Some trees didn't grow much; Soybean grew

by a factor of 43, but the overall error reduction

was disappointing.

We modi�ed the TDDT

op

to induce option nodes

only at the top levels. Speci�cally, we limited op-

tion nodes to the �rst two levels of the tree (op-

tion nodes do not count as a level in any experi-

ments). Because the maximumnumber of options

per node was set to �ve, this implied that the tree

would be about 25 times larger than a standard

decision tree. We therefore set the option fac-

tor to 0.95, e�ectively ignoring only options with

very low evaluations (bottom 5%). The average

error was reduced from 20.92% to 15.98%, with

the average relative error rate at 0.79. We con-

cluded from this experiment that option nodes at

the top seem to be much more useful relative to

the added complexity.

2. Figure 3 shows a histogram of the average number

of choices per node. If the node is a decision node,

it contributes one to the count. If the node is an

option node, it contributes its number of options

to the count. We then divide the count by the

number of nodes that would have been formed if

option nodes were not used. From the �gure, we

can see more options are created at the top few

levels of the tree.

3. De�ne the weighted error di�erence between two

nodes as the test-set di�erence in error on the two

nodes multiplied by an importance factor. Fig-

ure 4 shows the di�erence in weighted test-set

error between an option node and its �rst op-

tion (the option that would have been chosen if

there was no option node) averaged over all nodes

and all data sets. The importance factor was the

training-set instance count. The motivation for

this weighting is that big di�erences for a node

with one training instance are less important than

are small di�erences for nodes that were created

using many instances. A negative factor indicates

that the option node was (on average) worse than

the best option. We can see that creating option

nodes for nodes with few instances is generally of

little help, and can even be harmful.

Given this support for our hypothesis about the use-

fulness of option nodes closer to the root, we restricted

the creation of option nodes to cases where the number

of instances is greater than 30, and reran the algorithm

with an option factor of 0.5 (see Figure 2). This not

only reduced the total number of nodes, but drasti-

cally reduced the running time since less option node

activity took place near the bottom of the tree. The

running time for Soybean reduced from over six hours

to less than one and a half hours (a factor of four).

The number of nodes for Pima Diabetes was reduced
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Figure 4: A histogram of the weighted error di�erence (see

text) for nodes trained with di�erent numbers of instances.

from 66,000 to 6807 (a factor of almost ten). The av-

erage error was reduced from 20.92% to 16.64% and

the average relative error rate was 0.79.

It is interesting to note that our conclusions about op-

tion trees with majority votes are di�erent than those

of Buntine (1992a), who wrote:

For nodes that have large counts, usually only

one test is expanded because all others are in-

signi�cant according to the quality measure.

With smaller samples. . .many tests may be al-

most as good according to the quality measure

so many options will be expanded.

In our experiments, nodes with small counts (i.e.,

leaves) do not have many values close to the best one,

while nodes closer to the root do exhibit such behavior.

4 Pushing the Envelope

In the previous section, we arrived at the conclusion

that option nodes near the top are more useful. How-

ever, the runs were still taking a long time, precluding

a larger evaluation with 10-fold cross-validation and

tests on bigger �les. Limiting the number of levels from

the top seemed like a good practical compromise. In

addition, because increasing the option factor seemed

to help reduce the error, we decided to increase the

factor even more and use an exponentially decaying

factor. Starting with an option factor of x, each level

used a factor of x � y

level

where y is the decay factor

and the root is at level 0 (option nodes were ignored

in the level count). We chose a decay factor of y = 0:9

and varied x. Option nodes were restricted to �ve lev-

els, except for the data sets Letter, Satellite image,

and Soybean, which were limited to three levels due

to memory limitations.

Figure 5 shows the results for all �les. In addition

to TDDT, we compared against a bagged version of

TDDT using 50 replicates.

The results show that an option factor of 1.0 was most

useful (always making a �ve-way option node at the

root). The average error rate decreased from 16.86%

(for TDDT) to 12.08%; the average relative error was

0.70! As the option factor was reduced, the average

error rate grew compared to the best one. At a fac-

tor of 0.8, the error rate was 12.54% and the average

relative error was .72. Bagging had an error rate of

12.88% and an average relative error of 0.87 (Shuttle

is very inuential, though even without it, the average

relative errors were 0.70 and 0.77 for an option fac-

tor of 1.0 and for Bagging). The main disadvantage

of the Option Decision Trees generated is that they

were huge, sometimes two or more orders of magni-

tude larger than those induced by TDDT. For exam-

ple, Letter (the largest tree) had 276,978 nodes, while

the TDDT tree had \only" 2167; in comparison, the

50 Bagged trees together had 97,550 nodes.

Although we are using more nodes as the option factor

is increased, the error continued to decrease. Bagging,

on the other hand, is limited and does not improve

much if more samples are used. Breiman (1996, p.

135) wrote that \More than 25 bootstrap replicates

is love's labor lost." When we increased the number

of bootstrap samples to 250 to make the tree sizes

comparable to ours, the average error went down only

0.18% to 12.70%.

One possible criticism is that our �nal results are re-

ported on the same data sets we used to study the

problem in the �rst place. The fact that we used a

holdout set for accuracy estimation initially, then full

cross-validation for those �les in the �nal results (other

than the arti�cial datasets with large test sets), miti-

gates the e�ect of over�tting to the test set. Further-

more, for the four �les we did not use in our initial

study (Letter, Shuttle, Satellite image, and DNA) the

average relative error rate for the option factor of 1.0

was 0.62, even better than the overall average.

5 Comprehensible Option Decision

Trees

In the �nal set of experiments, we decided to limit the

number of nodes to an amount comparable to Bagging.

We set the level limit to two and increased the maxi-

mum number of options allowed to seven. We denoted

this version by TDDT

op-7

2

. This variation should in-
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factor of x, Bagging denotes Breiman's bagging with 50 TDDT replicates. Shuttle has error rates in the range 0.01%-0.05%

so it does not appear.
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Figure 6: A plot of the absolute error rates and relative error rates (relative to TDDT) for di�erent algorithms: C4.5,

TDDT, Bagging, TDDT

op

with 7 options at each of the �rst two levels. The error rates for shuttle are very small: 3, 4,

7, 7 misclassi�cations for TDDT, TDDT

op

, C4.5, and Bagging respectively (out of 14,500 test instances); di�erences are

not signi�cant at the 95% con�dence level.
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prob prob prob

Data set TDDT Bagging TDDT

op-7

2

TDDT-op 1.0 TDDT

op-7

2

TDDT

op-7

2

TDDT-op 1.0

error error error error better than better than better than

TDDT Bagging Bagging

Breast cancer (W) 5.14�0.77 3.86�0.71 3.29�0.77 3.57�0.68 0.9553 0.7069 0.6160

Credit (crx) 14.64�0.63 13.77�0.95 14.78�1.18 14.06�1.01 0.4583 0.2525 0.4172

DNA (nominal) 8.26�0.80 6.83�0.73 5.65�0.67 5.82�0.68 0.9939 0.8827 0.8443

Glass 34.89�3.84 24.76�2.80 30.32�2.22 21.93�1.92 0.8486 0.0599 0.7977

Heart (Cleve) 22.75�2.89 17.46�2.93 16.16�3.17 16.78�3.61 0.9378 0.6184 0.5581

Ionosphere 12.21�2.37 7.99�1.27 8.26�0.90 7.70�1.13 0.9404 0.4311 0.5677

LED 32.07�0.85 30.20�0.84 30.87�0.84 30.30�0.84 0.8415 0.2875 0.4664

Letter 13.24�0.48 7.32�0.37 7.18�0.36 6.92�0.36 1.0000 0.6065 0.7817

Pima Diabetes 23.98�2.02 24.36�1.81 24.49�1.16 24.09�1.08 0.4133 0.4759 0.5510

Satellite image 15.20�0.80 10.65�0.69 9.70�0.66 9.15�0.65 1.0000 0.8398 0.9439

Shuttle 0.02�0.01 0.05�0.02 0.03�0.01 0.01�0.01 0.3521 0.8098 0.9506

Soybean (large) 7.32�1.11 7.62�1.17 6.74�0.90 6.59�0.85 0.6576 0.7245 0.7618

Tic-Tac-Toe 16.50�1.05 7.31�0.80 4.28�0.50 3.34�0.46 1.0000 0.9993 1.0000

Waveform 29.77�0.67 18.11�0.56 19.96�0.58 18.83�0.57 1.0000 0.0111 0.1829

Table 2: Error rates and probabilities that one algorithm is better than another based on a t-test. TDDT

op-7

2

is

comparable to Bagging; TDDT-op 1.0 is usually better than Bagging.

duce trees that are about 49 times larger than the

original TDDT tree (this may be more or less because

the subtrees built are di�erent). Figure 6 and Table 2

show the error rates, error ratios, and statistical sig-

ni�cance of the results. Figure 7 shows the tree sizes.

The average relative error for the TDDT

op-7

2

was

12.98% and for bootstrap it was 12.88%. The aver-

age relative error rate was 0.78 for TDDT

op-7

2

and

0.874 for Bagging.

The tree sizes for both algorithms are about the same.

We believe that the extra structure that TDDT

op

pro-

vides would be more useful for users, since it avoids

replication and focuses the attention on uncertain

nodes. Coupled with an interactive tree visualizer, the

advantage of Option Decision Trees is that users could

easily prune some subtrees whose root split they do

not like, an idea proposed by Kwok & Carter (1990).

Moreover, to choose a single tree, they would have to

make only two choices (one out of seven at the root and

one out of seven at the level below). Running times for

TDDT

op-7

2

on an SGI Challenge ranged from 20 sec-

onds to 38 minutes for Shuttle and an hour and three

quarters for Letter.

6 Future Work

We chose to vote the children of option nodes be-

cause it is a simple method that users can understand.

Weighted voting could be a useful alternative that

might reduce the error further without complicating

the tree structure excessively. Such weighted combina-

tions were used, for example, by Oliver & Hand (1995)

and in Bahl, Brown, de Souza & Mercer (1989). An-

other simple possibility is to allow subtrees to return

\unknown" (abstain from the vote).

Option nodes, as implemented in TDDT

op

, choose

only di�erent attributes while it may be useful to select

the same attribute with di�erent thresholds. While

Oliver & Hand (1995) have done the same for their tree

averaging, it is highly likely that bootstrap samples in

Bagging do result in di�erent thresholds for di�erent

trees, a characteristic we believe is advantageous.

It is possible to run a post-processing step to prune

some option nodes and shrink the size of the tree. For

example, it may be useful to choose one child from each

option node based on its performance on a validation

set. This will yield a regular decision tree that was

built indirectly through an Option Decision Tree.

7 Conclusions

We showed that option nodes are more useful closer to

the root using three di�erent methodologies (modi�ed

algorithm, average choices per node, and weighted er-

ror histogram). We described several ways of control-

ling the growth of Option Decision Trees, so that when

option nodes are created, they are useful in reducing

the error rate. Kwok & Carter (1990) reported that

after a few trees were generated, the accuracy slightly

degraded because lower probability trees were used. In

our experiments, as we allowed for more options (both

by increasing the option factor and by increasing the



maximum number of options), the resulting trees pro-

duced fewer errors on average. Although we suspect

that using too many options that rank lower in our

evaluation criterion will hurt performance (because all

options are weighted equally), we have not seen this

e�ect.

Option Decision Trees provide users with control over

the complexity versus the error for the resulting trees:

the bigger the trees, the lower the error (on average),

but with diminishing returns. As we pushed the en-

velope and created huge trees, the error continued to

decrease.

As opposed to Bagging, the TDDT

op

algorithm is de-

terministic and does not rely on random bootstrap

samples. It also uses all of the data to build the tree,

while Bagging constructs multiple trees from samples

that contain only a factor of about 0:632 unique in-

stances from the training set. Unlike boosting (Freund

& Schapire 1995), it is easy to parallelize Option De-

cision Tree induction.

Option Decision Trees provide a compact represen-

tation of many regular decision trees. The error re-

ductions reported here are signi�cant and large. The

best average relative error reduction was 0.7, which is

equivalent to an average of 30% reduction for the 14

data sets! For similar complexity to Bagging, the error

rates are comparable, although Option Decision Trees

provide a more structured classi�er.
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