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Abstract. We describe an experimental study of pruning methods for

decision tree classi�ers in two learning situations: minimizing loss and

probability estimation. In addition to the two most common methods for

error minimization, CART's cost-complexity pruning and C4.5's error-

based pruning, we study the extension of cost-complexity pruning to

loss and two pruning variants based on Laplace corrections. We perform

an empirical comparison of these methods and evaluate them with re-

spect to the following three criteria: loss, mean-squared-error (MSE), and

log-loss. We provide a bias-variance decomposition of the MSE to show

how pruning a�ects the bias and variance. We found that applying the

Laplace correction to estimate the probability distributions at the leaves

was bene�cial to all pruning methods, both for loss minimization and

for estimating probabilities. Unlike in error minimization, and somewhat

surprisingly, performing no pruning led to results that were on par with

other methods in terms of the evaluation criteria. The main advantage

of pruning was in the reduction of the decision tree size, sometimes by

a factor of 10. While no method dominated others on all datasets, even

for the same domain di�erent pruning mechanisms are better for dif-

ferent loss matrices. We show this last result using Receiver Operating

Characteristics (ROC) curves.



1 Pruning Decision Trees

Decision trees are a widely used symbolic modeling technique for classi�cation

tasks in machine learning. The most common approach to constructing decision

tree classi�ers is to grow a full tree and prune it back. Pruning is desirable be-

cause the tree that is grown may over�t the data by inferring more structure than

is justi�ed by the training set. Speci�cally, if there are no con
icting instances,

the training set error of a fully built tree is zero, while the true error is likely to

be larger. To combat this over�tting problem, the tree is pruned back with the

goal of identifying the tree with the lowest error rate on previously unobserved

instances, breaking ties in favor of smaller trees (Breiman, Friedman, Olshen &

Stone 1984, Quinlan 1993).

Several pruning methods have been introduced in the literature, including

cost-complexity pruning (Breiman et al. 1984), reduced error pruning and pes-

simistic pruning (Quinlan 1987), error-based pruning (Quinlan 1993), penalty

pruning (Mansour 1997), and MDL pruning (Quinlan & Rivest 1989, Mehta,

Rissanen & Agrawal 1995, Wallace & Patrick 1993). Esposito, Malerba & Se-

meraro (1995a, 1995b) have compared several of these pruning algorithms for

error minimization.Oates & Jensen (1997) showed that most pruning algorithms

create trees that are larger than necessary if error minimization is the evaluation

criterion.

Our objective in this paper is di�erent than the above-mentioned studies.

Instead of pruning to minimize error, we aim to study pruning algorithms with

two related goals: loss minimization and probability estimation. Historically,

most pruning algorithms have been developed to minimize the expected error

rate of the decision tree, assuming that classi�cation errors have the same unit

cost. However in many practical applications one has a loss matrix associated

with classi�cation errors (Turney 1997, Fawcett & Provost 1996, Kubat, Holte

& Matwin 1997, Danyluk & Provost 1993). In such cases, it may be desirable to

prune the tree with respect to the loss matrix or to prune in order to optimize

the accuracy of a probability distribution given for each instance. A probability

distribution may be used to adjust the prediction to minimize the expected

loss or to supply a con�dence level associated with the prediction; in addition,

a probability distribution may also be used to generate a lift curve (Berry &

Lino� 1997).

Pruning for loss minimization or for probability estimation can lead to di�er-

ent pruning behavior than does pruning for error minimization. Figure 1 (left)

shows an example where the subtree should be pruned by error-minimization

algorithms because the number of errors stays the same (5/100) if the subtree is

pruned to a leaf. If the problem has an associated loss matrix that speci�es that

the cost of misclassifying someone who is sick as healthy is ten times as costly

as classifying someone who is healthy as sick, then we don't want the pruning

algorithm to prune this subtree. For this loss matrix, pruning the tree leads to

a loss of 50, whereas retaining the tree leads to a loss of 5 (the left hand leaf

would classify instances as sick to minimize the expected loss). Figure 1 (right)

illustrates the reverse situation: error-based pruning would retain the subtree,

whereas cost-based pruning would prune the subtree. Given the same loss ma-
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TEST X
healthy=95, sick=5

healthy=5, sick=5

X=0

healthy=90, sick=0

X=1

TEST X
healthy=20, sick=20

healthy=0, sick=10

X=0

healthy=20, sick=10

X=1

Fig. 1. The left �gure shows a tree that should be pruned by error-minimization algo-

rithms (pruning does not change the number of errors) but not by loss-minimization

algorithms with a 10 to 1 loss for classifying sick as healthy against vice-versa. The

right tree shows the opposite situation where error minimization algorithms should not

prune, yet loss minimization with a 10 to 1 loss should prune since both leaves should

be labeled \sick."

trix as the �rst example, each of the leaf nodes would classify an example as sick

and a pruning algorithm that minimizes loss should collapse them (if pruning

attempts to minimize loss then if all children are labeled the same, they should

be pruned.)

These examples illustrate that it is of critical importance that the pruning

criterion be based on the overall learning task evaluation criterion. In this pa-

per, we investigate the behavior of several pruning algorithms. In addition to

the two most common methods for error minimization, cost-complexity prun-

ing (Breiman et al. 1984) and error-based pruning (Quinlan 1993), we study

the extension of cost-complexity pruning to loss and two pruning variants based

on Laplace corrections (Cestnik 1990, Good 1965). We perform an empirical

comparison of these methods and evaluate them with respect to the following

criteria: loss under two matrices, average mean-squared-error (MSE), and av-

erage log-loss. While it is expected that no method dominates another on all

problems, we found that adjusting the probability distributions at the leaves

using Laplace was bene�cial to all methods. While no method dominated others

on all datasets, even for the same domain di�erent pruning mechanisms are bet-

ter for di�erent loss matrices. We show this last result using Receiver Operating

Characteristics (ROC) curves (Provost & Fawcett 1997).

2 The Pruning Algorithms and Evaluation Criteria

2.1 Probability Estimation and Loss Minimization at the Leaves

A decision tree can be used to estimate a probability distribution on the label

values rather than to make a single prediction. Such trees are sometimes called

class probability trees (Breiman et al. 1984). Several methods have been proposed

to predict class distributions, including frequency counts, Laplace corrections,

and smoothing (Breiman et al. 1984, Buntine 1992, Oliver & Hand 1995). In our

experiments, we use the former two methods.

The frequency-counts method simply predicts a distribution based on the

counts at the leaf the test instance falls into. Frequency counts are sometimes
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unreliable because the tree was built to separate the classes and the probability

estimates tend to be extreme at the leaves (e.g., zero probabilities).

The Laplace correction method biases the probability towards a uniform dis-

tribution. Speci�cally, if a node has m instances, c of which are from a given

class, in a k-class problem, the probability assigned to the class is (c+1)=(m+k)

(Good 1965, Cestnik 1990).

Given a probability distribution and a loss matrix, it is simple to compute the

class with the expected minimal loss by multiplying the probability distribution

vector by the loss matrix. When misclassi�cation costs are equal, minimizing

the expected loss is equivalent to choosing the majority class (ties can be broken

arbitrarily).

2.2 Pruning for Error and Loss Minimization

Most pruning algorithms perform a post-order traversal of the tree, replacing

a subtree by a single leaf node when the estimated error of the leaf replacing

the subtree is lower than that of the subtree. The crux of the problem is to �nd

an honest estimate of error (Breiman et al. 1984), which is de�ned as one that

is not overly optimistic for a tree that was built to minimize errors in the �rst

place. The resubstitution error (error rate on the training set) does not provide

a suitable estimate because a leaf-node replacing a subtree will never have fewer

errors on the training set than the subtree. The two most commonly used pruning

algorithms for error minimization are error-based pruning (Quinlan 1993) and

cost-complexity pruning (Breiman et al. 1984).

The error-based pruning algorithm used in C4.5 estimates the error of a leaf

by computing a statistical con�dence interval of the resubstitution error (error

on the training set for the leaf) assuming an independent binomial model and

selecting the upper bound of the con�dence interval. The width of the con�dence

interval is a tunable parameter of the algorithm.The estimated error for a subtree

is the sum of the errors for the leaves underneath it. Because leaves have fewer

instances than their parents, their con�dence interval is wider, possibly leading

to larger estimated errors, hence they may be pruned.

We were unable to generalize C4.5's error-based pruning based on con�dence

intervals to take into account losses. The naive idea of computing a con�dence

interval for each probability and computing the losses based on the upper bound

of the interval for each class yields a distribution that does not add to one.

Experimental results we made on some variants (e.g., normalizing the probabil-

ities) did not perform well. Instead, we decided to use a Laplace-based pruning

method.

The Laplace-based pruning method we introduce here has a similar motiva-

tion to C4.5's error-based pruning. The leaf distributions based on the Laplace

correction described above are computed. This correction makes the distribu-

tion at the leaves more uniform and less extreme. Given a node, we can compute

the expected loss using the loss matrix. The expected loss of a subtree is the

expected loss of the leaves. Figure 2 (left) shows an example of Laplace-based

pruning with a 10 to 1 loss matrix. In this case each of the children predicts sick

in order to minimize the expected loss. To see why, consider the right-hand child
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TEST X
healthy=20, sick=20

p=21/42=0.5 p=21/42=0.5
loss=20

healthy=0, sick=10
p=1/12=0.0833    p=11/12=0.9167

loss=0.833

X=0

healthy=20, sick=10
p=21/32=0.6562   p=11/32=0.3438

loss=19.686

X=1

TEST X
healthy=34, sick=2

p=35/38=0.921         p=3/38=0.079
loss=0.79

healthy=17, sick=1
p=18/20=0.9         p=2/20=0.1

loss=16.2

X=0

healthy=17, sick=1
p=18/20=0.9         p=2/20=0.1

loss=16.2

X=1

Fig. 2. Example of Laplace-based pruning. On the left is an example where the parent

has a lower loss than its children so the subtree would be pruned to a leaf. On the

right is an example of an unintuitive behavior of Laplace-based pruning. The parent

would classify instances as healthy while both children will classify them as sick. For

each node, the expected loss for each class is computed by multiplying the number of

instances at the node by the estimated probability for the class times the loss given

the leaf's prediction.

for which we have 20 healthy and 10 sick instances. After the Laplace correction,

we have the distribution 21=32 = 0:6562 for class healthy and 11=32 = :3438 for

class sick. If the loss from misclassifying a healthy case as sick is 1 and the cost

of misclassifying sick as healthy is 10, then the expected loss for an instance of

class healthy is 0:6562, whereas for class sick it is 3:438. Because the parent has

a lower loss than the sum of losses of the children (20.0 versus 20.52), the subtree

will be pruned.

When coupled with loss matrices, the Laplace correction sometimes leads to

unintuitive pruning behavior. Consider Figure 2 (right). Each of the leaves would

predict sick given the 10 to 1 loss matrix described above. The expected loss of

the children is 16.2 each when they predict sick, whereas the expected loss of

the parent is 28.44 when it predicts healthy. Hence, unlike error-based pruning,

if all children have the same label, the parent may predict a di�erent label.

The cost-complexity-pruning (CCP) algorithm used in CART penalizes the

estimated error based on the subtree size. Speci�cally, the error estimate assigned

to a subtree is the resubstitution error plus a factor � times the subtree size.

An e�cient search algorithm can be used to compute all the distinct � values

that change the tree size and the parameter is chosen to minimize the error on a

holdout sample or using cross-validation. Once the optimal value of � is found,

the entire training set is used to grow the tree and it is pruned using � previously

found. In our experiments, we have used the holdout method, holding back 20%

of the training set to estimate the best � parameter.

Cost complexity pruning extends naturally to loss matrices. Instead of esti-

mating the error of a subtree, we estimate its loss (or cost), using the resubstitu-

tion loss and penalizing by the size of the tree times the � factor as in error-based

CCP.

2.3 Pruning with Respect to Probability Estimates

One possible objective for inducing a decision tree is to use it as a probability

tree, namely, to predict probability distributions. Such a tree has several ad-
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vantages: it can give a con�dence level for its predictions; it can be used with

di�erent loss matrices, computing the best label for each instance using the prob-

ability distribution and the loss matrix at hand; and it can be used to generate

a lift curve (Berry & Lino� 1997).

The KL-pruning that we introduce prunes only if the distribution of a node

and its children are similar. Speci�cally, the method is based on the Kullback-

Leibler (KL) distance (Cover & Thomas 1991) between the parent distribution

and its children. For each node, we estimate the class distribution using the

Laplace correction detailed in Section 2.1. If q

c

is the parent's probability for

class c and p

ic

is the ith child's probability for class c, the KL distance for child i

is calculated by distance

i

=

P

c

p

ic

log(p

ic

=q

c

). This gives us a distance value for

each child node. We then compute a weighted average distance of the c children

as

distance =

c

X

i=1

distance

i

�m

i

=m

where m is the number of instances observed at the parent node and m

i

is the

number of instances observed at child node i. If the average distance is less than a

given threshold factor (parameter of the algorithm), then the subtree is pruned.

Because the Laplace correction is used, the probabilities are never zero (although

this method is still valid if frequency counts are used because a zero probability

for a class in the parent forces a zero probability for that same class in the child).

In these experiments, we set the threshold to 0.01 based on initial experiments.

In other experiments, we have noted that pruning performance can be radically

improved when this parameter is customized to the particular dataset. However,

we did not attempt to �ne-tune this parameter for the speci�c datasets used in

this paper.

2.4 Evaluation Criteria

For any given learning task there is a domain-speci�ed evaluation criterion. The

majority of reported research in decision trees has assumed that the learning

evaluation criterion is to minimize the expected error of the classi�er.

In cases where a loss matrix is speci�ed, the average loss for a test-set is

the average of the losses over the instances in the test set as determined by

the loss matrix. Algorithms that make probabilistic distributions can easily be

generalized to take into account the loss matrix by multiplying the two and

predicting the class with the smallest loss.

In many practical applications, it is important not only to classify each in-

stance correctly or to minimize loss, but to also give a probability distribution on

the classes. To measure the error between the true probability distribution and

the predicted distribution, the mean-squared error (MSE) can be used (Breiman

et al. 1984, De�nition 4.18). The MSE is computed as the sum of the squared

di�erences between the probability p assigned by the classi�er to each class c

and the true probability distribution f :

MSE =

X

c

(f(c) � p(c))

2

:
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Because test-sets supplied in practice have a single label per instance, one class

has probability 100% and the others have zero. The MSE is therefore bounded

between zero and two (Kohavi & Wolpert 1996), so in this paper we use half the

MSE as a \normalized MSE" in so that it is a number between 0% and 100%.

A classi�er that makes a single prediction is viewed as assigning a probability of

one to the predicted class and zero to the other classes; under those conditions,

the average normalized MSE is the same as the classi�cation error.

A di�erent measure of probability estimates is log-loss, which is sometimes

claimed to be a natural measure of the goodness of probability estimates (Bernardo

& Smith 1993, Mitchell 1997). The loss assigned to a probability distribution p

for an instance, whose true probability distribution is f , is the weighted sum of

minus the log of the probability p assigned by the classi�er to class c, where the

weighting is done by the probability of class c:

log-loss = �

X

c

f(c) log

2

p(c) :

Because test-sets supplied in practice have a single label per instance, the log-

loss of an instance is the log of the probability assigned to that instance. As with

MSE, the average log-loss is the average of the loss over the test-set. Log-loss

can only be computed for classi�ers that never predict a zero probability for the

correct label (or else the penalty is in�nite).

3 A Comparison of Pruning Algorithms

3.1 Experimental Methodology

Our goal in designing these experiments was to understand which pruning meth-

ods work well when the decision tree classi�er is evaluated on loss given a loss

matrix, and which methods are also capable of providing good probability es-

timates. The basic decision tree growing algorithm is implemented in MLC

++

(Kohavi, Sommer�eld & Dougherty 1996) and called MC4 (MLC

++

C4.5). It is

a Top-Down Decision Tree (TDDT) induction algorithm very similar to C4.5.

The algorithm grows the decision tree following the standard methodology of

choosing the best attribute according to the gain-ratio evaluation criterion and

stopping when a node has fewer than two instances. The trees are pruned using

the following pruning algorithms:

eb-fr Error-based pruning (C4.5) with probabilities estimated using

frequency counts.

eb-lc Error-based pruning with probabilities estimated using the Laplace

correction.

np-lc No-pruning with probabilities estimated using the Laplace correction.

lp Laplace-based pruning with probabilities estimated using the Laplace

correction.

ccp-lc Cost-complexity pruning based on loss with probabilities estimated

using the Laplace correction.

kl-lc KL pruning with probabilities estimated using the Laplace correction.
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Table 1. Summary of the Dataset Characteristics

Number of Attributes Name of Percent of

Dataset Instances Cont/Nomin Goal Class Goal Class

adult 45222 6/8 > 50K 24.78

breast 683 10/0 malignant 34.99

chess 3196 0/36 nowin 47.78

crx 653 6/9 yes 45.33

german 1000 7/13 bad 30.00

pima 768 8/0 1 34.90

road 2021 7/0 DIRT 0.45

satimage 6435 36/0 4 9.73

shuttle 58000 9/0 6 0.02

vehicle 846 18/0 4 23.52

In our initial experiments, Laplace correction outperformed frequency counts

in all variants. Therefore, excluding the basic method of error-based-pruning, all

other pruning methods were run with the Laplace correction both for computing

the class that will minimize the expected loss and for returning a probability

distribution.

To choose the datasets, we decided on the following desiderata:

1. Datasets should be two-class to make the evaluation easier and to allow us to

show ROC curves. This desideratum was hard to satisfy and we resorted to

converting several multi-class problems into two-class problems by choosing

the least prevalent class as the goal class.

2. Datasets should not have too many unknowns. To avoid another factor in

this evaluation, we removed all unknown instances from the �les.

3. The standard error of the estimated loss should be small. This was very im-

portant because with loss matrices the standard deviations of the estimates

can be large. We therefore decided to require at least 500 instances and train

on only 25% of the data, leaving the remaining instances for testing.

Ten datasets, shown in Table 1 with their characteristics, were chosen from the

UCI repository (Merz & Murphy 1997). For all �les we trained on 25% of the

data and tested on 75% of the data, repeating the process 10 times.

For each dataset we compared performance of the pruning algorithms on two

di�erent loss matrices, which respectively set a loss of 10 and 100 for misclassi-

fying the less frequent of the two classes. This was done to simulate real-world

scenarios in which the less frequent class is the important class. Experiments

were also done with the losses reversed, with similar conclusions to those shown

below.

The results are displayed as graphs showing the average error/loss for the

ten �les as bars using the scale on the left, and the average relative error/loss as

X-symbols with the scale on the right. The relative errors/losses are computed as

the ratio between the error of the pruning method and eb-fr, our baseline method.

These ratios are then averaged across the ten datasets to create summary graphs.
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In cases for which the errors/losses are small, the ratio is a better indicator of

performance.

3.2 Performance Criterion: Minimizing Expected Loss

Our �rst set of experiments was designed to evaluate the performance of the

various pruning methods when loss matrices are given. We wanted to test the

following hypotheses:

1. Laplace correction for estimating probabilities at the leaves leads to lower

loss than frequency counts.

2. Considering the loss matrix during pruning leads to lower loss than pruning

based on errors.

3. Building a tree for optimizing probabilities will also lead to improved per-

formance when you have loss matrices (although the tree doesn't change

according to the loss matrix, loss performance can be better).

The average losses and average relative losses for the two loss matrices are

shown in Figures 3 and 4. The following observations can be made:

1. Error-based pruning with frequency counts performs the worst.

2. Laplace-based pruning (lp) performs the best on the 10 to 1 loss matrix and

is comparable to the best on the 100 to 1 loss matrix.

3. No-pruning (np-lc) performs surprisingly well on both loss matrices!

4. Cost-complexity pruning (ccp-lc) is slightly inferior to no-pruning, but better

than KL and error-based pruning (eb) on the 100 to 1 loss matrix.

5. Tree sizes were radically di�erent. The average tree sizes for the 10 to 1 loss

matrix are: ccp(47), eb(118), kl(203), lp(382), and np(670). Cost-complexity

pruning was by far the smallest, which con�rms the observation by Oates &

Jensen (1997) for error minimization.

Our hypothesis that Laplace correction for estimating probabilities at the

leaves outperforms frequency counts was con�rmed. It was also con�rmed for

the np, ccp and kl pruning methods when they were run with frequency counts

(results not shown). Interestingly, no-pruning performed very well, suggesting

that when we have loss matrices and when tree size is not important, pruning

need not be done. This result di�ers from error minimization, where pruning

was consistently shown to help.

Pruning based on loss matrices performed better than pruning based on

error for frequency counts for all methods. This result (for frequency counts)

has been observed previously for reduced error/cost pruning (Draper, Brodley &

Utgo� 1994). When the Laplace correction was used, pruning with loss matrices

performed better than error-based pruning (eb-lc) for the 100:1 (ccp-lc, lp) but

there was no signi�cant di�erence for the 10:1 loss matrix. We were unable to

con�rm our third hypothesis because our current implementation of kl-lc and

our base method eb-lc have similar performance.
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Average loss with 10:1 loss ratio
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Fig. 3. Losses for the di�erent algorithms for the 10 to 1 loss matrix. Two selected

datasets with signi�cant di�erences are shown on the top, followed by a graph of the

average errors and the average of the relative errors below.

Average loss with 100:1 loss ratio

Absolute
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np-lc lp ccp-lc kl-lc eb-lc eb-fr
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Fig. 4. Losses for the di�erent algorithms for the 100 to 1 loss matrix.
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CRX bias+variance decomposition for MSE

Bias

Variance

np-lc lp ccp-lc kl-lc eb-lc eb-fr
0

5

10

15

Pima bias+variance decomposition for MSE

Bias

Variance

np-lc lp ccp-lc kl-lc eb-lc eb-fr
0

10

20

30

Average MSE bias+variance decomposition

Bias

Variance

np-lc lp ccp-lc kl-lc eb-lc eb-fr
0

2

4

6

8

10

Fig. 5. Bias plus variance decomposition of the MSE.

3.3 Performance Task: Predicting Probabilities

Our second set of experiments was designed to evaluate the performance of the

various pruning methods when evaluated on the mean-squared-errors (MSEs).

We wanted to test the following hypotheses:

1. Laplace correction for estimating probabilities at the leaves leads to lower

MSE than frequency counts.

2. Pruning based on probability estimates can outperform error-based pruning

because it might reduce variance (as compared to other pruning methods)

but without increasing the bias as much as error-based pruning that is opti-

mizing a di�erent criterion (error).

For each pruning method, applying the Laplace correction improved perfor-

mance on average. Only in a few cases did Laplace correction lead to a higher

MSE than frequency counts.

To provide a deeper understanding of the MSE results, we ran a set of ex-

periments using the bias-variance decomposition of the MSE (Geman, Bienen-

stock & Doursat 1992). The bias-variance decomposition is a tool for analyzing

learning scenarios that have a quadratic loss function. Given a �xed target and

training set size, the decomposition breaks expected error into the sum of three
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non-negative quantities: 1) intrinsic target noise, which is a lower bound on the

expected error of any learning algorithm; 2) squared bias, which measures how

closely the learning algorithm's average guess matches the target; and 3) vari-

ance, which measures how much the learning algorithm's guess bounces around

for the di�erent training sets of the given size.

To estimate the bias and variance, we used a two-stage sampling procedure

detailed in Kohavi & Wolpert (1996). After splitting the data into a training

and test-set (half and half), we sample 50% of the training data repeatedly

(without replacement) to estimate the bias and variance on the test-set. This

yields training sets that are 25% of the original size, the same size used in the

experiments detailed in Section 3.2. The �rst split was repeated three times and

the second-level sampling was done 10 times. Because in practice, it is impossible

to estimate the intrinsic noise, the bias term includes the intrinsic noise.

The results of the bias-variance analysis are shown in Figure 5. The following

observations can be made:

1. Cost-complexity pruning has the smallest variance, but also the highest bias.

Overall, it outperformed the other pruning methods for the MSE criterion.

The largest variance occurred for error-based pruning with frequency counts

and no-pruning with the Laplace correction.

2. The MSE was similar for all Laplace correction algorithms.

3. The average tree sizes were ccp(26.9), eb(117.8), kl(203.3), lp(280.2), and

np(670).

Our hypothesis that Laplace correction helps was con�rmed, but there was

little di�erence between the pruning methods in terms of the MSE. The main

di�erence between the pruning algorithms was in the tree size.

Our third set of experiments was to evaluate probabilistic predictions based

on log-loss. Frequency counts could not be used for this experiment because

zero probability predictions cause in�nite loss. The algorithms had the following

average log-losses: ccp(0.400), eb(0.411), kl(0.417), lp(0.419), np(0.429).

3.4 ROC Curves

The Receiver Operating Characteristic curves provide a way of showing how

false positive predictions increase as true positive predictions increase (Provost

& Fawcett 1997). The curves are generated by varying the loss matrix (in our

case from a ratio of 20 to 1 to a ratio of 1 to 20) and plotting the number of

false and true positive identi�cations of the goal class for the test-set. The best

possible performance is the top-left corner.

Figure 6 shows two selected curves. The curve for crx shows that np-lc (no-

pruning) is always dominated by another pruning method, i.e., no matter which

loss-matrix one uses, np-lc should not be used with this dataset. For pima, on

the other hand, np-lc dominates all other pruning methods in the left half of the

curve.
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Fig. 6. ROC curves for two datasets.

4 Conclusions

Of the two steps in inducing a decision tree|growing and pruning|we concen-

trated only on the latter stage. We view this as a necessary �rst step to study

before studying di�erent growing techniques as was done in Pazzani, Merz, Mur-

phy, Ali, Hume & Brunk (1994).

We extended cost-complexity pruning to loss and introduced two methods

that can be used with loss matrices: Laplace-pruning and KL-pruning. Laplace-

pruning was the best pruning method with the 10 to 1 loss matrix and tied

for best pruning with no-pruning with Laplace correction for the 100 to 1 loss

matrix.

Our study revealed that Laplace correction at the leaves is extremely ben-

e�cial and aids all pruning methods used. We also found that for the datasets

tested, pruning did not help much in reducing the loss, but did lead to smaller

trees. Cost-complexity pruning was especially e�ective at reducing the tree size

without increasing the loss, and in fact, decreased the MSE the most.

No single pruning algorithm dominated over all datasets in terms of loss /

MSE / log-loss, but more interestingly, even for a �xed domain, di�erent pruning

algorithms were better for di�erent loss matrices as shown by the ROC curves.

These di�erences, however, were not major. Given the fact that there was little

di�erence in loss/MSE even for algorithms that did not use the loss matrix during

tree induction (pruning), we conclude that it will usually su�ce to induce a single

probability tree and use it with di�erent loss matrices, especially in the same

area of the ROC curve.

References

Bernardo, J. M. & Smith, A. F. (1993), Bayesian Theory, John Wiley & Sons.

Berry, M. J. A. & Lino�, G. (1997), Data Mining Techniques: For Marketing, Sales,

and Customer Support, John Wiley & Sons.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984), Classi�cation and

Regression Trees, Wadsworth International Group.

Buntine, W. (1992), `Learning classi�cation trees', Statistics and Computing 2(2), 63{

73.

12



Cestnik, B. (1990), Estimating probabilities: A crucial task in machine learning, in

L. C. Aiello, ed., `Proceedings of the ninth European Conference on Arti�cial

Intelligence', pp. 147{149.

Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, John Wiley &

Sons.

Danyluk, A. & Provost, F. (1993), Small disjuncts in action: Learning to diagnose

errors in the telephone network local loop, in P. Utgo�, ed., `Machine Learning:

Proceedings of the Tenth International Conference', Morgan Kaufmann Publishers,

Inc., pp. 81{88.

Draper, B. A., Brodley, C. E. & Utgo�, P. E. (1994), `Goal-directed classi�cation

using linear machine decision trees', IEEE Transactions on Pattern Analysis and

Machine Intelligence 16(9), 888{893.

Esposito, F., Malerba, D. & Semeraro, G. (1995a), A further study of pruning methods

in decision tree induction, in D. Fisher & H. Lenz, eds, `Proceedings of the �fth

International Workshop on Arti�cial Intelligence and Statistics', pp. 211{218.

Esposito, F., Malerba, D. & Semeraro, G. (1995b), Simplifying decision trees by pruning

and grafting: New results, in N. Lavrac & S. Wrobel, eds, `Machine Learning:

ECML-95 (Proc. European Conf. on Machine Learning, 1995)', Lecture Notes in

Arti�cial Intelligence 914, Springer Verlag, Berlin, Heidelberg, New York, pp. 287{

290.

Fawcett, T. & Provost, F. (1996), Combining data mining and machine learning for

e�ective user pro�ling, in `Proceedings of the 2nd International Conference on

Knowledge Discovery and Data Mining', pp. 8{13.

Geman, S., Bienenstock, E. & Doursat, R. (1992), `Neural networks and the

bias/variance dilemma', Neural Computation 4, 1{48.

Good, I. J. (1965), The Estimation of Probabilities: An Essay on Modern Bayesian

Methods, M.I.T. Press.

Kohavi, R., Sommer�eld, D. & Dougherty, J. (1996), Data mining using MLC

++

:

A machine learning library in C

++

, in `Tools with Arti�cial Intelligence', IEEE

Computer Society Press, pp. 234{245.

http://www.sgi.com/Technology/mlc.

Kohavi, R. & Wolpert, D. H. (1996), Bias plus variance decomposition for zero-one

loss functions, in L. Saitta, ed., `Machine Learning: Proceedings of the Thirteenth

International Conference', Morgan Kaufmann, pp. 275{283. Available at

http://robotics.stanford.edu/users/ronnyk.

Kubat, M., Holte, R. & Matwin, S. (1997), Learning when negative examples abound,

in `The 9th European Conference on Machine Learning, Poster Papers', pp. 146{

153.

Mansour, Y. (1997), Pessimistic decision tree pruning based on tree size, in D. Fisher,

ed., `Machine Learning: Proceedings of the Fourteenth International Conference',

Morgan Kaufmann Publishers, Inc.

Mehta, M., Rissanen, J. & Agrawal, R. (1995), MDL-based decision tree pruning,

in U. M. Fayyad & R. Uthurusamy, eds, `Proceedings of the �rst international

conference on knowledge discovery and data mining', AAAI Press, pp. 216{221.

Merz, C. J. & Murphy, P. M. (1997), UCI repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html.

Mitchell, T. M. (1997), Machine Learning, McGraw-Hill.

Oates, T. & Jensen, D. (1997), The e�ects of training set size on decision tree com-

plexity, in D. Fisher, ed., `Machine Learning: Proceedings of the Fourteenth Inter-

national Conference', Morgan Kaufmann, pp. 254{262.

13



Oliver, J. & Hand, D. (1995), On pruning and averaging decision trees, in A. Prieditis

& S. Russell, eds, `Machine Learning: Proceedings of the Twelfth International

Conference', Morgan Kaufmann, pp. 430{437.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T. & Brunk, C. (1994), Reducing

misclassi�cation costs, in `Machine Learning: Proceedings of the Eleventh Inter-

national Conference', Morgan Kaufmann.

Provost, F. & Fawcett, T. (1997), Analysis and visualization of classi�er perfor-

mance: Comparison under imprecise class and cost distributions, in D. Hecker-

man, H. Mannila, D. Pregibon & R. Uthurusamy, eds, `Proceedings of the third

international conference on Knowledge Discovery and Data Mining', AAAI Press.

Quinlan, J. R. (1987), `Simplifying decision trees', International Journal of Man-

Machine Studies 27, 221{234.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann, San

Mateo, California.

Quinlan, J. R. & Rivest, R. L. (1989), `Inferring decision trees using the minimum

description length principle', Information and Computation 80, 227{248.

Turney, P. (1997), Cost-sensitive learning. http://ai.iit.nrc.ca/bibliographies/cost-

sensitive.html.

Wallace, C. & Patrick, J. (1993), `Coding decision trees', Machine Learning 11, 7{22.

14


