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Abstract

The simple Bayesian classi�er (SBC), sometimes called Naive-Bayes, is built based

on a conditional independence model of each attribute given the class. The model was

previously shown to be surprisingly robust to obvious violations of this independence

assumption, yielding accurate classi�cation models even when there are clear condi-

tional dependencies. The SBC can serve as an excellent tool for initial exploratory

data analysis when coupled with a visualizer that makes its structure comprehensible.

We describe such a visual representation of the SBC model that has been successfully

implemented. We describe the requirements we had for such a visualization and the

design decisions we made to satisfy them.
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1 Introduction to the Simple-Bayesian Classi�er

In supervised classi�cation learning, a labeled training set is presented to the learning al-

gorithm. The learner uses the training set to build a model that maps unlabeled instances

to class labels. The model serves two purposes: it can be used to predict the labels of un-

labeled instances, and it can provide valuable insight for people trying to understand the

domain. Simple models are especially useful if the model is to be understood by non-experts

in machine learning.

The simple Bayesian classi�er (SBC), sometimes called Naive-Bayes, is built based on

a conditional independence model of each attribute given the class (Good 1965, Duda &

Hart 1973, Langley, Iba & Thompson 1992). Formally, the probability of a class label value
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The above probability is computed for each class and the prediction is made for the class with

the largest posterior probability. The probabilities in the above formulas must be estimated

from the training set. This model is very robust and continues to perform well even in the face

of obvious violations of this independence assumption (Domingos & Pazzani 1996, Kohavi

& Sommer�eld 1995).

We begin with a discussion of our motivation and requirements for the SBC visualization.

We then describe it in detail and then explain why we made certain design decisions.

2 Motivation and Requirements for Visualization

The ability to describe the structure of a classi�er in a way that people can easily understand

transforms classi�ers from incomprehensible black boxes to useful tools that convert the data

into knowledge. One advantage of the SBC is that it uses a fairly simple model that users

can easily understand.
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We now describe the visual representation of the SBC model that

has been successfully implemented in SGI's MineSet data mining product under the name

Evidence Visualizer.

Classi�cation of data without any explanation of the underlying model reduces the trust

of users in the system and does not help the knowledge discovery process. For example,

Spiegelhalter & Knill-Jones (1984) reported that physicians would reject a system that gave

insu�cient explanation even though it had good accuracy. A visualization accompanying an

induced classi�er provides a way for users to understand the model used in the classi�cation.

A human may choose to reject a classi�cation or the whole model if he or she realizes that

1

Some SAS users we talked to claimed that CROSSTAB, a procedure for generating cross-tabulated

counts, was probably the most frequently used procedure in SAS; the SBC provides a similar function. We

believe the visualization may be far more useful than textual tables.
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the classi�er is basing its decision on factors that are not signi�cant or relevant, or that the

classi�er is ignoring crucial factors.

In constructing our visualization of the structure of the simple Bayesian classi�er, we had

a number of design requirements:

1. Users with very little knowledge of statistics should be able to quickly grasp the primary

factors (attributes and values) in
uencing classi�cation.

2. Users should be able to see the whole model and understand how it applies to records,

rather than the visualization being speci�c to every record as was done in the evidence

balance sheets described in Spiegelhalter & Knill-Jones (1984, Tukey's discussion) and

Madigan, Mosurski & Almond (1997). Showing users the complete model provides a

much more powerful knowledge discovery tool.

3. Users should be able to compare the relative evidence contributed by every value of

every attribute.

4. Users should be able to see a characterization of a given class. We de�ne a character-

ization for a class as being a list of attribute values or ranges that di�erentiate that

class from others.

5. Users should be able to infer record counts and con�dence in the shown probabilities

so that the reliability of the classi�er's prediction for speci�c values can be assessed

quickly from the graphics. The precise numbers can always be made accessible through

interaction with the visualization, but most of the time a visual cue should be what

prompts a user to desire such a number.

6. The system should handle many attributes|on the order of hundreds|including at-

tributes with hundreds of values without creating an incomprehensible visualization or

a scene that is impractical to manipulate.

7. Users should be able to interact with the visualization to perform classi�cations. Specif-

ically, users should be able to classify data directly in the visualizer and watch the

predictions change as they select values for attributes.

Given the above desiderata, we constructed a visualization called Evidence Visualizer.

3 Our Proposed Visualization

The Evidence Visualizer displays the structure of the SBC and allows users to interact with

it, examine speci�c values, show probabilities of picked objects, and ask what-if questions.

Figure 1 and 2 show the two possible displays that users see.

There are two panes in the Evidence Visualizer. The right pane shows a large pie with

prior probabilities for the possible label values. As the user interacts with the visualization

by choosing values for attributes, the slices update to show the posterior probabilities. The

left pane consists of rows of pie charts, one for each attribute. The attributes are sorted in
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Figure 1: The evidence visualizer's pie chart display of the SBC model. The height of each pie

represents the number of instances for that value or range.

Figure 2: The evidence visualizer's bar chart display of the SBC model. The height shows evi-

dence for the selected class. The bars become less saturated as the number of instances decreases,

signifying a wider con�dence interval.
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Figure 3: Closeup on some attribute values (left) and selection of speci�c value ranges to see

the posterior probability (right). Users can highlight a pie chart by moving the cursor over it. A

message then appears at the top showing the attribute value (or range) and the number of instances

having that value (or range). The pie's height is proportional to this number. Pointing to the items

in the legend on the right pane, shows the numerical probabilities corresponding to the slice size.
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order of importance computed as the conditional entropy (Cover & Thomas 1991) of each

attribute and the label. The left pane will switch to a bars representation of evidence for a

label once a speci�c label is selected. There is one pie chart or bar for each discrete value or

range of the attribute.

3.1 The Pie Chart Representation

In the pies representation on the left, the height of a pie is proportional to the number

of instances having that attribute value. The sum of the pie heights for every row is con-

stant. The slices of the pies represent the evidence, de�ned as the normalized conditional

probabilities of an attribute value (or range) A, given a class label C

i

of n possible classes.

Speci�cally, the size of each slice for attribute representing class label value C

i
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The size of a pie slice indicates the amount of evidence to \add" to the class label matching

the slice if we know that an instance has the given attribute value that matches the speci�c

pie. If the slices are of equal size for an attribute value, knowing that an instance has

this speci�c attribute value adds equal evidence to all classes, indicating that the posterior

probability will not change, and thus this attribute value is irrelevant according to the SBC

model.

Users may interact with the visualization by selecting values for the attributes and ob-

serving how the posterior probability (pie chart on the right) changes. For example, selecting

the pie for sepal-length < 5:45 inches and the pie for sepal-width > 3:05 inches shows that

an iris with these characteristics is probably an iris-setosa (Figure 3).

3.2 The Bar Chart Representation

The bars representation gives evidence that is additive as opposed to multiplicative. For-

mally, starting from Equation 1 repeated below:
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we can take negative logs of each side (a small epsilon is added to avoid logs of zero if a
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In this mode of the Evidence Visualizer, which displays evidence against the selected class,

each bar's height is proportional to � log (P(A

j

j C

i

)) and the base height (representing the

prior evidence) on which all bars stand as proportional to log (P(C

i

)). This shows evidence

against each class because the class with the smallest sum is predicted. In a complementary
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mode, showing evidence for the selected class, the bar height shows the sum of the log-

evidence against all other classes as shown in Figure 2. A bar for class i is then proportional

to

� log (1 � P(A

j

j C

i

))

and the base is proportional to log (1 � P(C

i

)). This mode was found to be more intuitive

to users.

This kind of representation is excellent for characterizing a class of interest. If one selects

a di�erent class, the heights and colors of the bars change to represent the new class. The

colors become less saturated (i.e., grayer) if the con�dence interval for the estimated evidence

is large, signifying that the estimate is based on a small number of instances. The tool is

interactive and users can highlight a bar bymoving the cursor over it. Once a bar representing

A

i

is highlighted, statistical information is shown, including P (C

j

j A

i

), P (A

i

j C

j

), the

additive evidence, 95% con�dence intervals for the probabilities, and the instance count.

The additive evidence can be interpreted as the information content in bits (Cover &

Thomas 1991). High evidence values will increase the class posterior probability more. This

evidence can be summed in order to determine which class is being predicted by the model

(unlike probabilities, which must be multiplied). This is analogous to a race between runners,

each representing a class. Each time an attribute value is selected, each runner for each class

is advanced by the corresponding amount of evidence. The predicted class is represented by

the runner that advanced the furthest.

Because only the relative distances are important, we found it useful to subtract the

evidence of the class with the smallest evidence from the rest. This is analogous to measuring

relative distances from the slowest runner. When there are values that add similar evidence

to all classes, the bar heights will be low. In two class problems, every attribute value will

have at most one bar with a positive height. This method accentuates the importance of

di�erences in evidence as opposed to the absolute values.

The visualizer orders the values (or ranges) depending on the attribute type. If the

attribute is ordered (continuous ranges are commonly discretized) there is a natural order

de�ned. If the attribute is nominal, there are a variety of ways that the visualizer provides

to order the values:

1. The values could be sorted alphabetically. Sorting values alphabetically can aid in lo-

cating speci�c values when many are present. For example, when an attribute describes

the country of birth.

2. The values can be sorted by decreasing number of instances with the leftmost values

having the greatest height and decreasing to the right. The values further to the right

would have less statistical signi�cance and can be ignored by the user or not drawn

below some threshold count.

3. The values can be sorted by decreasing size of conditional probability value for a

speci�ed label value. This makes the values that give the most evidence for the given

class toward the left. As can be seen for the education attribute shown in Figure 1

and 3 (left), this often has the e�ect of ordering an attribute in a natural way. The user

selects the class value to use for sorting, with a default to the value with the largest

prior probability.
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4. A method which we have not yet implemented involves automatic grouping of values.

If certain values result in similar conditional probabilities, we can group them together

in a single pie.

We have found the visualizer to be very useful in aiding knowledge discovery and under-

standing patterns. Customers of MineSet reported that end users �nd it useful and easy to

understand.

4 Design Decisions

Our proposed visualization satis�es the requirements outlined in Section 2. We now describe

in detail some of the choices made and the reasons for making them.

We found that a three dimensional representation is the best way to accommodate large

numbers of attributes and values. Three dimensional navigation combined with perspective

allows the user to closely examine an area of interest while maintaining context in the

whole visualization. The predicted distribution of classes was included in a separate two

dimensional pane to make it readily accessible.

We display probabilities as both pies and bars because each representation has distinct

advantages in helping a user understand the operation of the simple Bayesian classi�er. We

found that a pie chart was optimal for showing probabilities because the angles subtended

by the slices and representing relative conditional probabilities always sum to one. This

allows us to easily display a full probability distribution in a small space. We recognize

some of the drawbacks of pie charts noted by Tufte (1983, p. 178), but in our case they

have several advantages that outweigh their disadvantages. Pie charts are used pervasively

to represent distributions in magazines and newspapers making them understood and rec-

ognized by everyone. The use of pie charts allows many probability distributions to be

displayed simultaneously, something we have not been able to achieve with other graphical

representations.

Because the pie charts are of the same size and laid out on a line, they are similar to

charts used by Consumer Reports to represent product quality through a set of circles �lled

with varying amounts of green and black to signify good and bad aspects respectively. Tufte

(Tufte 1983, p. 174) lauded this approach as \a particularly ingenious mix of table and

graphic."

The use of the third dimension allows us to show the number of records underlying a

particular distribution as the height (z coordinate) of the pie chart. This display gives users

a quick way to gauge the reliability of any given distribution by rotating the scene.

The pies representation is strongest when the user is interested in distributions over all

classes. The alternate representation, using bars, is more useful when the user is interested in

properties of a speci�c class, and its use during interactive classi�cation closely parallels the

use of an evidence balance sheet to explain a result (Spiegelhalter & Knill-Jones 1984). The

use of log-probabilities for the bars coupled with subtracting the minimum bar height from

all bars makes this representation ideal for understanding the e�ect each attribute value

has on the �nal prediction. Prediction is accomplished simply by adding up bar heights

(evidence) corresponding to the users choices for each class, and picking the class with the

highest total evidence.
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Figure 4: An example of the evidence visualizer for the Mushroom dataset, where the goal is

to determine mushroom edibility. One can see that Odor on the top was ranked as an excellent

discriminator; the values are perfect discriminators except for the value \none," which is represented

by the third pie from the left. The pointer points to the �rst value of Stalkroot, which is slightly

o�set to help the user understand that the �rst value is a missing (null) value.

Figure 5: An example of a binned attribute used as label. The goal to understand factors a�ecting

income. Because the label|gross income|was binned and has a natural ordering, the colors

assigned form a continuous spectrum from green to red, where red is the highest range. Also

note that the class labels on the right are arranged according to their proportion of the expected

probability distribution; The largest slice appearing at the top. One can quickly see that salary

rises with age.
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Nominal attributes with many values pose problems because they 
ood the visualization

with a large number of pies which may be di�cult to interpret or compare. We provide

two mechanisms for solving this problem; �rst, we order the values based on user preference

(alphabetical, counts, probabilities). Second, we provide an option to remove values based on

less that a user-speci�ed small percentage of the data, typically 1% or less, thus eliminating

the least signi�cant portions of the scene. These two mechanisms combined make it easier

for users to focus on the key values.

It is very important to display reliability of the probability estimates through the visual-

ization. The pie charts display accomplishes this by showing the number of records behind

each distribution as the height; higher pies are more reliable. The bars mode uses height to

show evidence, so we had to pick an alternate method. We lower the saturation of a bar as

its con�dence worsens, e�ectively graying out bars with little support. This display of con-

�dence is essential in the bars mode because probability distributions estimated from little

data tend to be heavily skewed, resulting in large bars which pop out during visualization.

Making these bars gray prevents them from heavily in
uencing the user.

If there are many classes it can be di�cult to locate the name of the class that is predicted.

For this reason, the class labels listed on the right pane are ordered by decreasing prior

probabilities (Figure 5). The exact probabilities can be determined by moving the cursor

over a particular class label.

Our visualization is also designed to handle unknown (null) values. Because nulls are

handled di�erently in the classi�cation process, probability distribution pies representing

null attribute values appear in a special leftmost column, o�set slightly from the other

values. They also may not be selected by the user; to leave an attribute's value unde�ned

the user simply leaves all attribute values in a speci�c row unselected. For an example of

unknown handling, see the �rst value of attribute \stalkroot" in �gure 4.

In some cases the classes are an ordered list. This usually occurs as a result of binning

a continuous variable in order to use it as a class label. In this case the class colors are not

assigned randomly: a continuum is used to indicate the low to high ordering of the classes.

Users can hence easily identify values which lend strong evidence for predicting a class at

one end of the range or the other as shown in Figure 5.

To allow the user to see datasets with hundreds of attributes, we compute the importance

of each attribute and display them in the scene ordered by this measure. Technically, the

importance value is conditional entropy (Cover & Thomas 1991) of each attribute and the

label. Attribute with low conditional entropy have little e�ect on the posterior probability.

A slider button on the bottom right (see Figure 1) allows users to remove lower-ranked

attributes from the visualization.

To aid understanding with respect to the actual data used to build the classi�er, it is

possible to drill through to the actual instances which produced certain graphics. For exam-

ple, a user may select the pies corresponding to education=masters and occupation=clerical

and see the instances in the dataset that have these two values.
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5 Summary

We described a visual representation of the SBC model that has been successfully imple-

mented and can help one to understand the underlying model and the importance of speci�c

attributes and attributes values in the classi�cation process. The visualization gives insight

into how classi�cation is done, as well as allowing users to answer what-if questions through

interactions with the visualization, something we found very useful.

We described the desiderata for such a visualization and the speci�c design decisions that

we made to meet the requirements.

Acknowledgments We would like to thank everyone on the SGI MineSet team, especially

Joel Tesler and Gerald Sangudi who helped with the conception of the Evidence Visualizer.

References

Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, John Wiley & Sons.

Domingos, P. & Pazzani, M. (1996), Beyond independence: conditions for the optimality of

the simple Bayesian classi�er, in L. Saitta, ed., `Machine Learning: Proceedings of the

Thirteenth International Conference', Morgan Kaufmann, pp. 105{112.

Duda, R. & Hart, P. (1973), Pattern Classi�cation and Scene Analysis, Wiley.

Good, I. J. (1965), The Estimation of Probabilities: An Essay on Modern Bayesian Methods,

M.I.T. Press.

Kohavi, R. & Sommer�eld, D. (1995), Feature subset selection using the wrapper model:

Over�tting and dynamic search space topology, in `The First International Conference

on Knowledge Discovery and Data Mining', pp. 192{197.

Langley, P., Iba, W. & Thompson, K. (1992), An analysis of Bayesian classi�ers, in `Proceed-

ings of the tenth national conference on arti�cial intelligence', AAAI Press and MIT

Press, pp. 223{228.

Madigan, D., Mosurski, K. & Almond, R. G. (1997), `Graphical explanation in belief net-

works', J. Comp. and Graphical Statistics p. to appear.

Spiegelhalter, D. J. & Knill-Jones, R. P. (1984), `Statistical and knowledge-based approaches

to clinical decision-support systems, with an application in gastroenterology', Journal

of the Royal Statistical Society A 147, 35{77.

Tufte, E. R. (1983), The Visual Display of Quantitative Information, Graphics Press,

Cheschire, CT.

9


