28 Sept 1998

Improving Accuracy by
Voting Classification Algorithms

Ronny Kobavi

scticen Graphics, Ine. and Btue /Tartins LLC

Joint work with Eric. Bauer

St cen 7/’470/&&5, I7e.

Outline

¢ Introduction to voting methods.

¢+ Experimental design and the
Bias-Variance decomposition.

¢ Bagging: pruning, using prob estimates,
wagging, backfitting.

¢ Boosting: AdaBoost, Arc-X4.
Numerical instabilities.

¢ Open questions.

Introduction to Voting Methods

¢ Main idea: build multiple models and combine
them. T

Combiner

¢ Variants differ in:
— How models are built (e.g., change data or
change algorithm).
— How predictions are combined (e.g., uniform
vs. hon-uniform weighting, multiple
levels—--stacking).

Key Ingredients

1. Low error rate for models.

2. Diversity, i.e., non-correlated (or
anti-correlated) models.

3. Many models.

¢ It is easy to satisfy #2 and #3 by sacrificing #1:
build bad models.

¢ It is easy to satisfy #1 and #3 by sacrificing #2:
build small tweaks to a good model.

Examples of Voting Algorithms

¢ Bagging:
— Use bootstrap samples (sample with o
replacement) to create different datasets.
— Combiner uses uniform weighting. I
¢ Wagging: similar to bagging, but e
- Reweigh instances instead of sample. @06@
¢ Randomized splits in trees: S
- Modify split selection: randomly select &
(e.g., uniformly) from k best splits. N
¢ Option trees: A

— Select top k splits and combine them (at Q@@
multiple levels of the tree). »

Examples of Voting Algorithms (ll)

‘ ArC—X4: XD~
- Increase weight of misclassified instances@b‘z’
b,\

Q
¢+ Boosting: >
- Increase weight of misclassified instances
- Combine classifiers, giving low error
classifiers higher weight.

Disadvantage of above Adapting resample and
combine algorithms: hard to parallelize. Each
classifier is created based on the previous
ones.

(Dis)advantages of Voting Methods

Advantages

¢ Lower error rate.

¢ Multiple models can give more insight
(probably only for uniform combinations).

Disadvantages:

¢ Loss of comprehensibility:
— Less structure (except for option trees).
— Huge models.

¢+ Slower induction.
May exhaust hardware memory.

¢+ Slower classification time.

Introduction to the Bias-Variance
Decomposition

The B+V decomposition is a powerful tool for
analyzing induction algorithms.

It holds for finite samples (not in asymptopia).

Given: Target concept, Training set size,

Induction algorithm, it provides a

decomposition of the error into

— Intrinsic noise (Bayes Optimal)

— Squared bias: how well do hypotheses match
the target on average.

— Variance: how much hypotheses vary for
different training sets.

The Decomposition

bias;

variance, =

f and m in the conditioning events are implicit.

Example

Assume that the Boolean label is independent
of the attributes (random concept).

The label is 1 with probability (1-p) for p<0.5

Constant classifier: predict 1.

- Bias2: p2 (the average guess is off by p).
— Variance: 0 (rock stable guess).

Single rule: predict 1 if A_i=1 (A_i is an attribute
that leads to a pure split by chance)
- Bias?2: 0 (on average you predict well).
— Var: p(1-p) (unstable predictions because
A iis a "random” split).

Tree Pruning / Overfitting

The previous example shows why pruning is useful.

The node s

Is not pure 2 :
yet we stop R
and predict majority

Bias2 = p2
Var =0

p

Error = Bias + Var = p

Predict 0

1-p

Bias2 =0

Var

= p(1-p)
Error = Bias + Var = p(1-p)

p2<p(1-p) if p< 0.5, which we assumed.
In this case, it is better not to split. The variance hurts us
because we built a structure that is too complex.

We split the
<— node and get
two pure nodes
with the right
probabilities

Curse of Dimensionality

20 dimensional unit hyper-cube.

100,000 instances uniformly distributed.

What is the expected distance of an instance to
its closest neighbor?

0.1
0.5

0.7 oy
0.9
0.99 00 100
0.999

1.5

20.0

1,1,1

Experimental Design

Details of large experiment by Bauer and Kohavi
(to appear in Machine Learning journal).

Desiderata for data sets and sampling sizes:

¢+ Small confidence interval on estimated error.
We chose files with >1000 instances.

¢ There should be room for improvement.
Sample sizes chosen based on learning
curves so that we know error is not optimal.

||||||

18

16 }
14 8

—————————————————————————————————————

Induction Algorithms

¢ MCA4: similar to C4.5, implemented in MLC++
— No pruning: deactivate pruning.
— Probabilistic estimates: leaves predict
distribution (frequency counts).

— (Actual paper has two versions of decision
stumps.)

¢+ NB: Naive-Bayes with discretized data.

Bagging

Input: training set S, Inducer Z, integer T' (number of bootstrap samples).

fori=1to T {
S’ = bootstrap sample from S (i.i.d. sample with replacement).

C; = I(S")

}

C*(x) = arg max Z 1 (the most often predicted label y)

yey 1:C;(x)=y

Output: classifier C*.

In the experiments, T was set to 25.

Bagging Observations

¢ Bagging was uniformly better on all 14
datasets!

¢ Error reduction due to variance reduction.
Average relative reduction in err was 29%.

B vica

bagged MC4

M bagged MC4 without pruning with prob. estimates

bagged MC4 without pruning with prob. estimates and backfitting

Bias is below variance

¢+ Trees were larger.

Hypothesis: replicated instances seem like
strong patterns and pruning is incorrect.

Bagging Observations — Pruning

¢ If tree pruning is disabled, then
— Bagged trees are smaller (training set size is
effectively smaller-63.2% unique instances).
— Average bias was reduced by 14% (relative).
— Average variance grew by 11% (relative).

M vica

i

bagged MC4

M bagged MC4 without pruning with prob. estimates

bagged MC4 without pruning with prob. estimates and backfitting

Bias is below variance

TS S

¢ "No pruning” did not make an overall
difference, but we suspect that with more
replicates, it is better not to prune.

Bagging Variants

¢ Wagging (Weight Aggregation) perturbs the
training set weights instead of sampling.

Results were similar to bagging.

¢+ Backfitting takes the unused data from each
bagging replicate (~ 36.8% unique instances)

and updates the counts at the leaves.

Average relative error decreased 3%, which
was all due to variance reduction. Variances

for all files improved!

Boosting

Input: training set S of size m, Inducer Z, integer T' (number of trials).

S’ = S with instance weights assigned to be 1.
Fori=1to T {
C; =Z(5")
6 =+ Z weight(x) (weighted error on training set).
z;€85":C5(w5)F#Y;
If ¢, > 1/2, set S’ to a bootstrap sample from S with weight 1 for
every instance and goto step 3 (this step is limited to
25 times after which we exit the loop).

Bi=¢€/(1—¢€)
For-each z;, divide weight(z;) by 2¢; if C;(x;) # y,; and 2(1—¢;) otherwise

}

Output: classifier C*.

Observations on Boosting

¢ Incorrect instances are weighted by a factor

inversely proportional to the training set error
(1/2e).

A training set error of 0.1% will cause weights
to grow by a factor of 500.

¢ The total weight of the misclassified instances
Is half the original training set weight.
The correctly classified instances get the
other half of the total weight.

Running Example - Shuttle (I)

Test-set
error:
0.38%

Five misclassified examples on training set of
size 5,000 (0.1%) causes their weight to be 500.

Running Example - Shuttle (Il

Test-set
error:
0.19%

qqqqqq
b o
L. L

One misclassified example (0.01%) that was not
previously misclassified is reweighted from 0.5
to 2500.

Running Example - Shuttle (Ill)

Test-set
error:
0.21%

nnnnnn
""""""""""

Five mistakes again, all on instances previously
correctly classified.

Running Example - Shuttle (1V)

Test-set
error:
0.45%

CI A o S G

12 mistakes are made.

Running Example - Shuttle (V)

If original AdaBoost
Is used, beta is
0.0000125, which

causes weights to go

below 10-6 prior to

~.. hormalization.

-, Underflow problems
~ start...

One misclassified example with weight 0.063.
Training set error is 0.0012%.

Running Example - Shuttle (VI)

Test-set
error:
0.08%

Classifier makes no mistakes.
Note that this Is a single classifier, which Is
significantly better than the original one!

AdaBoost Observations

¢ AdaBoost slightly outperformed Bagging.

¢+ Unlike Bagging, boosting did not uniformly
reduce the error.

Hypothyroid, sick-euthyroid, adult, and
LED-24 had higher errors.

¢ Average tree size was larger for most files. It

was especially larger for files on which
performance degraded.

¢ Problems with robustness to noise.

Boosting: Bias + Variance

¢ Boosting reduced both bias and variance:
Average bias reduced 32% (relative).
Average variance reduced 16% (relative).

M vc4

bagged MC4 without pruning with prob. estimates and backfitting

M boosted MC4 using Arc-x4-resample

boosted MC4 using AdaBoost

Bias is below variance

Open Questions

<

Can AdaBoost be made more robust to noise?
Arc-X4 did not work with reweighting. Why?
Can we learn a single model that is better (as
happened with shuttle)?

Bagging and Boosting build huge structures.
What happened to Occam’s razor? Is there a
compact representation?

Bagging worked better without pruning.
AdaBoost did not. Why?

Boosting is sequential. Can parallelism be
used?

Summary

¢

AdaBoost reduced the error by 27% with MC4
and 24% with Naive-Bayes (relative).

Note however that we knew improvement was
possible on our datasets.

Bagging reduces variance. AdaBoost reduces
both bias and variance.

Bagging benefits from no pruning,
probabilistic variants, and backfitting.

Be careful with numerical instabilities when
implementing AdaBoost.

CPU #55 on Flurry

¢ We used about 4,000 CPU hours.

Many runs were done on Flurry, a 128 CPU
Origin 2000 with 30GB of RAM.

¢ We spent a lot of time trying to track an
assertion failure, where sometimes
normalizing an array did not add up to 1.0.

After many experiments, we found that
CPU#55 on Flurry was making arithmetic
errors sometimes...

¢ Today the OS runs a program called paranoia
on large machines to track such problems.

