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1 INTRODUCTION

Practical constructions of identity-based encryption (IBE)
first appeared at the turn of the century. Two similar
schemes based on pairings were independently proposed
by Sakai et al. (2000) and by Boneh and Franklin (2001),
followed soon afterwards by a completely different scheme
due to Cocks (2001). These three results in rapid succes-
sion came after a comparatively very long hiatus of almost
two decades, which started when Shamir (1984) first posed
his famous IBE question without indicating how to solve it.
Although a few interesting attempts at solving the prob-
lem have been made in the interval, all pre-2000 proposals
were fundamentally inefficient, not only for practical use
but even also by the more relaxed standards of complexity
theory. We mention the schemes of Tanaka (1987), Tsujii
and Itoh (1989), Maurer and Yacobi (1996), and Steiner
et al. (1996), for historical value.

Things have changed dramatically in the years since
2000. Many improvements have been made to the Boneh-
Franklin IBE scheme, and a few brand new approaches to
IBE have even been proposed. All of them, however, rely
in one way or another upon the notion of bilinear pair-

ing. Pairings are powerful mathematical constructs defined
over certain algebraic curves, and whose recently discov-
ered potential for creative cryptographic applications has
not ceased to be a source of much amazement. In this re-
gard, Cocks’ pairing-free approach to IBE remains for the
most part an isolated result with its share of limitations.
Nevertheless, the foregoing is not meant to suggest that all
pairing-based IBE systems are mere mirror images of one
another; on the contrary, there are significant differences
in the way pairings have been used, giving us a choice of
systems with dissimilar properties.

In this context, a pairing, also called bilinear map, is a
function from two cyclic groups into a third; it is linear
in both arguments, and the algebraic groups that define
its domain and codomain have computational representa-
tions that make the discrete logarithm and a number of
related problems infeasibly hard in those groups—or so it
is widely believed (a more precise definition will follow).
Bilinear pairings have quickly become very prized in cryp-
tography, as much for their demonstrated utility in the
construction of new protocols, as for their efficient com-
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putability based on the theory of algebraic curves, with-
out which the protocols would not be usable in practice.
Identity-based cryptography and IBE in particular can be
regarded as the most exemplar success stories of bilinear
pairings in cryptography.

In deference to the multiplicity of IBE schemes and the
disparity of their properties, we endeavor to draw an in-
ventory of the most practical approaches, and compare the
merits and drawbacks of the different frameworks while
keeping an eye on usability in actual deployments. This
is the objective we pursue in this note. Although other
comparisons have been made in the past, our present goal
is to adopt a more practically minded viewpoint, intended
to serve as a bridge between cryptographers who invent
those schemes, and the professional security engineers who
must evaluate, select, and eventaully deploy them as part
of larger systems.

2 PRELIMINARIES

This section provides general background information for
the reader who may not be familiar with the recent litera-
ture on identity-based encryption.

2.1 Identity-Based Encryption and Key Encapsu-

lation

The notion of identity-based encryption refers to a special
type of public-key encryption where the public key can be
freely chosen from an exponentially large set, instead of
being generated at random along with the corresponding
private key.

Recall that in a traditional public-key cryptosystem, any
participant who wishes to be on the receiving end of any
encrypted communication must have previously generated
a unique key pair. The key pair consists of a secret de-
cryption key, or private key, and a corresponding public
encryption key, which must be made widely available in an
authenticated manner. Since public keys are just random
strings, they are not intrinsically bound to their owner, and
so the usual solution to publicize this binding is to employ
a combination of public directories and cryptographic cer-
tificates issued by a designated trusted authority known
as the certificate authority. This often involves a complex
architecture referred to as a public-key infrastructure, or
PKI.

In identity-based cryptography, a public key can be any
string specified externally. These strings can carry their
own meaning, such as a combination of the owner’s iden-
tity and a suitably discretized period of validity. An im-
mediate consequence is that public keys need no longer be
distributed nor certified, since they can be reconstructed
in full by the encrypting party, and are therefore implicitly
trusted. A second consequence is that there must be an
efficient mapping from the public key to the corresponding
private key; this mapping should of course not be com-
putable by anyone, but only by some trusted authority

who holds a master secret for this purpose. In an IBE sys-
tem, users thus do not compute their own key pairs, but
obtain their private keys from the key generation authority,
after having shown the adequate credentials or successfully
completed a suitable authentication protocol. In IBE con-
texts, public keys are essentially the same as identities, and
often referred as such, or ID for short.

IBE Systems. Abstractly, an identity-based encryption
system consists of four cryptographic operations:

Setup(17). A randomized algorithm that takes a unary se-
curity parameter o as input, and outputs a random se-
cret master key masterk and the corresponding public
system parameters params.

Extract(masterk, D). A deterministic or randomized algo-
rithm that takes as input the master secret masterk
and a well-formed identity string ID, and outputs a
deterministic or randomized private key dyp.

Encrypt(params, 1D, M). A randomized algorithm that
takes as input the public parameters params, a re-
cipient identity ID, and a message M in a suitable
domain, and outputs a ciphertext C.

Decrypt(dp, C). A usually deterministic algorithm that
takes as input a private key dp and a ciphertext C,
and outputs either a decrypted message M or a failure
symbol 1.

IBKEM Systems. Sometimes, it is more advantageous
to consider the simpler notion of (identity-based) key en-
capsulation mechanism, which does not allow the sender to
choose the message being encrypted. An IBKEM system
consists of Setup(1?) and FEatract(masterk,|D) as above,
plus:

Encapsulate(params, ID). A randomized algorithm that is
input the public parameters params and a recipient
identity ID, and outputs a random session key K and
a ciphertext “capsule” C.

Decapsulate(dp,C). A wusually deterministic algorithm
that takes as input a private key d,, and a ciphertext
capsule C, and outputs either a decrypted session key
K or a failure symbol L.

The primary use of an IBKEM is to encrypt unique ran-
dom strings to be used as session keys of a downstream
Data Encryption Module (DEM) under which the actual
message is encrypted.

2.2 Mathematical Background

We now very briefly review the notion of cyclic groups
equipped with a bilinear map, or bilinear groups for short.
First, a quick reminded of what an algebraic group means
in cryptography is in order.



Computational Groups. Let p be a cryptographically
large prime, and let G be a cyclic group of order p. As is
common in cryptography, when we say “group” we intend
to convey not only the abstract notion of algebraic group,
but also the specific computational representation that we
chose for it. In our case, although G is clearly the same
algebraic group as Z; (short for (Z/pZ, +)), we do not wish
to use such a representation for G because the discrete log
is easy in Z,,.

Ideally, the computational structure of G should give
rise to a group representation that is a generic as pos-
sible. Groups of points defined on algebraic curves over
finite fields (and elliptic curves in particular) are believed
to provide such generic-looking representations. This is
fortunate because (hyper)elliptic curves are also the one
setting in which efficient and cryptographically useful bi-
linear pairings are known to exist; in particular, all the
groups involved in a pairing are believed to sustain the
discrete-log hardness assumption.

Bilinear Pairings. Consider a function e : G x G — Gy,
where G and G are cyclic groups of prime order p, and Gy
is another group also of order p. Let g € G and g € G be
generators of their respective groups. The function e will
be a bilinear map if it satisfies the following conditions.

Non-degeneracy: e(g,§) # 1 € G,
Bilinearity: Ya,b € Z,e(g%, 3°) = e(g, §)™®

(Following usual cryptographic conventions, in this paper
we employ the multipicative notation for the group opera-
tions in G, G, and Gy, and write 1 for the neutral element.)
The groups G and G are called the bilinear group(s), and
G, is the target group. Without going into details, we

briefly mention how they relate to elliptic curves.

Elliptic Curves. We require the bilinear groups G and
G to have large prime order p. Let E be an elliptic curve
over some finite field F,. We construct G and G as two lin-
early independent (sub)groups of order p in the groups of
points on £ with coordinates in F, or in an extension F .
It is also possible to take G = G, provided that there be an
efficient “distortion” homomorphism to another subgroup
G’ that is linearly independent of G; the “symmetric” pair-
ing e: G Xx G — G; will then be a wrapper for the true
pairing computed between G and G’. In all cases, the tar-
get group Gy will be the multiplicative subgroup of order
p in the extension field Fyx. The embedding degree k is
the smallest extension degree that causes F x to contain a
multiplicative subgroup of order p. Since Fyx is a field, it
follows that G; will consist of the g-th roots of unity in IF .
In general, since G < E(F,), G < E(Fg ), and Gy < Fyr,
the elements of G will have much shorter representations
than those of G and Gy; however, clever compression tricks
do exist.

For these notions to be useful, it is necessary that the
pairing and all the group multiplications be computable

as efficiently as possible. This constraint, along with the
desire to reduce the number of bits needed to represent the
various group elements, has motivated several alternative
definitions of a pairing, with slight variations designed to
accommodate different types of curves. We briefly describe
the three main types of pairings, per the nomenclature of
Galbraith et al. (2006).

Types of Pairings. The pairing most commonly seen in
research papers is the symmetric pairing, in which G = G.
A symmetric pairing thus reduces to e : G x G — Gy,
which has the advantage of simplifying the notation, but
is otherwise overly restrictive. It is preferable to describe
a scheme using the asymmetric definition of a pairing, as
given above, which is of the form e: G x G — Gy. Asym-
metric pairings are generally more compact and more effi-
cient.

Galbraith et al. (2006) propose a finer classification, that
takes into account the ease with which we can move be-
tween G and G. If the isomorphism ¢ : G — G and its
inverse ¢~ ! are both efficiently computable, the pairing
is of type 1, and it is a simple matter to rewrite it as a
symmetric pairing. If only ¢ is efficiently computable (but
not ¢—1), then the pairing is of type 2; it is asymmetric
as natively defined in G x (G, though it could conceivably
be turned into a symmetric pairing in G x G if efficiency
were no object. If none of the isomorphisms is efficiently
computable, then the pairing is forcibly asymmetric, and
it is said to be of type 3.

Although G and G may be the same, it is crucial that G,
remain distinct, and in particular that once we have landed
in Gy, it be infeasible to come back into G or G, because
doing so efficiently would violate most of the hardness as-
sumptions that make bilinear pairings useful in cryptog-
raphy. We review a sample of the relevant complexity as-
sumptions in a later section.

The Weil and Tate Pairings. The first efficient algo-
rithm for computing a class of functions on elliptic curves
that includes certain bilinear maps was proposed by Miller
in 1984, and eventually published in (Miller, 2004). These
bilinear maps are known to mathematicians as the Weil
and the Tate pairings. More recently, a number of vari-
ations to the definition of the Tate pairing have led to
substantial performance gains.

We refer the reader to Blake et al. (1999) and Blake
et al. (2005) for an algorithmic compendium on this sub-
ject. Lynn (2007), in his doctoral dissertation, also pro-
vides an excellent resource on pairings and their efficient
computation.

2.3 Complexity Assumptions

We briefly define the complexity assumptions upon which
the schemes that we shall describe rely. Since the most ef-
ficient implementations all make use of the random-oracle
model, we focus on the computational form of the vari-
ous assumptions (and not on the stronger decisional forms,



which are usually required for proving indistinguishability
in the standard model).

BDH: Bilinear Diffie-Hellman. The BDH problem
for a symmetric pairing e : G x G — Gy is usually stated as
follows (Joux, 2004; Sakai et al., 2000; Boneh and Franklin,
2001):

Given a tuple (g, g%, ¢°, ) € G* as input, output
e(g,9)* € Gy.

The definition has later been relaxed to the general case of
an asymmetric pairing e : G x G — G; (Boneh and Boyen,
2004a):
Given (g,9%,¢%) € G® and (3,3, 5°) € G as in-
put, output e(g, §)¢ € Gy.

The two problem definitions coincide when g = ¢ and thus
G = G, i.e., in the case of type-1 pairings. The (general)
BDH assumption then simply states that it is infeasible
to solve a random instance of the (general) BDH problem,
with non-negligible probability, in time polynomial in the
size of the problem instance description.

Gap-BDH: Gap Bilinear Diffie-Hellman. The Gap-
BDH problem is essentially the same as the BDH problem,
except for the important difference that, here, the solver is
given access to a decisional BDH oracle. In other words,
in the Gap-BDH problem, the solver must compute a solu-
tion to (a random instance of) BDH, while being allowed
to make queries to an oracle that can decide whether pro-
posed solutions to arbitrary instances of BDH are correct.

BDHI: Bilinear Diffie-Hellman Inversion. The
BDHI problem was originally stated for a symmetric pair-
ing e: GxG — G; (Mitsunari et al., 2002; Boneh and
Boyen, 2004a), depending on a special additional parame-
ter q:

Given a (¢ + 1)-tuple (g,g%,g¢",..., ") €
Gt as input, output e(g, g)*/* € Gy.

Again, we use of a more general definition that also works
with asymmetric pairings e : G x G — Gy, taken from the
full version of (Boneh and Boyen, 2004a):

,g@") € Gt
€ Gt as input, out-

Given two tuples (g,gr,g(IQ), e
and (3,5°, 9, ..., 5@")
put e(g, §)"/* € G;.

The (general) BDHI assumption for some polynomially
bounded ¢ states that it is infeasible to solve a random
instance of the ¢-BDHI problem, with non-negligible prob-
ability, in time polynomial to the description length of the
problem instance.

3 CLASSIFICATION OF IBE FRAMEWORKS

The vast and growing number of identity-based encryp-
tion and related schemes that exist today can be traced to
one of three known pairing-based approaches to IBE. We
characterize them all in this section, using the criteria and
terminology from Boyen (2007).

Each framework is characterized by a fundamentally
unique way to build an IBE trapdoor from a pairing, and
relies on different kinds of assumptions and proofs to re-
alize this core functionality. (Of course, there exist many
more than three pairing-based constructions of IBE, but
most of them can be traced back to one of the three root
paradigms.)

3.1 Full-Domain-Hash IBE

The earliest and, perhaps, conceptually simplest approach
to IBE from pairings was discovered independently by
Sakai et al. (2000) and by Boneh and Franklin (2001).
Even though the scheme of Sakai et al. (2000) was an ID-
based key exchange, and that of Boneh and Franklin (2001)
an IBE proper, both teams came up with essentially the
same ID-based key extraction technique.

The idea is fairly straightforward: it consists of using a
cryptographic hash to map an identity string ID € {0,1}*
to a bilinear group element H(ID) € G. With the help of
a special public value g® € G, any hash value H(ID) can
serve as an encryption public key for the identity ID. The
corresponding ID-based decryption key is H(ID)® and can
only be computed by the central authority who knows the
master key a. (A more detailed description of the Boneh-
Franklin system will be given in a later section.)

We propose the name “full-domain hash” for this ap-
proach because it crucially relies on hashing the identity
directly into a bilinear group, using a hash function which
must be modeled as a random oracle. Several schemes fall
under this denomination, being direct extensions of the
Boneh-Franklin systems; e.g., we mention the hierarchi-
cal constructions of Gentry and Silverberg (2002) and Yao
et al. (2004). A distinguishing feature of all full-domain-
hash IBE systems is that they construct an internal session
key of the form e(g, H(ID))*", where « is the master se-
cret and 7 is an ephemeral encryption randomizer chosen
by the sender.

One drawback of this approach is that it makes extensive
use of cryptographic hashes (modeled as random oracles),
and in particular assumes the availability of hash func-
tions with uniformly distributed images in a bilinear group
(i.e., on an elliptic curve). Two problems with this kind
of hashing are that it is somewhat expensive, and more
importantly that it could potentially restrict the choice of
curves since it is not always possible to sample uniformly
from or hash evenly into the proper subgroup, without
involving the knowledge of any discrete logarithm. Fortu-
nately, the Boneh-Franklin method has been successfully
adapted to work with all known types of pairing-friendly
curves (sometimes by replacing individual group elements



by collective cosets); however, the hashing requirement re-
mains a limitation of the full-domain-hash paradigm that
could surface again in the future.

Another drawback of the full-domain-hash framework is
that it leads to IBE systems that are significantly less effi-
cient than newer approaches. As we shall see, their ineffi-
ciency is due in part because hashing directly on a curve is
expensive, and in part because encryption always requires
a costly pairing computation that cannot be avoided.

3.2 Exponent-Inversion IBE

The second approach we describe has its roots in a new
type of assumption originally proposed by Mitsunari et al.
(2002) in the context of a traitor tracing scheme. Their
intuition was that any coefficient that appears as the ex-
ponent of a group element should be hard to invert, i.e., it
should be hard to compute ¢'/* given ¢ and g*. However,
with the pairing it is easy to “cancel out” the exponent,
by pairing ¢® with ¢'/*, without having to reveal z itself.

To realize an IBE system from this idea, one would have
to encode the identity as part of x, and devise a way
to make g* computable from public information and g'/*
from a secret trapdoor. For example, one could define a
linear function z(ID) = o + 1D, and publish g and g¢°.
A benefit of this “exponent inversion” framework is that
we no longer need to hash directly into one of the pairing
groups; we merely hash into Z, which is an easy operation.

The first scheme based on this approach was proposed by
Sakai and Kasahara (2003), without security proof, though
a proof was later given by Chen et al. (2005) in the random-
oracle model. The first provably secure IBE scheme based
on the exponent-inversion principle is the BBs system of
Boneh and Boyen (2004a), which was designed for the spe-
cific purpose of achieving security without random oracles
(BBs is not to be confused with the completely different
BB; system from the same paper, discussed next). More
recently, Gentry (2006) proposed yet another variation on
the exponent-inversion theme, with a tighter security proof
than the earlier proposals.

Unfortunately, proving the security of exponent-
inversion IBE is not a simple affair. A common charac-
teristic of all these schemes is that their security proofs
require surprisingly strong assumptions. A typical assump-
tion for these schemes is ¢-BDHI, which states that it is
hard to compute e(g, g)*/* (and thus g'/*) given a polyno-
mially long sequence of elements: g, g%, gm2, gmx, up to g**.
(Gentry’s scheme uses an even stronger assumption which
requires specific elements to be expressly omitted from the
sequence.) The length of the sequence is determined by a
parameter ¢, which for the known IBE constructions must
be at least as large as the maximum number of private
key owners that an adversary may corrupt in an active
attack (i.e., the number of key extraction that the adver-
sary makes in the IBE security game). Hence, the value of
q must be fairly large for the proofs to have any bearing
on practice, but then the assumption becomes correspond-
ingly less reassuring.

Indeed, a recent number-theoretic analysis (Cheon,
2006) has shown that these “large-¢” assumptions may
only provide O(/p) concrete security against the generic
recovery of x, instead of the larger O(,/p) concrete secu-
rity that one would have expected for a generic discrete-log
attack. Fortunately, this analysis does not bring into ques-
tion the credibility of BDHI and similar assumptions, be-
cause a matching lower bound Q(&p) on the generic com-
plexity of breaking BDHI had been previously predicted
by Boneh and Boyen (2004b). Nevertheless, the results
of Cheon (2006) stress the necessity of correcting for the
worst-case value of ¢ (which depends on the threat model)
when provisioning a system that relies on a “large-q” as-
sumption.

3.3 Commutative-Blinding IBE

The newest and most appealing IBE framework is that of
the BB; scheme originally proposed by Boneh and Boyen
(2004a). Their method sidesteps most or all the problems
associated with the earlier approaches: in particular, the
BB; scheme allows identities to be encoded (or hashed)
as integers as in the exponent-inversion approach, but ad-
mits a much better security reduction based on the same
BDH complexity assumption as in the full-domain-hash
approach (hence, no “large-¢” assumption).

Very roughly, the IBE framework of Boneh and Boyen
(2004a) is based on the idea of creating, from two or more
secret coefficients, two blinding factors that “commute”
with each other under the pairing (i.e., the unblinding need
not be the reverse of the blinding). The name given to
this approach, “commutative blinding”, is an attempt to
convey the essence of this mechanism.

Perhaps the best quality of the commutative blinding
paradigm is the greater flexibility provided by its algebraic
structure. Although this approach was the last one to ap-
pear, it quickly surpassed the others for the number and
variety of extensions to the basic notion of IBE that it has
enabled. Here, an “IBE extension” refers to a cryptosys-
tems whose functionality subsumes that of plain IBE at
least in some respect. We shall discuss a few examples of
extensions in a later section.

3.4 Quadratic-Residuosity IBE (without pair-
ings)

The last IBE approach we characterize is the quadratic
residuosity technique used in the Cocks (2001) scheme. It
is the only known polynomial-time approach to IBE that
does not rely on bilinear pairings. The quadratic residu-
osity problem is that of determining whether Jy : z = g2
(mod N) given a composite modulus N = p;ps and a mod-
ular residue z € Zy. We do not describe the Cocks ap-
proach, in part because it does not provide any of the flex-
ibility of the other approachs, and also because each bit of
the plaintext is encrypted as one or two residues modulo
N, which makes the ciphertexts impractically large even



for session keys. The computations are however reason-
ably fast.

One modification to the Cocks system with a differ-
ent space/time trade-off was recently proposed by Boneh
et al. (2007). Necessarily still in the random-oracle model,
the new version enjoys manageable ciphertexts, but suffers
from quartic complexity in the security parameter; i.e., en-
cryption time grows as © (o) with the number o of security
bits. This is in contrast to the typical cubic complexity of
most public-key cryptosystems, including Cocks’.

4 AN ARRAY OF PRACTICAL IBE SYSTEMS

Without further ado, we describe the three main practical
IBE constructions that have been proposed in the litera-
ture. Each system was chosen as the most efficient repre-
sentative of one of the three pairing-based IBE paradigms
defined in a previous section. For completeness, we con-
sider the IBE as well as an IBKEM version in each of the
three frameworks.

Whenever needed, we adapt the published constructions
to make use of asymmetric pairings, which are often more
efficient than symmetric pairings. We also seek the cheap-
est way to achieve security against active attacks (chosen-
ciphertext and adaptive-identity), which is to use hash
functions. Hence, all the schemes we compare are set in
the random-oracle model; the rationale is that for practi-
cal applications, we would rather rely on the random-oracle
heuristic than settle with a less efficient system.

4.1 Boneh and Franklin’s BF-IBE

We briefly recall the complete Boneh-Franklin (BF) IBE
system, which we also generalize to the setting of asym-
metric bilinear maps (if symmetric maps are used, we can
assume that G = G). The random-oracle IND-ID-CCA
proof of security given by Boneh and Franklin (2001) can
be easily generalized to the asymmetric setting under an
asymmetric version of the BDH assumption. The bilinear
groups G and G are of prime order p. Identities are rep-
resented as bit strings of arbitrary length, and messages
are bit strings of some fixed length ¢. Additionally, we re-
quire four cryptographic hash functions viewed as random
oracles:

1. a function H; : {0,1}* — G for hashing the recipient
identity;

2. a function Hy : Gy — {0,1}¢ for xor-ing with the
session key;

3. a function Hj : {0,1}¢ x {0,1}* — Z,, for deriving a
blinding coefficient;

4. a function Hy : {0,1}* — {0,1}¢ for xor-ing with the
plaintext.

BF Setup and Key Extraction:

Setup: To generate IBE system parameters, select a ran-
dom integer w € Z,, and set gy, = g*. The public
system parameters params and the master secret key
masterk are given by:

params = (g, gpup) € G,
masterk = w € Zy.

Extract: To generate a private key d,, for an identity ID €
{0, 1}*, using the master key w, the trusted authority
computes hip = H1(ID) in G and raises it to the power
of the master key. The private key is thus:

d.D = (h|D)w e G.

Full encryption version (Boneh and Franklin, 2001):

Encrypt: To encrypt a message M € {0,1}¢ for a re-
cipient of identity ID € {0,1}*, the sender picks a
random s € {0,1}¢, derives r = Hs(s, M), computes
hip = H1(ID) and yip = e(gpup, hip), and outputs:

C = (g", s® Ha(yip"), M@H4(S))
€G x {0,1}* x {0,1}".

Efficiency may be improved by computing ypp” as
e(gpubr, h|D) instead Of e(gpub, h|D)T.

Decrypt: To decrypt a given ciphertext C' = (u, v, w) us-
ing the private key dp, the recipient successively com-
putes:

s =v® Hy(e(u,dp)),

M=w® H4(S),
r = Hs(s, M).

The recipient then verifies that ¢" = u, and rejects the
ciphertext if the equality is not satisfied. Otherwise,
the value M € {0,1}" is accepted as the decryption of
C.

We have chosen to cast the IBE ciphertext component u in
G and the private key dyp in G, under the assumption that
elements of G have a shorter representation than those of

G. The reverse is also possible, and so the groups may be
swapped if hashing proves easier into G than G.

Key encapsulation version; no redundancy (Libert and
Quisquater, 2005, adapted):

Encapsulate: To generate a random session key K and
encapsulate it for a recipient of identity 1D € {0, 1}*,
the sender picks a random r € Z,, and outputs:

K = Hy(e(gpu", Hi(ID))) € {0,1}",

C=g" €G.



Decapsulate: To decrypt a given key encapsulation C' us-
ing the private key d,p, the recipient simply computes:

K = Hs(e(C,dp)).

The preceding IBKEM is a compact variant of Boneh-
Franklin and was originally proposed by Libert and
Quisquater (2005). It is in fact the most compact IBKEM
one can build in the Boneh-Franklin framework. It has
no ciphertext redundancy, and therefore cannot provide
an explicit test for the recipient to recognize or reject a
malformed ciphertext. However, it has a proof of chosen-
ciphertext security under the Gap-BDH assumption. In-
tuitively, if C' is malformed, the decrypted session key K
will be uniformly random and independent of the true key;
thus, when the KEM is used with a suitable downstream
DEM, the final decrypted output will be either correct or
indistinguishable from random.

Definition 1. Consider an efficiently computable func-
tion G : (17;r) — {e,G,G, Gt, 9,9} that, on input a unary
security parameter o € N and a binary random string
r € {0,1}%, outputs the description of a bilinear pairing
and its associated groups. We call the (countably infinite)
family induced by G a bilinear family.

Theorem 1. (Boneh and Franklin, 2001, adapted)

The BF-IBE scheme is secure against probabilistic
O(c%)-time IND-ID-CCA adversaries, in the random-
oracle model, for all fixed k, when it is implemented in
a bilinear family that upholds the BDH assumption.

The BF-IBKEM scheme is secure against probabilis-
tic O(c®)-time IND-IDKEM-CCA adversaries, in the
random-oracle model, for all fired k, when it is imple-
mented in a bilinear family that upholds the Gap-BDH as-
sumption.

4.2 Sakai and Kasahara’s SK-IBE

Our next constructions are adapted from the original
scheme of Sakai and Kasahara (2003), in the exponent-
inversion category. We retain the IBE scheme described by
Chen and Cheng (2005), and the IBKEM given by Chen
et al. (2005). Unlike the above IBKEM, this one provides
an explicit redundancy-based rejection mechanism for mal-
formed ciphertexts. The security of both systems is based
on the -BDHI assumption defined earlier, which is a much
stronger assumption than BDH.

Identities are arbitrary bit strings in {0,1}*, and mes-
sages (or session keys) are fixed-length bit strings in {0, 1}*.
As before, e : Gx G — Gy is an asymmetric pairing, whose
cyclic groups G and G are respectively generated by g and
g. We need four cryptographic hash functions viewed as
random oracles:

1. afunction Hy : {0,1}* — Z, for hashing the recipient
identity;

2. a function Hy
session key;

: Gy — {0,1}" for xor-ing with the

3. a function Hj : {0,1}¢ x {0,1}* — Z,, for deriving a
blinding coefficient;

4. a function Hy : {0,1}* — {0,1}* for xor-ing with the
plaintext.

SK Setup and Key Extraction:

Setup: To generate IBE system parameters, select a ran-
dom integer w € Z,, define gp,», = ¢*, and com-
pute vg = e(g, ). The public params and the secret
masterk are given by:

params = (g, Gpuv, 9, v0) € G* x G x Gy,
masterk = w € Zy,.

Extract: To generate a private key d,, for an identity ID €
{0,1}*, using the master key w, the trusted authority
outputs:

dp = g7 € G

Full encryption version (Chen and Cheng, 2005):

Encrypt: To encrypt a message M € {0,1} for a recipi-
ent of identity ID € {0, 1}*, the sender picks a random
s € {0,1}¢, sets r = Hz(s, M) and gip = gpup - g+ 1P),
and outputs:
C=(go", s® Ha(vh), M Hi(s))
€ G x {0,1}* x {0,1}".

Decrypt: To decrypt a ciphertext C' = (u, v, w) using the
private key d, the recipient computes:

s =v® Hy(e(u,dp)),

M=w® H4(S),
r = Hs(s, M).

The recipient then verifies that (gus - g1 (P)" = u,
and rejects the ciphertext if the equality is not satis-
fied. Otherwise, the value M € {0,1}* is accepted as
the decryption of C.

Key encapsulation version; explicit rejection (Chen et al.,
2005):

Encapsulate: To encapsulate a random session key K for
a recipient of identity 1D € {0,1}*, the sender selects
a random s € {0,1}¢, sets r = Hz(s, L) and gip =
Ipub - g™ (®) "and outputs:

K = Hy(s) €{0,1},

C= (ngT, S@HQ(US)) € G x {0,1}%



Decapsulate: To decrypt a key encapsulation C' = (u,v)
using the private key dyp, the recipient first computes

s=vP HQ(C(U, dlD))?

r = Hs(s, 1),
then tests whether both

(gpub . ng(ID))T =y and s& HQ(’US) = 9.
If either equality fails, the ciphertext is rejected. Oth-

erwise, the session key is decrypted as:

These constructions illustrate that a chosen-ciphertext se-
cure KEM with explicit ciphertext rejection may be just
as complex as a full encryption scheme based on the same
complexity assumption.

Theorem 2. (Chen and Cheng, 2005, adapted) (Chen
et al., 2005, adapted)

The SK-IBE scheme is secure against probabilistic
O(o*)-time IND-ID-CCA adversaries, in the random-
oracle model, for all fized k, when it is implemented in
a bilinear family that upholds the q-BDHI assumption for
q < O(akl) and some fized k'.

The SK-IBKEM scheme is secure against probabilis-
tic O(c*)-time IND-IDKEM-CCA adversaries, in the
random-oracle model, for all fired k, when it is imple-
mented in a bilinear family that upholds the q-BDHI as-
sumption for q < O(ok/) and some fized k'

4.3 Boneh and Boyen’s BB;-IBE

The last system we describe is an optimized version of the
first IBE system proposed by Boneh and Boyen, or BB;.
The scheme they originally gave in (2004a) came with a
security reduction in the standard model against selective-
identity attacks. Since for practical applications the goal is
to get the full adaptive-identity, chosen-ciphertext (IND-
ID-CCA) security guarantees without sacrificing perfor-
mance, we shall describe suitably augmented versions of
BB; in the random-oracle model. We first give an IBE
scheme with explicit ciphertext validation, followed by a
compact IBKEM. We describe both assuming asymmetric
pairings; but once again the symmetric-pairing versions
can be obtained by setting G = G and dropping all the
“hats” (") from the notation.

Identities are represented using distinct arbitrary bit
strings in {0,1}*. The messages (or session keys) are
bit strings in {0,1}¢ of some fixed length ¢. As usual,
e:Gx G — Gy is the pairing, and g and ¢ respectively
generate the bilinear groups G and G. We require the
availability of three cryptographic hash functions viewed
as random oracles:

1. afunction H; : {0,1}* — Z, for hashing the recipient
identity;

2. a function Hy : G; — {0,1}* for xor-ing with the

cleartext;

3. a function Hj : G; x {0,1}¥ x G x G — Z,, to make
the ciphertext non-malleable.

BB, Setup and Key Extraction:

Setup: To generate IBE system parameters, first select
three integers o, 3, and v € Z,, at random. Set g; =
g“ and g3 = g7 in G, and compute vy = e(g, §)*P.
(Note that g» = ¢g” is not needed.) The public system
parameters params and the master secret key masterk
are given by:

params = (g, 91,93, v0) € G* X Gy,

masterk = (§,, 8,7) € G x Z,°.

Strictly speaking, the generator § need not be kept
secret, but since it will be used exclusively by the
authority, it can be retained in masterk rather than
published in params.

FExtract: To generate a private key d,p for an identity ID €
{0,1}*, using the master key, the trusted authority
picks a random r € Z, and outputs:

dy = (gaﬁ+(aH1(lD)+A/)r7 gr) cCxGC.

Full encryption version (Boneh and Boyen, 2004a):

Encrypt: To encrypt a message M € {0, 1}4 for a recipi-
ent ID € {0,1}*, the sender first picks a random s €
Z,, computes k = v§ € Gy, assigns ¢ = M & Ha(k) €
{0, 1}¢, calculates ¢y = g* and ¢; = g3 gfl(lD)s in G,
sets t = s + Hs(k, ¢, co, c1) mod p, and then outputs:

C = (e, co, c1, t) €{0,1} x G x G x Z,,.

Decrypt: To decrypt a given ciphertext C' = (¢, co, c1,t)
using the private key d, = (dg, d; ), the recipient com-
putes:

k= e(Co,do)/e(Cl,dl) € Gy,

s=t— Hs(k,c,co,c1) € Zp.
Then, if the component-wise equality (k,co) z

(v§,9°) does not hold for both elements, the cipher-
text is rejected. Otherwise, the plaintext is given by:

M =c® Hy(k) € {0,1}%

Key encapsulation version; implicit rejection:

Encapsulate: To generate a random session key and en-
capsulate it for a recipient with identity ID € {0, 1}*,
the sender picks a random s € Z, and outputs:

K = Hy(v§) €{0,1}",
C= (gs, 93 ngl('D)s) €GxG.

The cleartext session key is K; the encapsulated ses-
sion key is C.



Decapsulate: To decapsulate an encrypted session key
C = (co,¢1) using the private key dp, = (do,d;), the
recipient outputs:

K = Hz(e(C(),do)/e(Cl,Ch)) S {O,l}é.

The IBKEM ciphertext contains no redundancy that al-
lows the explicit rejection of a malformed ciphertext;
chosen-ciphertext security follows from the fact that in-
correctly decrypted session keys are randomly distributed.
(We note however that, contrarily to the Boneh-Franklin
IBKEM, the encapsulated keys here contain exactly
enough redundancy to verify the recipient’s identity.)

Theorem 3. (Boneh and Boyen, 2004a, adapted)

The BBi-IBE scheme 1is secure against probabilistic
O(o*)-time IND-ID-CCA adversaries, in the random-
oracle model, for all fized k, when it is implemented in
a bilinear family that upholds the BDH assumption.

The BB1-IBKEM scheme is secure against probabilis-
tic O(c*)-time IND-IDKEM-CCA adversaries, in the
random-oracle model, for all fixed k, when it is imple-
mented in a bilinear family that upholds the Gap-BDH as-
sumption.

4.3.1 BB; Variant for Verifiable Threshold Appli-

cations

The master key in BB; can be given in a slightly less effi-
cient form that only consists of group elements in G instead
of their exponents in Z,. The extraction algorithm needs
to be adapted slightly, but since it extracts private keys
with the same distribution as before, the encryption and
decryption algoritms remain unchanged. The modified al-
gorithms are as follows.

Setup’: Like Setup, except that we also compute §; = §,
g3 = ¢ and jo = §*° in G (so that vy = e(g, §o) =
e(g1,32) if we let go = §°) and retain the alternate
master key as: masterk’ = (g, go, 91, 33) € G*.

Extract': Pick a random r € Z, and compute |D’s private

~p ~H1(ID) 7 "T) .

key as: dp = (o G5 91 Nl

This variant is beneficial for applications based on Veri-
fiable Secret Sharing (VSS), such as the cryptosystem of
Boneh et al. (2006) which provides chosen-ciphertext se-
curity with non-interactive threshold decryption. Key ex-
traction in the VSS variant of BB, requires three fixed-base
exponentiations in G instead of two.

4.3.2 BB; Key Encapsulation for Multiple Recip-
ients

Earlier we mentioned that it is usually infeasible or unsafe
to try to encapsulate the same session key for multiple re-
cipients in a KEM. Unfortunately, this is a prerequisite
for reusing the DEM component in a hybrid ciphertext
intended to encrypt the same plaintext for multiple recip-
ients. The solution in such cases is to use an intermediate

“thin” layer between the KEM and the DEM. We show
how this is done with the BB{-IBKEM, which requires an
additional hash function:

4. a function Hy : {0,1}* — {0, 1} for deriving an inter-
mediate session key.

Encapsulate’: To generate a random session key and
encapsulate it for multiple recipients with identities
ID; € {0,1}*, the sender selects one random string
u € {0,1}*, picks an ephemeral random s; € Z, for
each recipient, and outputs:

K = Hy(u) € {0,1}¢,

Ci = (u@Hz(véiL 9%, 93’ gfh('Di)si)
€ {0,1}* xG x G.

The cleartext session key is K; the encapsulated ses-
sion key given to recipient ID; is C;.

Decapsulate’: To decapsulate an encrypted session key
C = (¢, ¢p, 1) using the private key dp = (do, dy), the
recipient outputs:

K= H4 <C@ HQ(G(Co,do)/e(Cl,dl))> S {0, 1}2

The multi-recipient IBKEM is more complex, and indeed,
starts to resemble the full IBE scheme.

4.4 Other IBE Systems

For the sake of completeness, we also mention the following
IBE schemes from the literature. All of these systems have
theoretical appeal and are reasonably efficient, but none
of them appears to be as practical as the IBE systems
mentioned above, and so we will not describe or compare
them explicitly.

e Cocks’ IBE scheme (2001). We already mentioned
this system as the only known reasonably efficient ap-
proach to IBE that is not based on the theory of bi-
linear pairings. We omit it from this survey because
the pairing-based systems are much more efficient and
much better suited for practical applications.

e Boneh and Boyen’s BB; without random oracles,
which is the original version described in (2004a, §4).
The “pure” version of BBj is less efficient than the
random-oracle version described in the present survey.
Specifically, the original version has an efficient secu-
rity proof only in the selective-identity attack model,
and requires bilinear groups with more than twice the
bit size in order to be secure against full adaptive-
identity opponents at the same security level as the
random-oracle version; ¢f. Boneh and Boyen (2004a,

§7).



e Boneh and Boyen’s BBy without random oracles
(2004a, §5). Although this scheme can also be made
secure against active attacks either with larger groups
or in the random-oracle model, the resulting scheme
would remain dominated in all respect by the corre-
sponding version of BB;. This is why, for our compar-
ison, we selected the IBE scheme of Sakai and Kasa-
hara instead, which at least appears to have shorter
ciphertexts.

Waters’ scheme (2005), and its subsequent improve-
ments due to Chatterjee and Sarkar (2005) and Nac-
cache (2005), all of which belong to the framework of
the BB system. They offer tighter proofs of security
without random oracles, at the cost of significantly re-
duced efficiency. Naccache (2005) in particular claims
that his scheme is efficient enough for use in practice,
but in reality it still suffers from larger public param-
eters and is less efficient than the schemes already de-
scribed, especially if chosen-ciphertext security is a
requirement.

Gentry’s scheme (2006). This scheme bears a lot of re-
semblance to BBy, and has the advantage of a tighter
proof of security without random oracles. On the neg-
ative side, the Gentry scheme is less efficient than SK
and the random-oracle version of BBy, and requires
an even stronger complexity assumption (of the “large
q" variety; see Section 2.3). Chosen-ciphertext secure
versions of the system are also twice as expensive, un-
less random oracles are used.

In Search of Practical IBE Without Random Ora-
cles. It was already noted that several IBE systems can
be used without random oracles; some of them rather clum-
sily (Boneh and Boyen’s BB; and BBs); others more ele-
gantly (Waters’, Chatterjee and Sarkar’s, Naccache’s, and
Gentry’s). However, none of them was deemed practical
enough to be retained in our comparison.

One should keep in mind that the absence of random or-
acles makes these schemes more expensive, not exclusively
because of the adaptive-identity security requirement, but
also when striving for the more mundane notion of chosen-
ciphertext security. Indeed, since these two notions of ac-
tive security are orthogonal, they must be dealt with sep-
arately, and each has its own cost.

Most schemes in the theoretical literature are presented
in basic semantic security fashion, notwithstanding that
active attacks are a real concern in many practical ap-
plications. The reason why chosen-ciphertext IBE secu-
rity without random oracle is expensive is that it can be
achieved in one of two ways: double encryption (Naor and
Yung, 1990; Cramer and Shoup, 1998), and hiearchical IBE
(Canetti et al., 2004). Either way, the core system ends up
being duplicated, which results in ciphertexts (and public
parameters) that are twice as long and twice as expensive
to create, in comparison to the basic semantically secure
system which may already be rather costly.
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4.5 Full Encryption vs. Key Encapsulation

Recall that the main difference between encryption and
key encapsulation (and, by extension, between IBE and
IBKEM) is that in the former the sender chooses the mes-
sage, while in the latter the “message” is a random string
meant to be used in a downstream symmetric-key data
encryption module, or DEM. In practice, both IBE and
IBKEM schemes will likely be used to encrypt a short ran-
dom key, because a symmetric-key DEM will always be far
more efficient for long messages. A benefit of using full
encryption for the public-key header is to make it easier
to encrypt the same session key multiple times under dif-
ferent identities, which is important in applications such
as email where the same message is encrypted for multiple
recipients. With a KEM header, it would be necessary to
interpose a third layer between KEM and DEM.

The main advantage of key encapsulation over full
public-key encryption is that it encourages the conceptual
modularization of asymmetric- and symmetric-key opera-
tions. Another advantage is the possibility of achieving
very compact ciphertexts by letting the KEM and the
DEM lean on each other for the chosen-ciphertext secu-
rity the whole system (Shoup, 2001). In particular, it is
known how to build suitable DEMs without redundancy
from block ciphers using certain modes of operation such
as CMC (Halevi and Rogaway, 2003) or EME (Halevi and
Rogaway, 2004), and depending on the complexity assump-
tions one is willing to make, it is possible to eliminate all
redundancy from the KEM too (but not all randomness,
of course). We saw an example of “KEM without redun-
dancy” with the Boneh-Franklin IBKEM described above.

There are disadvantages to the key encapsulation route,
however. We already mentioned the difficulties of encrypt-
ing the same message for multiple recipients. Second, and
more importantly, the way to transform a semantically
secure encryption scheme into a chosen-ciphertext secure
KEM without redundancy (in the random-oracle model) is
to hash the implicit session key of the encryption scheme;
but the security of the resulting construction will then
depend on a “Gap” version of whichever complexity as-
sumption was used for the encryption scheme (e.g., Gap-
BDH instead of BDH): for assumptions that were already
stated in bilinear groups, this constitutes a major leap of
faith. Both the BF-IBKEM and BB;-IBKEM above use
this stronger assumption.

An alternative is to build a KEM essentially in the
same way as a chosen-ciphertext secure encryption scheme,
adding redundancy for the explicit rejection of malformed
ciphertexts. A generic KEM construction based on this
approach was recently given by Bentahar et al. (2005). A
drawback of this approach is that it heightens the complex-
ity of KEM to that of full encryption, and so one might
as well prefer the added convenience of encrypting the ses-
sion key into a self-contained IBE ciphertext. The Sakai-
Kasahara IBKEM described above is an example of redun-
dant key encapsulation with explicit ciphertext validation.
As we already noted, such “KEMs with redundancy” offer



only a small efficiency gain over the corresponding chosen-
ciphertext secure encryption scheme with explicit valida-
tion.

5 PRACTICAL COMPARISONS

We are now ready to draw factual comparisons between
our three frameworks: BF, SK, and BB;. We shall focus
our attention on the various features that one could seek
in practical deployments. To ensure unbiased comparisons,
we shall endeavor to support our conclusions with specific
data for both the IBE and IBKEM representatives of each

framework.

Notation. In the sequel, we shall make a number of qual-
itative Yes/No comparisons; and in order to convey the
(un)desirability of the various attributes, we shall use dif-
ferent symbols to signify that an attribute is present. We
define these symbols on Table 1.

5.1 Hardness Assumptions and Security Models

Our first comparison criterion is about the security guar-
antees that one can obtain from a scheme. There are three
main concerns:

Security definition: it clearly matters which notion of se-
curity is satisfied by a scheme, i.e., whether seman-
tic security holds against chosen-plaintext or chosen-
ciphertext attacks, and whether the adversary is con-
fined to a selective-identity attack model (Canetti
et al., 2003) or may mount a full adaptive-identity
attack (Boneh and Franklin, 2001).

Because the focus of this note is exclusively on practi-
cal schemes, we always insist on the strongest security
model: indistinguishability against adaptive chosen-
ciphertext and adaptive-identity attacks, or IND-ID-
CCA; we refer to (Boneh and Franklin, 2001) for a
formal definition.

Proof model: we distinguish whether security reductions
are made in the standard model or in an idealized
model such as the random-oracle model.

Although it would be nice to avoid random oracles,
this invariably comes at a performance hit that is un-
welcome in practice. In the case of IBE, several effi-
cient schemes have been constructed in the standard
model (Boneh and Boyen, 2004a; Waters, 2005; Gen-
try, 2006); however, the performance gap with the best
random-oracle constructions remains significant, espe-
cially if we consider instantiations of those schemes
that are secure against IND-ID-CCA opponents. (Re-
call that chosen-ciphertext security in the standard
model does not come for free.)

Hardness assumption: it is also important to make note
of the particular complexity assumption on which the
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security of a scheme is based, and to assess the risks
that are inherent to it.

Although many complexity assumptions have been
proposed in bilinear groups, sometimes without
proper justification, only a handful have been used
to construct actual IBE systems; they can further be
divided into a mild and a not-so-mild category.

The “not-so-mild” assumptions include ¢-BDHI for
large values of the parameter g, e.g., as when ¢ must
grow with the number of queries made by a real-life at-
tacker against the system. Because then the problem
instances are impractically large, assumptions such as
these are not efficiently falsifiable in the sense of Naor
(2003).

The “mild” assumptions include Bilinear Diffie-
Hellman (Joux, 2004; Joux and Nguyen, 2003) and
Linear (Boneh et al., 2004a); these have very succinct
problem instances that need not depend on the adver-
sary’s capabilities, and are thus efficiently falsifiable.

We remark that, in all cases, indistinguishability reduc-
tions in the standard model will typically require the de-
cisional version of an assumption, whereas the computa-
tional version often suffices for reductions in the random-
oracle model. This is an often overlooked benefit of us-
ing hash functions in security proofs. Shoup (2000) and
Cramer and Shoup (2002) have proposed security reduc-
tions based on hash-decisional complexity assumptions,
which are a middle ground between the weaker computa-
tional and the stronger decisional complexity assumptions,
that sometimes is just strong enough to allow a proof to go
through outside of the random-oracle model. Boneh and
Boyen (2004a) have also used this approach in the context
of identity-based encryption.

Security Comparison

Table 2 shows that all systems satisfy the notion of adap-
tive chosen-ciphertext security; but the security reductions
require differing assumptions.

All systems as described use the random-oracle model for
most or all security properties; however the reliance on that
model is not equally crucial in all schemes. Without going
into details, we make the following general observations:

e “Full domain hash” systems (BF) are highly depen-
dent on random oracles for essentially all of their
security properties (chosen-ciphertext security and
identity-based collusion resistance). No provable se-
curity remains outside of the random-oracle model for
these schemes.

“Exponent inversion” schemes rely somewhat strongly
on random oracles, depending on the construction.
The SK scheme described here requires the random-
oracle model both for collusion resistance and for
chosen-ciphertext security.



Table 1: Symbols used to express the desirability of met and unmet (“Yes” and “No”) attributes.

“YES” symbols:
(v)
(~)
(%)

a checkmark signals that a feature is present and desirable;
a tilde denotes a property that is of ambivalent quality;
a cross marks a characteristic that is detrimental in nature;

“NO” symbol:
()

an empty space indicates the absence of a characteristic, whether good or bad.

Table 2: Relationship between security properties and complexity assumptions for the described instances of BF, SK,

and BB1
Full IBE IBKEM Only
BF-1BE SK-IBE BB;-1BE BF-KEM SK-KEM BBi-KEM
Provable Security
IND-ID-CCA v (RO) v (RO) v (RO) v (RO) v (RO) v (RO)
and without RO? none sID-CPA*  sID-CPA*/** none none SID-CPA*/**
Assumption Strength
¢-BDHI (large q) X X
Gap-BDH CCA*** CCA***
BDH v v CPA*** CPA***

* Adaptive-ID security does hold if the group order is much larger than the size of the identity space (Boneh and Boyen, 2004a, §7).

** Converting CPA into CCA security is possible by extending the scheme into a 2-hierarchy (Boneh and Boyen, 2004a, §6).

*** CCA security needs Gap-BDH due to lack of ciphertext redundancy; CPA security needs only computational BDH.

The previously mentioned BBy and Gentry schemes
fare better in that respect. BB, remains collusion-
resistant without random oracles if we either relax the
attack model or increase the bilinear group size; BBo
also retains full chosen-ciphertext security via a re-
cent hierarchical construction due to Boyen (2007).
The closely related system of Gentry (2006) achieves
full IBE security directly and efficiently, without using
random oracles.

“Commutative blinding” systems (BB;) are the most
amenable to random oracle elimination. For instance,
BB; can make good use of random oracles to enhance
its security, but remains secure in the standard model
under a weaker notion of security, or if we increase
the bilinear group size; see Boneh and Boyen (2004a,
87) for details. Alternatively, BBy can be modified to
get equivalent security without random oracles with-
out excessive degradation of performance; see Waters
(2005) and Naccache (2005).

5.2 Pairing Compatibility

The second criterion we need to consider is how demand-
ing the scheme is on the pairing function. We have already
seen that pairings can be of different kinds: type-1 pair-
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ings are symmetric; type-2 pairings are asymmetric but
support a one-way mapping from G to G; type-3 pairings
are asymmetric and the bilinear groups cannot be mapped
efficiently to each other. Some schemes will not work with-
out an efficient uni- or bi-directional mapping; others will
be insecure if an efficient mapping is available. Yet other
schemes are completely indifferent to either the presence
of the absence of homomorphisms, and will let us allocate
the cryptographic data between G and G in the optimal
way.

Additionally, some hash functions that are modeled as
random oracles may be difficult to instantiate, because
some but not all curve types will let us map directly into
the bilinear groups. For the known pairing constructions,
type-1 and type-3 curves always support hashing, but for
type-2 curves, direct hashing only works into the codomain
of the efficiently computable isomorphism (i.e., into G if
the isomorphism goes from G to G). This could be a prob-
lem with IBE schemes that require direct hashing into the
bilinear group G. (Hashing into Z,, is always easy regard-
less of the choice of curve.)

Compatibility Comparison

Table 3 shows the types of pairings that can be used to
implement each system. To summarize,



Table 3: Pairing and bilinear group requirements for the described instances of BF, SK, and BB;.

Full IBE IBKEM Only
BF-1BE SK-IBE BB;-IBE BF-KEM SK-KEM BB1-KEM
Pairing Compatibility
type 1 v v v v v v
type 2 ()" v v () v v
type 3 v v v v v v
Need Homomorphism?
for proof X X
for scheme
Hash into Group?
into G
into G X X
into Gt

* Type-2 and type-3 pairings are implemented using different groups on the same curves; type-3 allow hashing into G.

e “Full domain hash” systems (BF) require the ability
to hash directly into the bilinear group G, but do not
require an efficient homomorphism between G and G.

“Exponent inversion” schemes (SK) rely on the exis-
tence of an efficient homomorphism for the security
reduction, though not for the scheme itself. Refine-
ments of the proof technique might let us dispense
with this requirement altogether; see for example the
full version of (Boneh and Boyen, 2004b).

“Commutative blinding” systems (BBj) place the
weakest demands on the bilinear groups, requiring nei-
ther hashing nor the presence or absence of an effi-
ciently computable homomorphism.

5.3 Intrinsic Versatility

The third criterion we consider is not as easy to circum-
scribe precisely. It addresses the question of how easily a
given scheme can be adapted to solve a practical require-
ment. Generally, the more features a scheme supports, or
is natively compatible with, the more likely it is that it will
be useful for an intended application.

We first mention a couple of features that are very de-
pendent upon a particular scheme’s construction:

Multi-recipient encryption: It is desirable when encrypt-
ing the same (long) message for multiple recipients, to
have a single common encryption body with a differ-
ent header for each recipient. This is very commonly
done using a single symmetric-key body and multiple
asymmetric-key headers, using hybrid encryption.

Streaming (for chosen-ciphertext security): Often, it
is a requirement that encryption and/or decryption
be performed on-the-fly without buffering, i.e., in a
streaming manner. This is particularly important for
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very long plaintexts, or when the size of the data
stream is not known in advance.

In principle, streaming encryption is always possi-
ble (though not all schemes support it). However,
the very notion of unbuffered decryption clashes with
chosen-ciphertext security, since the former requires
that the decrypted plaintext be streamed to the out-
put before the end of the ciphertext stream has been
reached, which is forbidded by CCA security. Never-
theless, it is useful to consider a special-purpose notion
of decryption streaming, which presupposes that the
consumer application can be trusted not to exploit a
partially decrypted stream if it later turns out that
the ciphertext must be rejected.

Thus, we define the notion of “CCA-secure stream-
ing” as a restricted notion of chosen-ciphertext se-
curity where the decryption algorithm is allowed to
start outputting a decryption stream on an invalid
ciphertext, provided that it indicates at the end of
the stream whether the entire plaintext should be ac-
cepted or rejected. This is idealized in the security
model by withholding the decrypted stream from the
adversary’s view until the decryption algorithm has
given its final accord.

In addition to the above construction-specific proper-
ties, we also consider certain useful extensions to the basic
notion of IBE: these are more complex features that are
typically not satisfied natively by the basic schemes, but
may added at little cost if the underlying framework sup-
ports it. These features are as follows:

Threshold secret sharing: This is the ability to divide the
master secret into n shares given to separate authori-
ties, in order to avoid the concentration of power into
a single entity. In threshold IBE, authorities can only



create private key shares that by themselves are use-
less for decryption. A user has to obtain ¢ valid shares
from ¢ different authorities in order to assemble his or
her private key.

Hierarchical identities: This refers to the arrangement of
identities into a (public, syntactic) hierarchy, in such
a way that any member of the hierarchy can act as a
local authority for all the subordinate identities. The
notion of HIBE, or Hiearchical IBE, was first defined
by Horwitz and Lynn (2002), and first achieved by
Gentry and Silverberg (2002).

Forward security: In the context of IBE, forward security
refers to the authority’s ability to evolve the master
key forward in time, according to a well-defined dis-
crete schedule with a certain time granularity. The
goal is to prevent today’s master key (at some time 7T')
to be used to decrypt yesterday’s ciphertexts (whether
directly, or indirectly by extracting a suitable decryp-
tion key).

Because the number of periods is potentially very
large, depending on the time granularity, it is impor-
tant that the efficiency of the scheme not be too sen-
sitive this number: ideally, the dependence should be
logarithmic at most. See Canetti et al. (2003), Yao
et al. (2004), and Boneh et al. (2005) for successive
refinements on IBE forward security.

Versatility Comparison

Table 4 lists certain important extensions that may or
may not be implemented in one or the other approach.
The “commutative blinding” BB; schemes are the most
versatile, closely followed by the “full domain hash” BF
schemes. Until very recently, it was believed that the “ex-
ponent inversion” schemes such as SK were severely limited
expansion-wise, but recent work (Boyen, 2007) has shown
the latter approach to be more flexible than previously
thought. Table 4 thus shows the known capabilities of the
three main frameworks as of today.

5.4 Time and Space Efficiency

The most immediate comparison criterion is of course the
efficiency of a scheme. This includes the computation time
of the most common operations, and the size of the cipher-
texts and keys.

Such comparisons must be weighed according to the in-
tended application. For example, computation time is of-
ten a greater concern than ciphertext size, except for wire-
less and bandwidth-constrained applications. Also, certain
applications such as email are by nature one-to-many, in
which case any scheme that supports multiple recipients
will have an advantage over its competitors.

5.4.1 Space Efficiency

Table 5 compares the space overheads of the various data
types for each scheme. The most significant overhead to
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consider is the ciphertext’s, followed by the public system
parameters and/or the users’ private keys, depending on
the application. The master key sizes are also listed for
completeness.

Ciphertext overheads are reported discounted of the size
of the message itself, i.e., we subtract from the ciphertext
size the number of message bits that are freely chosen by
the sender with the intent of being recovered by the recip-
ient (for KEM, the message size is considered to be zero,
since the session key is random and not effectively cho-
sen by the sender). This makes it possible to make direct
comparisons between IBE and IBKEM, since an IBE can
be used by itself whereas an IBKEM is useless without a
DEM (whose overhead will have to be added to the total).

In practice one may have to make different corrections.
As we noted before, IBEs are often used indirectly, not to
encrypt messages, but merely to encrypt session keys, in
which case the entire IBE ciphertext will constitute over-
head. For IBKEMs, the overhead will further increase in
multi-recipient applications, where an interface layer be-
tween KEM and DEM must be used so that the same ses-
sion key can be used for all the recipients (to allow sharing
of the DEM ciphertext).

5.4.2 Time Efficiency

Table 6 shows a tally of the number of group operations re-
quired of each scheme. Separate counts are given for each
of the three groups G, G, and Gy, and a distinction is made
between general exponentiations (i.e., raising an arbitrary
base to an arbitrary exponent) and exponentiations with
a fixed base (to an arbitrary exponent). The distinction
is important since fixed-base exponentiations may be opti-
mized to incur a much smaller amortized cost. As a general
rule, the factors mostly affecting computational costs are:

1. the number of independent pairings (with all known
algorithms, a product or ratio of two pairings is only
slightly more expensive than a single pairing); and, to
a lesser extent:

the number of general exponentiations, i.e., sub-
expressions of the form b* where the base b is not
known ahead of time (by contrast, fixed-base exponen-
tiations can be calculated much faster after investing
in a moderate amount of pre-computation);

the number of hashing operations into either bilinear
group G or G (hashing to a string or into Z, is virtu-
ally free by comparison).

6 CURVES AND PERFORMANCE

To illustrate how the schemes’ time and space complexities
will compare in practice, it is useful to focus on a few
concrete elliptic curve implementations.



Table 4: Extended functionalities known to be compatible with the BF, SK, and BB; frameworks.

Full IBE IBKEM Only
BF-IBE SK-IBE BB;-IBE BF-kKEM SK-KEM BB1-KEM
Multi-Recipient v v v ~* ~* ~*
Streaming v v v v
Master-Key Sharing
n-out-of-n v R v v ~FEE v
t-out-of-n v R v v S v
Hierarchical Identities
linear-size CT v v v v v v
const.-size CT v v
Forward Security
list (lin-size) v v v v v v
tree (log-size) v v v v
compr’d (< log) v v

* Multi-recipient KEM requires an additional intermediate session key layer if the DEM component is reused.
** Secure streaming requires that the recipient application can be instructed to reject a stream after decryption.

*** Secret sharing is possible in SK using new techiques (Boyen, 2007) at the expense of longer ©(n)-size ciphertexts.

Table 5: Size requirements for the various data types in the stated instances of BF, SK, and BB;. The size of each data
type is expressed by the number of elements in Z,,, G, G, G, and ¢-bit hash output strings needed for its representation.

Full IBE IBKEM Only
BF-1BE SK-IBE BB;-1BE BF-KEM SK-KEM BB;-KEM

System Parameters

#elts. € G 2 2 2 2

# elts. € G, 0 1 1 0 1 1
Master Secret

# elts. € Z,, 1 1 3 1 1

# elts. € G 0 0 1 0 0 1
Private Key

# elts. € G 1 1 2 1 1 2
Ciphertext*

# elts. € Zy, 0 0 1

#elts. € G 1 1 2

# hash strs. 1 1 0
KEM Capsule

# elts. € Zy, 0 0

#elts. € G 2 1 1

# hash strs. 0 1

* The ciphertext overhead for encryption excludes the size of the sender-selected message.
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Table 6: Time requirements for the various operations in the listed instances of BF, SK, and BB;. Each cryptographic
algorithm is decomposed into an optimal sequence of algebraic calculations. Each calculation is then denoted by its

type and the algebraic group in which it is performed.

Full IBE

BF-1BE SK-IBE

BB;-1BE

IBKEM Only

BF-KEM SK-KEM BBi-KEM

Private Key
Extraction

# fix-base exp. G
# general exp.
# hashes

[
&y

Encryption

# fix-base exp.
# hashes G

# pairings

GGGGy

Decryption
# fix-base exp. G

# pairings
# pairing ratios

GGy

Encapsulation

# fix-base exp.
# hashes

# pairings

GG Gy GGGGy

Decapsulation
# fix-base exp.

# pairings
# pairing ratios

GGGy

— Gy — Gy

6.1 Elliptic Curve Selection

We consider three combinations of curve types and secu-
rity parameters: supersingular (SS) curves of embedding

degree 2 over large prime fields at security levels 80 and
128, and non-supersingular curves of embedding 6 at secu-

rity level 128 called MNT curves.

SS curves provide the most natural instances of type-

1.

1 pairings, and are the ones originally used in the
Boneh-Franklin IBE system. We only consider SS
curves over large-characteristic fields. These have the
inconvenient of pegging the embedding degree to the
very small value 2, which is inefficient at large secu-
rity levels; however, they have the advantage of being
plentiful, easy to sample, and quite simple to imple-
ment. Additional technical details may be found in
Boneh and Franklin (2001).

MNT curves can be used to construct natural type-2 or

type-3 bilinear groups: BF can be implemented on
the latter, SK on the former, and BB, indifferently on
either type. MNT curves come in several flavors; here
we consider the constructions with the largest embed-
ding degree, equal to 6, which are probably the most
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useful. These curves were first proposed by Miyaji
et al. (2001), and have been used in the signature
scheme of Boneh et al. (2004b).

Two competing factors intervene when choosing appropri-
ate parameters for the curves.

At security level o, the curve order must have a large
prime factor p > 22°~!, which will enable us to con-
struct cyclic groups G, G, and G; of prime order p
large enough to defeat generic discrete-logarithm at-
tacks. E.g., for o = 80, we need p ~ 260 or bigger.

. Second, the curve must be constructed over a finite

field (which we assume has prime order) that is large
enough to defeat the best known discrete-logarithm
attacks in the appropriate field extension. Ie., for a
prime field Fy, the extension F,+ must be large enough
to defeat the Number Field Sieve, where k is the em-
bedding degree of the p-order subgroup of the selected
curve E in F,. Concretely, at security levels o = 80

and o = 128, we respectively need ¢* ~ 21024 and
q* ~ 23972 which for k = 6 gives us ¢ ~ 2! and
g =~ 2°12 respectively.



Choices of curves that let us satisfy both constraints tightly
at the same time will typically result in more economical
implementations with more compact representations, for a
given security level.

Table 7 shows the representation sizes for group elements
for the three combinations of curves and security param-
eters. These numbers are derived from the intrinsic se-
curity requirements of the curves, and do not take into
account security losses that might arise in actual crypto-
graphic schemes.

Table 8 gives rough estimations of the relative costs of
the various algebraic operations in the three groups G, G7
and Gy, for each combination of curve type and security
parameter. The numbers are all set on the same (arbi-
trary) scale, and can thus be compared with each other as
a first approximation. These numbers are however merely
indicative, since in practice, actual running times will de-
pend on many factors, e.g., internal representations, the
choice of pairing, exponentiation algorithms, space/time
trade-offs, CPU types, memory constraints, caching, and
a number of other factors.

6.2 Complexity and Overhead

For illustrative value, we now quantify the space and time
requirements of the various schemes for the various curves
and security parameters we selected.

Table 9 lists the representation overheads for the BF,
SK, and BB; frameworks using the three choices of curves
and security levels given above; the sizes are expressed in
bits.

Table 10 lists the estimated relative running times for
the various systems in the same conditions; the indicative
computational costs are expressed in arbitrary units.

Caveat. Tables 9 and 10 are based on the intrinsic secu-
rity of the various curves, and are oblivious to all security
losses caused by the reductionist proofs of the different
schemes. These losses vary with circumstances and will
require non-negligible corrections on a case-by-case basis.

6.3 Correcting for Exact Security

Since none of the known IBE schemes has provable security
parameters that are independent of the number of adver-
sarial queries, the various schemes may be less secure in
practice than the idealized Tables 8 and 10 suggest. For
any given curve and group size, the “exact security” of each
scheme will be negatively affected by more-or-less severe
polynomial slack factors that were hidden in the asymp-
totic statements of Theorems 1, 2, and 3. (The unabridged
theorem statements can be found in the referenced works.)
A precise analysis of the security losses induced by these
slack factors falls beyond the scope of this note; neverthe-
less, a number of general observations can be made:

e BB;-IBE has a security reduction to BDH which de-
grades in O(1/qg, ); i-¢e., the loss factor is linear in the

17

number of random-oracle queries made to Hy, and vir-
tually independent of the number of decryption, key
extraction, and other random-oracle queries.

BF-IBE has a security reduction that degrades
in O(1/qm,(qu, + qm,)ak); i.e., security degrades
quadratically in the total number of random-oracle
queries and linearly in the number of key extraction
queries.

BB;-IBKEM and BF-IBKEM have respective secu-
rity reductions in O(1/qp, ) and O(1/qk ), but because
these KEMs do not provide redundancy for explicit ci-
phertext rejection, the reduction is to the Gap version
of BDH, which is a much stronger assumption than
computational BDH.

SK-IBE and SK-IBKEM have by far the worst secu-
rity reductions of all the schemes that we described.
Specifically, the reduction efficiency of both SK
schemes are a function of O(1/qm, qm,(qu, + qm,)),
which is to say that security degrades with the cube of
the total number of random-oracle queries. The KEM
uses the same assumption as the encryption scheme,
because both use essentially the same explicit cipher-
text authentication method.

In addition to the losses caused by their security re-
ductions, SK-IBE and SK-IBKEM also suffer from se-
curity losses that are intrinsic to the g-BDHI assump-
tion. These losses stem from the fact that ¢-BDHI
problem instances are not of constant size but of size
X ¢ > qi, which can be quite large in practice if
the system cannot be otherwise defended against ac-
tive attacks. Such “large-¢” assumptions are used in
all known exponent-inversion schemes, which, besides
SK, also include BBy and Gentry’s IBE.

Specifically, the lower complexity bounds of Boneh
and Boyen (2004b) and the corresponding upper
bounds of Cheon (2006) imply that, in the generic-
group model, the concrete security of ¢-BDHI in-
stances against discrete-log attacks ranges between
1/q and 1/¢3 that of the corresponding BDH instance
(the actual security degradation depends on the num-
ber of generic-group oracle queries that the adversary
will otherwise be making). It follows that the generic
security of SK-IBE and SK-IBKEM in the sense of
Shoup (1997) has rather rapidly decreasing bounds
between O(1/q3qr) on the up-side and Q(1/q¢3q3)
on the down-side. As before, ¢y and ¢x are the num-
ber of random-oracle and key-extraction queries made
by the adversary.

To compensate for such concrete security losses, the gen-
eral rule is to boost the “apparent” security parameter by
a suitable coefficient to raise the “actual” concrete secu-
rity of the scheme up to the prescribed level. The good
news is that polynomial security losses are relatively in-
expensive to compensate in this manner, because security



Table 7: Representation sizes, in bits, for the various group elements on different types of elliptic curves at usual
security levels. These are practical representation sizes with simple optimizations such as “point compression” for the

representation of elliptic curve elements (for G and G).

Representation Sizes (bits)

SS @ 80-bit security

MNT @ 80-bit security

MNT @ 128-bit security

Z, 160
G 512
G 512
Gy 1024

160 256

171 512
1026 3072
1026 3072

Table 8: Estimated calculation times for various algebraic operations on the same elliptic curves at the same security
levels as in Table 7. The time unit is defined as the cost of a general exponentiation (i.e., point multiplication) on a
random 171-bit elliptic curve for a random 160-bit exponent. Timings are indicative only, and do not account for any
exact-security reduction inefficiencies that depend on the number of adversarial queries.

Relative Timings (arbitrary unit)*

SS @ 80-bit security

MNT @ 80-bit security

MNT @ 128-bit security

In G:
fix-base expon. 2
general expon. 10
In G:
fix-base expon. 2
general expon. 10
hashing 10
In/to Gy:
fix-base expon. 2
general expon. 10
single pairing 100
ratio of pairings 120

0.2 3
1 15
8 100
40 500
40 500
2 30
10 150
100 1500
120 1800

* Unit = point multiplication time on random curve E/F4 by random scalar in Zp, for prime g ~ 217! and p

increases super-polynomially with the number of “crypto-
graphic bits”. Unfortunately, there is no universal cor-
rection recipe, because the security losses to recover often
depends on application-specific operating conditions, such
as how much access to a decryption oracle an adversary
can be expected to gain in the most pessimistic scenario.
The suitable correction coefficient must therefore be deter-
mined on a case-by-case basis.

6.4 General Recommendations

We saw that it is often necessary to raise the apparent
security parameters in order to compensate for security
reduction inefficiencies that are function of the adversary’s
behavior. How much adjustment is needed will thus de-
pend on the powers of the worst-case adversaries that one
is willing to defend against. This varies from one context
to the next, but we can make the following general recom-
mendations based on our observations:
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~ 2160,

The SK schemes should generally be avoided as a rule of
thumb, except perhaps in very special circumstances
where simplicity of implementation is the absolute
overriding concern.

The BF schemes are safe to use, but are penalized by the
lack of efficiency of their encryption and encapsula-
tion algorithms. BF encryption is safer than BF key
encapsulation the way we described it, because the
latter requires a stronger Gap assumption; this was
the price to pay for its extreme compactness.

The BB;-IBE scheme appears to be the smartest choice,
due to a combination of operational advantages, a
fairly efficient security reduction, and its reliance on
a reasonable complexity assumption. In addition, the
commutative-blinding framework of BB; has the ad-
vantage of offering some residual security outside of
the random-oracle model, without any change to the



Table 9: Actual overheads, in bits, for the various IBE and IBKEM schemes, in function of the type of elliptic curve
and the security level.

Total Overhead (bits) Full IBE IBKEM Only
BF-1BE SK-IBE BB;-IBE BF-KEM SK-KEM BB;i-KEM
SS @ 80-bit security level
public params. 1024 2048 2560 1024 2048 2560
CT (excl. msg.) 672 672 1184
KEM capsule 512 672 1024
MNT @ 80-bit security level
public params. 342 1368 1539 342 1368 1539
CT (excl. msg.) 331 331 502
KEM capsule 171 331 342
MNT @ 128-bit security level
public params. 1024 4096 4608 1024 4096 4608
CT (excl. msg.) 768 768 1280
KEM capsule 512 768 1024

Table 10: Estimated relative computational costs, in arbitrary units, for the various IBE and IBKEM schemes, in
function of the type of elliptic curve and the security level. Timings are indicative only, and the same caveats as in
Table 8 apply.

Computation Cost* Full IBE IBKEM Only
BF-IBE SK-IBE BB;-1BE BF-KEM SK-KEM BBi-KEM
SS @ 80-bit security level
key extraction 20 2 4 20 2 4
encryption 114 6 8
decryption 102 104 124
encapsulation 114 6 8
decapsulation 100 106 120
MNT @ 80-bit security level
key extraction 80 8 16 80 8 16
encryption 140.4 2.4 2.6
decryption 100.2 100.4 122.2
encapsulation 140.4 24 2.6
decapsulation 100 102.4 120
MNT @ 128-bit security level
key extraction 1000 100 200 1000 100 200
encryption 2006 36 39
decryption 1503 1506 1833
encapsulation 2006 36 39
decapsulation 1500 1536 1800

* Estimated indicative times in the same time unit as in Table 8, and for comparison purposes only.
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system, as discussed by Boneh and Boyen (2004a, §7).

Because of its more efficient reduction, BB1-IBE is also
likely to require a smaller group size p = |G| = |G| = |G|
than BF and especially SK, in order to meet prescribed
exact security levels against real-world adversaries. For
this reason, and in spite of its apparent complexity, BBi-
IBE will thus quite possibly have the shortest ciphertext
and the fastest operation, depending on the application.
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