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Abstract— We describe a probabilistic framework for de-
tection and modeling of doors from sensor data acquired in
corridor environments with mobile robots. The framework
captures shape, color, and motion properties of door and wall
objects. The probabilistic model is optimized with a version
of the expectation maximization algorithm, which segments
the environment into door and wall objects and learns their
properties. The framework allows the robot to generalize
the properties of detected object instances to new object
instances. We demonstrate the algorithm on real-world data
acquired by a Pioneer robot equipped with a laser range
finder and an omni-directional camera. Our results show that
our algorithm reliably segments the environment into walls
and doors, finding both doors that move and doors that do
not move. We show that our approach achieves better results
than models that only capture behavior, or only capture
appearance.

I. INTRODUCTION

Consider a mobile robot, which is equipped with sensors

and entrusted with the task of finding all doors in a

hallway. The robot can try to find doors based on the fact

that they move, distinguishing them from static walls. A

differencing algorithm between sensor readings taken at

different times will be rather successful in finding moving

doors. What about the doors that never moved during the

robot’s data acquisition phase? If the robot knew the door

width and color apriori, it would again be successful, but

this information is usually not available. Instead, the robot

can learn about width and color from doors that moved and

apply the acquired knowledge to find the doors that did

not move. This example suggests that a framework which

jointly models geometric, color and motion attributes of

objects can successfully generalize from object instances

that a robot has detected to new object instances.

Surprisingly, object-level modeling and property gener-

alization have remained largely unaddressed in the robotics

literature. Environment models, or maps, play a pervasive

role in mobile robotics, but most map representations

have been chosen with the primary goals of navigation

and localization in mind. Often, environment maps are

represented as occupancy grids [20], [25], in which models

are represented by grids of binary occupancy variables. An

alternative representation is known as topological [7], [13],

[18], [22]; here the environment is represented by a graph

whose edges corresponds to places (e.g., intersections in

a corridor environment), and whose arcs correspond to

navigable connections between them. Other popular rep-

resentations of maps are composed of point features [10],

[14], raw sensor measurements [5], [11], [16], or line

segments [6], [15]. The representations mentioned above

(and most others that have been proposed) largely assume

static environments, and do not model the world structure

in an intuitive object-based framework. Recently, there has

been some related work in the context of object-based

modeling [2], [4] (see also [8]). The approach in [2]

uses simple differencing to segment non-stationary objects,

and learns their appearance models, represented as 2D

occupancy grid maps. There are two restrictive assumptions

in this model that we will not make. First, it avoids the

segmentation problem entirely by assuming that objects are

separable (not too close to each other) and that an entire

scan of the circumference of an object can be obtained by

the robot. Second, the use of object differencing implies

that objects can be recognized only if they move at some

point in time. In the case of door detection, doors can touch

other objects, and can be partially occluded. We are also

interested in finding doors that never moved.

Our approach demonstrates the advantages of object-

based modeling by defining a probabilistic generative

model of corridor environments containing door and wall

objects. Each object is parameterized both by visual fea-

tures — its shape and color — and by behavioral fea-

tures — its motion model. Given a map containing a set

of objects, our generative model defines the distribution

over possible observations that the robot might make

when scanning the environment. It expresses preferences

for models, which match general knowledge about the

objects (doors move and walls do not), and for models

with coherent object attributes (doors usually have similar

colors and widths). For a fixed set of objects, we can fit

the model parameters using the expectation maximization

(EM) algorithm [9]. Our algorithm also considers the

introduction of new objects and evaluates their plausibility

within the model. It can detect objects using both their

behavioral features, i.e., their motion, and their appearance.

Thus, using generalization, it enables a robot to recognize

instances of door objects even if those instances never

move. We present experimental evidence on real-world data



acquired with a Pioneer robot, equipped with a SICK laser

range finder and an omnidirectional camera. The raw data

is pre-processed using a scan matching algorithm described

in [12], which enables us to recover accurate estimates

of the robot’s pose. From this data we learn a model

integrating object appearance and behavior properties and

show it achieves better results than models which only

capture behavior or models which only capture appearance.

II. MAP MODEL

Object-based Modeling We begin by presenting a proba-

bilistic framework for maps containing objects. Our results

in this paper address a special case of this framework,

where maps contain door and wall objects, modeled as

line segments. While we believe that the framework and

the ability to use EM for learning object-based maps

are of independent interest, it is clear that our particular

instantiation allows us to make certain strong assumptions

which allow us to learn maps effectively.

A mapping domain is defined via a set C of object

classes. In our example, we have two classes of objects,

walls and doors, and any specific map will consist of some

set of doors and some set of walls. Each class C ∈ C is

associated with a set of parameters, divided into two types:

static parameters, which represent attributes of the object

whose value is fixed over time, and dynamic parameters,

which can change between scans of the robot. For example,

shape and color are typically static parameters, whereas

position parameters can be static for stationary object

classes such as walls, and dynamic for non-stationary

object classes such as doors. Static parameters are further

partitioned into two subsets: global parameters and local

parameters. Global parameters are defined for an entire

class of objects, whereas local parameters are specific to

individual objects in the class. Global parameters are very

common. For example: multiple walls (or doors) might

share the same color, and multiple doors might have the

same width.

A world is a set of J concrete objects, φ1, . . . , φJ , such

that each object φj is an instantiation of an object class in

C. In a dynamic environment, the world changes over time.

We assume that time is represented as a set of discrete time

points t = 1, . . . , T . A configuration mt specifies a value

for each parameter of each object in the world at time t.
Specifically, let φ be an object in the world from class C,

and θ some parameter associated with C. In general, the

map mt contains a parameter θt
φ. However, if θ is a static

parameter, then θt
φ is fixed over time, and we can therefore

drop the dependence on t, using the notation θφ. If θ is also

a global parameter, it is fixed for the entire class, and we

can drop the dependence on φ, using the notation θC . The

map is the set of all configurations: M = m1, . . . ,mT ,

which includes all static and all dynamic parameters for

every value of t.

Implementation with Walls and Doors In our application,

a robot learns object maps of a typical corridor environ-

Fig. 1. a) Pioneer mobile robot, equipped with two 2D laser range
finders and a panoramic camera; b) corridor environment with doors; c)
panoramic camera image

ment. In this case, we have two classes of objects: walls

and doors. For each of these classes, we represent both

their shape and their color features.

Most simply, a wall can be represented as a single

straight line segment, as proposed in [6], [17]. However, a

single wall often contains openings, for hallways or doors.

If we model such a wall as a collection of separate objects,

we will fail to capture the fact that these segments are

part of a single object and are therefore aligned. Without

this assumption, the noise in the data will lead us to learn

poorer maps, containing many segments whose orientation

is slightly different.

Thus, a wall object W is defined via a set SW of

segments aligned along the same straight line. The line is

described by the tuple: 〈αW , βW 〉, where αW is a normal

unit vector, and βW is a scalar offset between the line and

the origin of the coordinate system. Each segment along

the line is represented by specifying its endpoints; given

the line parameters and a reference point, each endpoint

can be represented by a single parameter. Thus, we need a

total of 2 · |SW |+ 2 independent parameters to represent a

wall object W . In our framework, we take these parameters

to be static and local.

A door object D is represented as a segment that can

rotate around a hinge. The door class is associated with

three parameters: hD, a two-dimensional vector denoting

the location of the door hinge; w, a scalar denoting the

width of the door; and ψt
D ∈ [−π/2, π/2], the angle of

the door at time t. In our framework, hD and w are static

parameters and the angle ψt
D is a dynamic parameter (as

indicated by time index t). Furthermore, we take the width

w to be a global parameter (hence the missing subscript),

whereas all other parameters are local. Thus, for a specific

door object D we have the parameters: 〈hD, w, {ψ
t
D}T

t=1〉.
We now turn to the color model. In our setting, color is

a global parameter, that is, we assume that objects in the

same class have the same color. Of course, specific scans

of an object typically vary in the actual color reading; this

variability is modeled via a Gaussian distribution. The wall

class is associated with two global parameters µW , σ2
W that

specify the mean and variance of this Gaussian density.

Similarly, the door class is associated with two parameters

µD, σ
2
D.

III. DATA MODEL

The parameters in the object map are learned from data,

acquired by a robot equipped with a forward-pointing laser



range finder and an omni-directional camera (see Fig. 1).

The raw data is pre-processed using a scan matching

algorithm described in [12], which enables us to recover

accurate estimates of the robot pose. The robot pose at

time t will be denoted st = (xt, yt, γt), where xt and

yt represent the robot’s location in Cartesian coordinates,

and γt its heading direction. The robot’s trajectory S is its

simply the sequence of all its poses s1, s2, . . . , sT .

At each time t, the robot acquires a scan Σt of the

environment. In each scan, the SICK range finder we use

takes K = 180 range measurements, spanning a semicircle.

A scan Σt is a set of K tuples, each consisting of a 1D

range measurement d associated with an RGB color l:

Σt = {(dt
1, l

t
1), . . . , (d

t
K , l

t
K)}, (1)

Each tuple (dt
k, l

t
k) in the scan is associated with a direction

ρk, which indicates the angle offset from γt, the heading

direction of the robot. Knowledge of the robot pose enables

us to project a measurement into the global coordinate

frame. In particular, the mapping to world coordinates

of the range measurement dt
k is given by the geometric

equation:

πt
k =

(

xt + dt
k cos(γt + ρk)

yt + dt
k sin(γt + ρk)

)

(2)

Clearly, πt
k is only meaningful if the sensor actually detects

an object within its maximum sensor range. If a range

sensor fails to detect an object, πt
k is undefined; however,

the range measurement may still carry information relevant

to the object modeling problem.

Range Sensor Model An ideal, noise-free range sensor

would always measure the distance to the nearest object

in its sensor cone, up to the maximum sensor range. Of

course, real measurements are subject to noise: the actual

range is usually corrupted by noise, and sometimes sensors

return values that are random relative to our object model

(e.g., specular reflections or absorbing surface materials).
We model this phenomenon using the following sensor

model. For each range measurement dt
k, let φt

k denote the
closest object in the map mt along the measurement ray.
(Note that φt

k is a function of the configuration mt
k). Let

δt
k denote the distance to this object. We also associate

with each measurement a binary variable vt
k, which denotes

whether the range measurement is a valid one (derived from
the object φt

k). If vt
k = 1, the measurement is the correct

distance to φt
k, corrupted by Gaussian noise, and cropped

at the maximum sensor range dmax:

p(dt

k | s
t
, m

t
, v

t

k = 1) = αN
(

min{dmax, δ
t

k}, σ
2
)

Formally, we need the normalizing factor α (which depends

on δt
k) to ensure that the conditional probability sums to 1

for the domain of dt
k.

For the case when the measurement ray does not

intersect any physical object (wall or door), we assume that

δt
k = ∞. The equation above is equivalent to explaining

the reading with a virtual object located at the max-range

mark.
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M
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Fig. 2. Sensor model. a) The first physical object intersected is φo, b)
The ray does not intersect any physical object.

If vt
k = 0, the measurement is random within the valid

measurement range [0, dmax], which is modeled by the

following uniform density:

p(dt
k | st,mt, vt

k = 0) = 1/dmax.

The prior probability of a non-random measurement

p(vt
k = 1) is denoted λ; it plays a role when ‘recovering’

expectations over the (unobservable) validity variables vt
k.

Graphical examples of the range sensor model are given in

Fig. 2.

Color Model Technically, cameras possess different failure

modes than range sensors. However, it will be mathemati-

cally convenient to stipulate the same validity variable vt
k

for both the range measurement dt
k and the corresponding

color value ltk. We make this assumption for simplicity both

in the notation and the implementation, but our approach

is easily generalized to accommodate separate validity

variables. Thus, for vt
k = 1, we have

p(ltk | st,mt, vt
k = 1) = N (ltk;µφt

k

, σ2

φt

k

) (3)

Otherwise, if vt
k = 0, the color is drawn uniformly.

As we discussed, our implementation assumes that the

color of each object is a global parameter. The color

of an object φ in class C is defined via the parameter

pair (µC , σ
2
C) defining a Gaussian distribution. Hence, in

Eq. (3), we use the general class color parameters for the

class of object φt
k rather than color parameters for the

individual object.

IV. MAP LIKELIHOOD, PRIOR, AND POSTERIOR

Data Likelihood In this section, we discuss the target

function that is being optimized when learning the map.

Assuming independence between the individual noise and

validity variables for all measurements, the total likelihood

of the data D = {Σt
k} and all validity variables V = {vt

k}
is given by the following product:

p(D, V | S,M) =

T
∏

t=1

p(Σt | st,mt, vt) p(vt) (4)

=
T

∏

t=1

K
∏

k=1

p(dt
k | st,mt, vt

k) p(ltk | st,mt, vt
k) p(vt

k)

Taking the negative logarithm of the resulting expression

gives us the following target function, which we subse-



quently seek to minimize.

log p(D, V | S,M) = const.+

T
∑

t=1

K
∑

k=1

{log p(vt
k) +

+ log p(ltk | st,mt, vt
k) + log p(dt

k | st,mt, vt
k)} (5)

Map Prior Unfortunately, the number of objects in the map

is unknown and has to be determined during mapping. One

could easily optimize the data likelihood by introducing

a unreasonably large numbers of objects in the map. To

counteract this effect, we assume a prior over maps that

penalizes maps in proportion to the number of parameters

(this is a version of the well-known AIC criterion [1]). In

our implementation, the number of parameters comprises

all global parameters, whose number is denoted by MG,

all static local parameters, denoted MS , and all dynamic

parameters, denoted MD. In addition, in order to prevent

segments from being artificially lengthened without any

supporting measurements, we introduce a prior to penalize

long segments. In particular, as shape is a static parameter,

we define L[M] to be the total length of all segments in

the map (in doors as well as walls). Overall, our prior then

has the form:

p(M) ∝ exp(−ρG MG − ρS MS − ρD MD − ρLL[M])

The constants ρG , ρS , ρD, ρL specify the strength of each

component in the prior and are set by hand. Under this

prior, the goal of learning is to identify a map M that

maximizes the posterior. Note that this prior probability

does not depend only on the total number of objects, but

also on the number of segments in each wall object. This

is because each segment accounts for two parameters in

the wall object, as discussed above.

V. LEARNING MAP PARAMETERS WITH EM

In this section we assume a known set of object hy-

potheses, and show how to optimize the object parameters.

The next section describes an outer loop to this procedure,

which introduces new object hypotheses into the map.

In order to optimize the object parameters, we want to

maximize the log-posterior probability of the map and the

data:

p(M,D | S) = p(D | S,M) p(M) (6)

In general, this optimization problem is complex and multi-

modal, so that a closed form solution is infeasible. Among

many complicating factors is the fact that the validity

variables V = {vt
k} are hidden. We therefore resort to

finding a local maximum of Eq. (6) using the expectation

maximization (EM) algorithm [9]. As usual, in EM we

optimize the expected log-posterior EV [log p(V,D,M |
S) | D,M, S]. The EM algorithm improves this quantity

by iterating over two steps: the E-step and the M-step.

E-Step In the E-step, we are given a map M, and we

compute the expected values of the validity variables given

the map and all available data. The individual validity

variables vt
k are independent of each other given the data

and the map. Thus, we can easily compute

et
k := p(vt

k | st,mt, dt
k, l

t
k) (7)

∝ p(ltk | st,mt, vt
k) p(dt

k | st,mt, vt
k) p(vt

k)

Evaluating this probability involves querying the sensor

model for a given map. Each correspondence vt
k can

only take on two values. This makes the calculation of

vt
k highly efficient. The time required to calculate these

correspondence is linear in the number of measurements

(and logarithmic in the size of the model, assuming efficient

data structure for ray tracing).

M-Step Our task in the M-step is to find the model pa-

rameters that optimize the expected log-posterior, specified

in Eq. (6). In our probabilistic model the range readings

and colors are conditionally independent given the validity

variables. Furthermore, they depend on disjoint sets of

parameters. Thus, the expected log-probability decomposes

into a sum of two unrelated terms — one involving only the

shape parameters and the other only the color parameters

— which can be optimized separately.

Unfortunately, the log-posterior for the shape is a dis-

continuous function, which involves discrete and continu-

ous elements. We therefore decompose the maximization

step into multiple sequential sub-steps, each of which

optimizes a subset of all parameters in order to improve

the log-posterior of the data. For walls, we have separate

steps for optimizing the orientation parameters for a single

line and the segment ends for a single line. For doors we

have steps for optimizing the local parameters representing

the position of the hinge and the angles, and steps for

optimizing the global width parameter. As each of these

optimization steps is executed separately, the resulting

model is not a global optimum of the expected log-

likelihood function (relative to the results of our E-step).

However, this decomposition of the M-step enables us to

utilize highly efficient solutions for the individual steps.

Wall Orientation This step determines the straight line

parameters 〈αW , βW 〉 of a single wall in the model. It is

easy to see that such parameters only depend on the range

readings, and not the color measurements. Unfortunately,

finding wall parameters that minimize the distance along

all sensor rays (weighted by their expectation) defies a

closed form solution. For efficiency purposes, we use an

approximation motivated by the work of Liu et al. [15], and

optimize a function where distance between the measure-

ment and the object is evaluated using Euclidean distance:

(dt
k − δt

k)2 ∝ (αT
W · πt

k − βW )2 (8)

under the constraint that ‖αW ‖2 = 1. Using this ap-

proximation, the optimization can be accomplished using

standard weighted least-squares line fitting (see [15]).

Determining Wall Segments This optimization step deter-

mines the number and location of segments along a wall.



Fig. 3. (a) The Stanford hallway environment. (b) Stanford hallway map containing wall and door objects (dark lines: walls and door segments;
semi-circles: dynamic range of the doors; light gray dots: laser data). Doors are allowed to have different widths in this experiment

At first glance, this may appear to be a difficult problem:

for each point along the wall, we have to make a decision

as to whether this point corresponds to a segment or not,

that is, whether this point along the infinite line contains

a physical wall in the world. However, this problem is

simplified thanks to a number of critical observations. First,

the problem is inherently discrete: Rather than considering

arbitrary points along the line to be segment end points,

our desire to minimize the sum of all segment length

immediately implies that sensible endpoints must lie on

points where sensor rays intersect the wall. Since there

are only finitely many sensor measurements, we have to

consider only finitely many candidates.

The number of segments and their end points can now

be determined efficiently using dynamic programming.

To understand the algorithm, let RW be the set of all

range measurements whose ray intersects with the line

corresponding to the wall W . For each point dt
k ∈ RW , we

have two choices: either this point is included in a segment,

or it is not. This decision affects the object that the scan is

expected to detect: Either it is the wall in question, or it is a

possible wall behind it (assuming that such a wall exists in

the mode; otherwise it will be max-range). If we denote the

configuration that includes a wall at this point as mt+
k , and

the configuration that excludes it as mt−
k , we effectively

obtain two different expected log-posteriors derived from

this local decision:

qt+
k = et

k log p(dt
k | st,m+, vt

k = 1)

qt−
k = et

k log p(dt
k | st,m−, vt

k = 1) (9)

The difference of those values, ∆t
k = qt+

k − qt−
k , is the

cost (in terms of log-likelihood) of including this point in

a segment. Critically, the decisions for different points in

RW are independent, in that the overall difference in log-

likelihood between two different segment configurations

along the wall is simply the sum
∑

dt

k
∈RW

∆t
k.

To obtain the log-posterior cost, we must factor in the

effect of the prior, which adds to this term the length of

the segment piece that results from including a point, and a

possible parameter penalty for starting a new line segment.

The overall log-posterior cost can now be exactly opti-

mized using a dynamic programming algorithm. The points

are processed in linear order, starting from one end of the

line. As the algorithm processes a point dt
k, it keeps track

of two costs: the optimal cost for the points processed so

far if we include dt
k in a segment, and the optimal cost for

these points if we do not. Given both costs for dt
k, we can

compute the optimal pair of costs for the next point along

the line. Once the processing of the line is done, we can

(as usual) pass over the points in reverse order to select the

overall configuration of segments that optimizes the cost.

Door Hinges and Angles Recall that a door D is a set of

segments rotating around a hinge. It is defined by a static

parameter hD for the position of the hinge and a set of

dynamic parameters ψt
D specifying its angle at different

points in time. The problem of identifying the segment

angles is similar to that of identifying wall orientations

discussed above. We use the same approximation, taking

into account the door hinge position, and thus optimize:
∑

t,k

et
k{(sinψ

t
D cosψt

D) · (πt
k − hD)}2. (10)

Here “·” is the vector dot product. Unfortunately, even

this approximate problem does not have a closed form

solution. However, the function is differentiable and we

can optimize the hinge position and the angles by standard

gradient descent.

Door Width Our model contains a global parameter w
representing the width of all doors in the environment.

We treat the scans of all doors we have found as scans

of a single segment, whose length we want to optimize.

This computation is straightforward, and uses essentially

the same procedure as the one for optimizing the length of

a wall segment.

Color Models As discussed, the color model for each

object class C is a simple Gaussian distribution. Our

approach estimates the mean color vector of each of the

two classes using the standard ML estimator:

µC = (
∑

k,t

et
kl

t
k)/(

∑

k,t

et
k)

The variance is computed analogously.

VI. MODIFYING THE MODEL STRUCTURE

So far, we have assumed that the number of objects

in the world, the walls and doors in our case, is fixed



Fig. 4. (a) CMU hallway map learned from range data only. (b) Result from learning a mixture of two Gaussians on the color data only

and known. In this section, we address the question of

selecting the right number of objects, or map structure. As

is common in the literature on EM, our approach possesses

an outer loop in which new objects are introduced, and

others are terminated. The posterior log likelihood provides

a clear measure with regards to the optimal number of

objects in the map.

Unfortunately, adding objects with random parameters

is highly inefficient, since the probability of such random

objects to explain any previously unexplained measurement

is usually extremely low. We therefore have developed a

suite of initialization techniques that tend to insert objects

at sensible locations and with sensible initial parameters.

Discovering Walls New walls are introduced by analyzing

the set of all points πt
k (not just the poorly explained

ones) using a Hough transform [24]. This transform is

analyzed for dominating line orientations in the environ-

ment, to recover an approximate prior over wall orientation

(assuming that those are not uniformly distributed for most

environments). In doing so, the initial orientation of walls

is biased toward plausible orientations given the data.

Once a wall is suggested, we introduce it into the model,

and then use the EM method described in the previous sec-

tion to optimize the model parameters. Unfortunately, this

approach is subject to local minima, which is particularly

problematic when introducing a new wall into the map. The

problem is due to the fact that before an object is intro-

duced, the expectations step might have “explained away”

an inconsistent sensor measurement by the hypothesis that

it is noise. Put differently, the expectation et
k may be very

close to zero before a new object is introduced.

Unfortunately, a single M-step is unable to take advan-

tage of this reading: Even if the new object perfectly ex-

plains the measurement in question, the residual improve-

ment in log-likelihood is at most et
k, the probability that the

reading is viable. We address this problem by incorporating

a “pseudo-E-Step” into the optimization associated with

the introduction of a new object: When introducing a

new object, we locally recalculate the expectations et
k

for all measurements intersecting this object, temporarily

allowing for the detection of objects that are occluded. This

makes it possible to temporarily “discover” explanations

of measurements that, after appropriate modification of

the model in the M-step, will be plausible; in fact, the

underlying model is equivalent to the one used in [15],

which ignores occlusions when determining data associa-

tion. While this temporary modification does not affect the

overall optimization function (the log-posterior), which in

fact models occlusions correctly, the ability to rapidly “re-

acquire” points that were previously assumed to be noise

improves the convergence of the algorithm significantly.

Discovering Doors In range data, doors can be recognized

because of their motion. For example, a door may be open

at one time and closed at another. Consider a segment that

appears in some scan t, but moves to a different position

in another scan t′. In most cases, the new position of the

segment will cause some objects that are visible in scan t to

be occluded in t′ (or vice versa). Our algorithm searches

for these occluding segments by building segment maps

for individual scans. If straight line segments at time t are

intersected by many scans at t′, it is suggested as a potential

door and the map is extended accordingly.

Additionally, doors can be suggested if we have prior

or induced estimate of their color. Our algorithm searches

for segments whose color is better explained by our model

of door color than our model of wall color. An interesting

capability of our framework is that we continue updating

our color model as we find doors (based on motion, for

example), which improves our color-based suggestions as

we find an increasing number of doors that never moved.

Once a door is suggested, the algorithm estimates the

(static and dynamic) parameters for the door by running

the EM algorithm described above. It then computes the

overall log-posterior score of the map containing the door.

If this score is higher than that of the map without this

door (i.e., when the segment is static), the door hypothesis

is adopted. Otherwise, it is abandoned.

VII. EXPERIMENTAL RESULTS

We conducted systematic experiments to determine the

capability of our algorithm to detect door and wall objects,

and to generalize from properties of detected object in-

stances to new instances. We used real data collected by a

physical robot in two different hallway settings at Stanford



Fig. 5. (a) CMU map learned using both color and range data. (b) Generalizing the class parameters from one map to another. This is a map learned
on a different robot pass using global class parameters learned on the previous pass

and CMU. The robot, shown in Fig. 1, is equipped with a

SICK laser range finder and a panoramic camera. Stripes of

color measurement were extracted from the camera image

and associated with corresponding range measurements.

As noted above, the pose information was recovered with

sufficient accuracy using the algorithm described in [12].

The localization algorithm is run as a preprocessing step

and is independent of the object-based mapping method

proposed in this paper. All experimental data was collected

in hallways (see Fig. 1), with doors changing orientation at

random. None of the objects were labeled by hand; instead,

the robot had to segment the data, identify objects, and

learn models using EM.

All maps from both environments are learned using the

same parameter setting: λ = 0.7, σ = 5cm, ρS = 35,

ρD = 1.3∗ρS , ρL = 0.7/cm. The results reported below are

not particularly sensitive to this parameter setting. In our

experiments, doors are stationary while the robot is passing

through the hallway, but move between robot passes.

Our main experimental results pertain to the question

of whether suitable object maps can be recovered using

our approach. In particular, we sought to understand the

extent to which the combination of multiple cues, motion

and appearance, can aid our discovery of objects. Our main

finding, in the corridor domain, shows that the combination

of both features is indeed superior to the use of a single

feature alone. In fact, our approach shows significant

robustness in identifying walls and doors, and in learning

accurate models.

In detail, our first set of experiments were targeted at

the subproblem of finding doors based on dynamics, using

range data alone. Fig. 3b) shows a typical result, obtained

in one of our testing environments. As this image suggests,

a number of doors was successfully identified, as were

all major walls. However, two out of seven doors were

misclassified as walls. One of them, shown on the upper

left, never changed state, and hence is indistinguishable

from a wall under our model. The other, on the bottom

right, moved once, but it was invisible to the robot’s

scanner in its open position. These result suggest that our

approach is quite robust with regards to finding doors that

move, but is unable to discover doors that do not move.

Our second set of experiments was targeted at us-

ing appearance information (color, width) to further aid

the recognition of doors. A typical example is shown

in Fig. 5a). Here, the full model, as described in this paper,

was trained using both range and color data. As this result

suggests, all doors were found successfully; in fact, in

all our runs involving this dataset the algorithm exhibited

at least 84% reliability in identifying doors. The most

remarkable finding, however, is that our approach succeeds

in discovering four doors that never opened. These doors

are the two rightmost ones on the top end and the two

leftmost ones on the bottom end of the corridor. This

example illustrates that our approach is indeed able to

identify objects based on behavior features (motion), then

learn appearance attributes (color, width) and use these

learned attributes to identify other members of the same

object class. To verify our hypothesis that both types of

features indeed matter, we also trained a model based on

color alone. The result in shown in Fig. 4b); learning

mixture models with 2 or 3 Gaussians on the color data

does not manage to separate door from non-door regions.

In a final series of experiments, we wanted to estimate

the robustness of our approach to various modifications

of the data set. We gradually added noise to the robot

pose estimates of a no-color dataset, which significantly

impacts the smoothness of the range data. At the same

time, we kept the noise parameter σ of our sensor model

unchanged. The results in Table 7 show a graceful decline

in our capability to detect doors as the noise increases.

In further experiments, we reduced the number of moving

doors in the training set. We found empirically that the

accuracy in identifying those doors that never opened does

not depend on the number of doors that changed state in

the training set, as long there was at least a single such

door present.

Finally, Fig. 5b) shows the application of our learned

model to a different data set collected in the same hallway,

but without retraining the object model. In this run, one

door is missed (bottom left), and different wings of double-

winged doors are identified (but with incorrect hinge point,

since those never moved). These results show that our

approach is indeed capable of learning usable models of

objects within our restrictive corridor setting.



Table 7
Performance of the door mapping algorithm on noisy localization data

Noise (cm/deg) 0 / 0 2 / 0.3 4.0 / 0.6 6.0 / 0.9

Doors Found 5 4 3 2
False Positives 0 0 0 0

VIII. CONCLUSIONS

This paper describes a probabilistic framework which

models shape, color and motion properties of door and wall

objects from robot sensor data. The model is learned with

an instance of the EM algorithm, which detects doors and

walls and learns their properties. The framework was vali-

dated experimentally on real-world datasets, demonstrating

acquisition of accurate object maps and reliable detection

of both moving and non-moving doors.

Our work can be extended in several ways. In this paper,

we focused on object modeling, and rely on an existing

software system to provide accurate pose estimates [12],

[19]. Instead, the mapping problem can be addressed in

the context of a robot which has to simultaneously localize

itself in the environment (as in [21], [23]). Additionally,

we have restricted ourselves to segment-based models

of objects which largely remain at the same location.

The general techniques we explored in this work can be

extended to a much richer class of object models. A key

decision in this case is to determine the parameterization of

object shape, as most objects are not well-described using

line segments. A volumetric representation as in [3] is one

possibility. Defining an appropriate shape parameterization,

especially when we are dealing with 3D geometry, is an

area of open research.
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