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ABSTRACT

The kinematic chain is a ubiquitous and extensively stud-
ied representation in robotics as well as a useful model for
studying the motion of biological macro-molecules. Both
fields stand to benefit from algorithms for efficient mainte-
nance and collision detection in such chains. This paper in-
troduces a novel hierarchical representation of a kinematic
chain allowing for efficient incremental updates and rela-
tive position calculation. A hierarchy of oriented bounding
boxes is superimposed on of this representation, enabling
high performance collision detection, self-collision testing,
and distance computation. This representation has immedi-
ate applications in the field of molecular biology, for speed-
ing up molecular simulations and studies of folding paths of
proteins. It could be instrumental in path planning applica-
tions for robots with many degrees of freedom, also known as
hyper-redundant robots. A comparison of the performance
of the algorithm with the current state of the art in collision
detection is presented for a number of benchmarks.
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1. INTRODUCTION
A kinematic chain is a common and useful representation

of a manipulator arm or a hyper-redundant robot in robotics
[6], as well as of a protein backbone in molecular biology [7].
It is a serial linkage composed of N links and N − 1 joints.
A kinematic chain may alter its configuration over time by
changing its degrees of freedom while adhering to constraints
imposed by the chain-like structure. The problem at hand
is the efficient maintenance of a representation of the chain
in order to efficiently answer queries — after every time step
— about the self-collision status of the chain, the existence
of collisions with obstacles, or the minimum distance from
other objects.

Current approaches to collision detection do not deal specif-
ically with chains but rather propose general methods for
either rigid objects or objects composed of separately mov-
ing pieces. These approaches can be divided into two main
classes of algorithms, one that tracks features in order to
compute minimal separation, and the second that uses a
subdivision and approximation of the object itself or the
space it lives in. Examples of feature based approach are the
Lin-Canny collision checker [19] and the KDS of Agarwal et
al [1]. The partition methods include occupancy grids such
as [8, 13, 15] or the one suggested by Halperin et al [12] for
kinematic chains. Other partitions are based on projection
onto subspaces [5], or octtrees [9]. Much work has dealt with
a hierarchy of approximations based on bounding volumes
(BVs) to describe each object. Different types of BV’s have
been used such as spheres [3, 14], axis aligned bounding
boxes (AABB) [23], oriented bounding boxes (OBB) [10],



rectangular swept spheres (RSS) [18], and discrete orienta-
tion polytopes (K-DOP) [17].

We could not build on the feature tracking approaches be-
cause they assume simple convex polyhedra or require tem-
poral coherence (the position of a link at time t+∆t is close
to its position at time t, where ∆t is the time-step taken by
the algorithm). Unfortunately a chain with unbounded mo-
tion does not have these two properties. All the space par-
tition approaches except [12] only detect collision between
two separate objects and fail to exploit properties specific to
a chain. The work in [11] tackles a problem similar to ours.
However, while we aim to explore the configuration space of
the chain, through controlled changes to a limited number of
degrees of freedom, they are interested in the physical sim-
ulation of chain-like structures, and therefore must assume
all links move simultaneously.

There are two specific properties of the chain that we cap-
italize on in our approach. First, in a kinematic chain local
changes have global effects, namely, a change in a joint alters
the positions of all links beyond this joint relative to those
located before. If we maintain a single reference frame for
the entire chain, we need to update the position of O(n) links
every time a change is applied to one of the joints. There-
fore, we create and maintain a hierarchy of reference frames
and achieve a much lower update cost. The second property
becomes apparent when we attempt to detect self-collisions.
Current algorithms [10, 14, 17, 23] are only geared towards
collisions between two separate objects. They could be ap-
plied to finding self-collisions by testing an object against
a copy of itself. While this approach would yield correct
results, it is very wasteful. The algorithm is bound to find
the “trivial” collisions between a part of the object and its
copy, as well as the “interesting” collisions between differ-
ent parts of the object. Our new approach overcomes this
inherent inefficiency by using the topology of the chain to
locate rigid pieces that are known to be collision-free and
avoid testing them for self-collisions.

In the biological domain, macro-molecules are described
as long chain-like structures with up to several thousand de-
grees of freedom (DOFs). A useful representation of these
molecules is hence a kinematic chain whose links are the
rigid pieces and whose joints are the bonds that allow tor-
sional motion. One particularly interesting class of such
macro-molecules are the proteins. A protein uses its DOFs
to change its conformation1 in order to minimize its free
energy. The active (folded) conformation of a protein is the
global free energy minimum [7]. Finding this state is one
of the fundamental problems in molecular biology. Methods
aimed at finding the folded conformation require computa-
tion of internal energy as changes are applied to the DOFs
of the protein. One class of such methods, known as Monte-
Carlo methods, applies small changes to the molecule at
every time step and accepts or rejects the new conformation
based on the change in energy. This method would benefit
tremendously from efficient self-collision detection because
steric clashes entail prohibitively high energy. We would
need to compute the other, more expensive components of
the energy function only for clash-free conformations.

In classical robotic motion planning, random sampling is a
well established technique [2, 16]. A roadmap graph of free-
space configurations is created and searched for a path from
the initial state to the goal. Many planners use the distance

1The chemical term for configuration of a molecule.

between the obstacles and the robot placed at a milestone to
decide which pairs of milestones in the roadmap can safely
be connected by straight paths. Planners using potential
field methods also rely heavily on calculating distances from
obstacles. These planners spend most of their time com-
puting distances and detecting collisions and would benefit
greatly from speeding up these operations. Our new ap-
proach is particularly suited for hyper-redundant snake-like
robots [4, 20, 24]. Self-collisions could be detected efficiently
as the robot changes its configuration and the distance of the
robot from any obstacle expeditiously determined.

Our contributions in this paper are:

• A novel hierarchical representation of a kinematic chain,
which allows for O(log N) time incremental updates for
a constant number of changes, and O(log N) time cal-
culation of the relative position of two arbitrary links.

• A bounding volume hierarchy (BVH) respecting the
chain topology is built on top of this representation. It
can be used to detect self-collision in a worst case tight

bound of Θ(N
4
3 ) time, but is shown to do much better

in practice; far better than any existing approach.

While the idea of constructing a hierarchy that respects the
chain topology seems natural and obvious, theory does not a
priori encourage this approach. We can maintain a standard
spatial representation of the chain (respecting the spatial ar-
rangement of the links regardless of the kinematics) that can
be updated and tested for self-collision in time O(N log N)
per step. This seems impossible to beat. However our results
below, both the experimental and theoretical, show that the
issue is more involved. We show that efficient update is cru-
cial for the effectiveness of the overall solution. Indeed our
solution updates the chain in O(log N) time per change in
a single joint. Furthermore, we show that the efficient up-
date comes with a moderate price: self-collision testing now
goes up to O(N4/3) (which is higher than O(N log N) but
lower than the cost incurred per step by a näıve approach).
Finally, what we see in the experiments is that this bound
is a crude, conservative estimate of the cost of testing self-
collision and in practice, even in highly packed situations,
the cost is typically much smaller

The rest of the paper is constructed as follows: We start
by presenting our approach in Section 2: first (Section 2.1)
we explain how the incremental maintenance of a chain works;
then (Section 2.2) we show how to construct an efficiently
updateable BVH on top; and finally (Section 2.3) we present
an efficient algorithm for detecting a self-collision using the
representation. In Section 3 we analyze the performance of
our algorithm for updating the representation (Section 3.1)
and for detecting self-collision (Section 3.2). The proofs of
the worst case complexity of self-collision detection in kine-
matic chains are given in Section 4 for two types of BVH.
Section 5 presents experimental results showing the supe-
riority of our novel approach to the current methods, and
Section 6 discusses extensions to the algorithm and future
work.

2. ALGORITHM DESCRIPTION
We are given a kinematic chain which may deform along

its degrees of freedom at each time step. We would like to
update the chain representation and the BVH built on top
of it to reflect the latest set of changes and then use the



hierarchy to test the chain for self-collision. In what follows
we expand on these tasks.

2.1 Incremental Maintenance
A chain is a series of N rigid links L0, . . . , LN−1 connected

by N − 1 joints, such that Ji,i+1 is the joint connecting
Li and Li+1. Each link is described in terms of its own
reference frame. In our representation a joint is simply a
rigid transformation between two reference frames given as
a rotation matrix R and a translation vector t. For example,
Ji,i+1 is the transformation from frame Li+1 to frame Li.
We also maintain a hierarchy of shortcut transformations
that allow us to move faster along the chain.

L0 L1 L2 L3 L4 L5 L6 L7 L8

J01 J12 J23 J34 J45 J56 J67 J78
J02

J04

J24 J46 J68

J48
J08

Figure 1: The cached transformations scheme for a
kinematic chain.

In Figure 1 we can see the entire set of transformations
that are cached for a chain of 9 links. For every l = 0, . . . , log N ,
for every 0 ≤ i ≤ N − 1, if i mod 2l = 0 then we store the
transformation Ji,i+2l .This scheme results in log N levels of

shortcuts, with level l having N
2l

cached transformations,

each looking ahead 2l links in the chain. Altogether at most
2N − 3 transformations are cached. This scheme allows for
the computation of the transformation between the coordi-
nate frames of two arbitrary links Li and Lj in O(log N)
time. It will also prove useful when testing two bounding
boxes in the hierarchy for possible overlap. It is important
to note that we do not explicitly maintain the global position
of any of the links. Should we want the coordinates of all
links, we can compute them in the frame of L0 by travers-
ing the chain and applying the cached transformations to
the links.

Changes can be applied simultaneously to all joints of the
chain. Each change occurs at some joint and is defined as
a rigid transformation C = {R, t} at this joint. To keep
our representation up-to-date, it is necessary to recompute
some shortcut transformations, and this is done one level at
a time. At each level we recompute all transformations that
shortcut a transformation that was updated on the previous
level. Recomputing a shortcut Ji,i+2l at level l amounts to
computing the product of the two transformations Ji,i+2l−1

and Ji+2l−1,i+2l at level l − 1. To understand this better
we look again at Figure 1. We would like to bend the chain
at joint J3,4. This entails applying some rotation to the
current cached value of J3,4. We now need to see which
shortcut transformations need to be recomputed. At the
second level, J2,4 is no longer correct. We compute it by
taking the product of the two transformations it shortcuts,
namely J2,3 and J3,4. In the same way we recompute J0,4

as the product of J0,2 and J2,4, and J0,8 as the product of
J0,4 and J4,8.

2.2 Hierarchy of Bounding Volumes
A BVH is needed for performing efficient collision testing.

Before building such a hierarchy we need to decide what type
of BV to use. There is a trade-off between the tightness with
which the volume bounds the geometry and the complexity
of testing two such volumes for overlap [10]. For our appli-
cations with macro-molecules such as proteins, OBBs seem
best suited, since they offer relatively tight bounding for
elongated geometry as well as for globular structures, while
still allowing efficient overlap tests (as described in [10]).
Proteins can fold up to very compact conformations and
tight BVs are expected to dramatically reduce the number
of overlap tests required to detect self-collision.

The different collision detection algorithms proposed in
the literature vary in the amount of deformation the ob-
jects may undergo. The sphere hierarchy in [14] and the
OBB hierarchy in [10] allow only rigid transformations to
the object and no deformation. The AABB hierarchy in
[23] and the sphere hierarchy in [3] allow local deformations
that remain small throughout the execution, while the oct-
tree of [9] can cope with small local deformations having
large aggregated effects on the shape of the object. All of
these algorithms, however, are poorly suited for dealing with
kinematic chains. A change to a joint angle may bring to-
gether pieces of the chain that were previously far apart and
separate pieces that were close together. Adjusting the ex-
isting structure to reflect the change in the geometry would
inevitably result in a poorly performing hierarchy for [3, 10,
14, 23], or prohibitively long update time for [9]. On the
other hand, recomputation of the hierarchy from scratch is
a costly procedure.

We therefore propose a different method of building the
BVH that respects the topology of the chain. In partic-
ular, each box will bound a consecutive set of links along
the chain. At the bottom of the hierarchy are the links
of the chain, which we will assume to be simple objects,
like spheres. (In Section 6.2, in the context of amino acid
side-chains, we will see how to handle more complex elemen-
tary pieces.) At this level, a box is assigned to every link.
Respecting the chain topology entails a simple bottom up
system for constructing the hierarchy. When creating a new
level, the boxes of the current level are divided into adjacent
pairs and a new box is created for each pair, bounding both
boxes. We mark a bounding box Bi,j where i is the level of
the box and j is its index starting from the box containing
L0 at that level. Using this notation, box Bi,j is constructed
to bound boxes Bi−1,2j and Bi−1,2j+1. This also entails that
box Bi,j bounds links Lj2i−1 to L(j+1)2i−1

−1. Due to our
construction method, the hierarchy is guaranteed to be bal-
anced. An example for a short chain can be seen in Figure 2.
Note that rather than bounding the underlying geometry
tightly, a box bounds only the two boxes immediately below
it in the hierarchy.

L3

DCA

F

L2L1 L4 L5 L6 L7

B

E

L0

G

Figure 2: A hierarchy of bounding boxes respecting
the chain’s topology.



Whenever a change is applied to the chain, all bounding
boxes that contain the affected joint need to be updated to
make sure they still bound the geometry correctly. This is
a simple bottom up process that proceeds along the path
from the lowest level box containing the changed joint, to
the box enclosing the whole chain. At each level a box is
recomputed to bound the two boxes just below it. For ex-
ample, in Figure 2 we would like to apply a change to the
joint between L4 and L5. Before we update the boxes we
must update the shortcut transformations as described in
Section 2.1. The lowest level box that contains this joint is
C. We compute a new box C ′ to replace C, bounding L4

and L5 (see Figure 3). At the next level F is no longer valid,
and we compute F ′ to bound C′ and D. At the top level, the
root box G is also recomputed. When simultaneous changes
are applied to the chain, a corresponding number of paths
need to be updated. Instead of updating one path at a time,
we update all paths together, one level at a time. First, we
update all shortcuts at the next level and then all boxes at
that level. This allows us to avoid multiple updates of the
same box or shortcut when update paths converge.

2.3 Detecting Self-Collisions
The main purpose of our algorithm is the detection of self-

collisions. As explained in the Introduction, the immediate
way to do this would be to test the hierarchy of the chain
against a copy of itself. We would start by testing the top
level box against itself and then continue down the hierarchy
using the standard algorithm described in [10]. Since every
elementary piece of the object (the links of the chain) occu-
pies the same space as itself, the traversal of the hierarchy
will visit all the links at a cost of Ω(N), independent of the
chain configuration. At this complexity it would be better
to use a space decomposition method like the grid, which
has a much smaller overhead.

Assuming that the number of changes applied since the
last query is a small constant, and that before applying the
last set of changes the chain was collision-free, we can ac-
tually do better in practice. We observe that the joints at
which the changes were applied, divide up the chain into
rigid pieces that have not undergone any deformation since
the last query. These “rigid” pieces, which are contained
inside boxes that were unaffected by the last change, will
still be collision free and there is no need to test within
them. Therefore, during the traversal, when coming across
a box that was not recomputed in the last update, we do
not search its sub-hierarchy for self-collisions.

E F’

C’

L0 L1 L2 L3 L4 L5 L6 L7

A B D

G’

Figure 3: The hierarchy after applying a change.

Figure 3 illustrates a hierarchy after a change was applied
to the joint between L4 and L5. The grayed boxes are the
ones that required recomputing. Checking for self-collisions
commences by testing the top box against itself. Since, box

G′ was affected by the last change we continue to descend.
We now need to examine all pairs of its children, namely
(E, E), (E, F ′) and (F ′, F ′). The box E was not affected by
the last change so the pair (E, E) can be discarded. Next we
test the pair(E, F ′). Since E and F ′ are separate branches
of the tree, testing them is like testing two separate objects.
If they overlap we continue to test their children, otherwise
we quit that path. Lastly, we test the pair (F ′, F ′). Since F ′

was affected by the last change we need to descend this path
as well. This continues until a collision is found or all paths
end without finding overlap. Effectively, we are testing for
possible collisions between the two rigid pieces {L0, . . . , L4}
and {L5, . . . , L7}, but we are doing it implicitly and without
computing a separate hierarchy for each rigid part.

3. ANALYSIS
In [10], Gottschalk et al suggest a cost function for eval-

uating the performance of a BVH for detecting collisions
between two objects. Klosowski et al [17] expand the cost
function by taking into account any updating costs incurred
as the object flies through space. The cost of one collision
test is given as:

T = Nv × Cv + Np × Cp + Nu × Cu, (1)

where Nv is the number of BV pairs tested for overlap, Cv

is the cost of one overlap test, Np is the number of pairs
of elementary pieces tested for overlap, Cp is the cost of
an elementary pair overlap test, Nu is the number of nodes
in the hierarchy that required updating and Cu is the cost
of updating a node. This function applies also to the case
of self-collision detection. In trying to minimize the cost
function we need to take into account two fundamental and
interdependent tradeoffs. The first is between Cv and Nv +
Np. The more complex the volumes are the tighter they
fit the geometry and the less the number of overlap tests
performed. The second is between updating (Nu ×Cu) and
testing (Nv×Cv+Np×Cp). Building a hierarchy that allows
for efficient updating could curtail the performance of the
collision checker. In what follows we explain the choices we
made and their influence on the total cost T .

3.1 Updating
As we saw in Sections 2.1 and 2.2 updating the structure

after changing one joint involves updating shortcut trans-
formations and recomputing boxes along the path from the
changed joint to the root of the hierarchy. Assuming we up-
date the levels in order from the bottom up, at a given level
a transformation is updated in O(1) time. We are able to
update a bounding box in O(1) time as well by trading tight-
ness for speed. Each bounding box in made to bound the
two boxes below it, which results in not-so-tight bounding
of the chain. Since the hierarchy has O(log N) levels, and
at each level at most one transformation and one box are
updated, the total cost of the update process is O(log N).

When κ simultaneous changes are applied, we update all
changes together one level at a time. This ensures that no
transformation nor box are updated more than once, since
converging update paths are merged. We therefore have that
Nu×Cu is O(κ log N) for a small κ, but never exceeds O(N)
as κ grows.

3.2 Detecting Self-Collision



For the sake of simplifying the analysis below and the
proofs of worst-case bounds, which follow in Section 4, we
will concern ourselves only with well-behaved chains. A well-
behaved chain has the following two properties:

1. The ratio of the volume of the largest link to the vol-
ume of the smallest link is bounded. More precisely,
we require that the ratio of the volume of the largest
bounding sphere of any link to the smallest volume of
any link is smaller than some constant β

2. The centers of the minimal bounding spheres of no two
links may come within a distance smaller than some
constant δ

It was shown in [13] that in well-behaved chains each link
may overlap no more than k other links, for a constant k.
Consequently, there may be no more than O(N) overlaps be-
tween the links of the chain at any given time. All kinematic
chains described in the Introduction are well-behaved.

The immediate, brute-force algorithm for detecting self-
collision would test all pairs of links for overlap, making
Nv = Θ(N2). Alternatively, we could use a BVH to speed
up the computation. For a kinematic chain there are two
types of BVHs that can be used:

Spatially-Adapted BVH: A hierarchy as described in [10,
17], which attempts a good spatial partition of a given
configuration of the chain.

Chain-Aligned BVH: A hierarchy as presented in Sec-
tion 2.2 that respects the topology of the chain.

(a)

(b)

Figure 4: A single joint change corrupting a
spatially-adapted hierarchy. We examine only the
second level of the hierarchy, where there are N

2
boxes. In (a) the boxes are spatially-adapted with
no overlap. A change in the middle joint creates the
configuration in (b). Recomputing the boxes for the
new conformation while maintaining the topology
causes all boxes to overlap.

For any given configuration of the chain one could con-
struct a spatially adapted hierarchy. For such a hierarchy
the following theorem holds (see Section 4.1 for a proof):

Theorem 1. The maximum number of BV overlap tests
needed to detect self-collision in a well-behaved chain of N
links using a spatially-adapted BVH is Θ(N).

Hence Nv for a spatially adapted BVH is at the worst case
Θ(N), but usually better than that. Although very efficient
for detecting collisions in the configuration for which it was
adapted, such a hierarchy is expensive to update. If we
choose to maintain the current topology of the hierarchy, a
single joint change could entail Nu = Θ(N) and corrupt the
hierarchy, so as to raise Nv to O(N2) at the worst case. Such
a scenario is illustrated in Figure 4. We could instead build
a new hierarchy, adapted to the new chain configuration at
a total cost of O(N log N) [10].

Although our BVH is not adapted for a good spatial par-
tition of most chain configurations, the following theorem
shows it maintains a good upper bound for Nv, which is
tight in the worst case (see Section 4.2 for a proof):

Theorem 2. The maximum number of BV overlap tests
needed to detect self-collision in a well-behaved chain of N

links using a chain-aligned BVH of OBBs is Θ(N
4
3 ).

Moreover, its advantages over the spatially-adapted BVH
are threefold. First and foremost, our BVH allows for an
efficient O(log N) update scheme as described above, far su-
perior to the O(N log N) effort needed to rebuild an adapted
BVH. Second, the quality of our BVH (its worse case behav-
ior) cannot be corrupted by any series of updates. It remains

O(N
4
3 ) throughout the execution of the algorithm and does

significantly better on the average (as the experiments re-
ported in Section 5 show). Third, assuming a correlation
of spatial distance and topological distance (distance along
the chain), also known as low contact order, which exists in
many proteins of interest to biologists [21], the worst case
configurations become more rare. All in all, our approach
yields a BVH that is not optimal but good enough most
of the time, and, most importantly, allows for an efficient
updating scheme.

4. WORST-CASE BOUNDS
All the proofs that follow will be based on the following

constructions:

• When the links of the chain are not all spheres of equal
radius, we replace each link by an enclosing sphere of
radius r, where r is the radius of the bounding sphere
of the largest link. Thus we may treat all links as
spheres of equal radius.

• Consecutive links of the chain are touching and may
even overlap. Each pair of consecutive links that does
not touch is expanded until the links touch.

These constructions do not affect the asymptotic bounds
proven below because they only change the size of the links
by a constant factor.

In the proofs below we will distinguish between two dif-
ferent methods of constructing the BVH:

• The BVs of the hierarchy are constructed to bound
tightly around the links of the chain they enclose, for
all levels of the BVH. We refer to such a BVH as tight
(this is the case when the BV is a minimal bounding
sphere or a minimal OBB).

• When this is not the case and a BV is constructed to
bound the two BVs just below it in the hierarchy, we
refer to the BVH as loose (this is the case for the OBBs
that we use).



4.1 Spatially-Adapted BVH
We would like to prove Theorem 1. First we show that

O(N) is an upper bound for such a hierarchy and then
present a configuration, in which this bound is realized.

Lemma 1. The number of BV overlap tests needed to de-
tect self-collision in a well-behaved chain of N links using a
spatially-adapted, tight BVH is O(N).

Proof. We prove this bound by constructing the hierar-
chy and showing that at each level there are O(2i) box over-
laps (i = 0, . . . , log N), which sum up to O(N) for the entire
hierarchy. We start by constructing an axis-aligned box A
that bounds the entire chain. We will construct a recursive
partition of A into cells, assign to each cell the links whose
centers fall inside it, and then construct an AABB that will
bound all these links. The partition into cells proceeds as
follows: at each iteration we partition each cell in two us-
ing a plane orthogonal to one of the principal axes. The
partition is chosen such that the centers of half the spheres
fall on one side of it, and the centers of the other half fall
on the other side. We also require that the cell be longer
than 8r along the dimension which will be partitioned. Note
that as long as there are 4k or more links assigned to a cell,
there must be at least one dimension which is long enough
to be partitioned. Recall that k is the constant limiting
the amount of packing allowed in a well-behaved chain (See
Section 3.2).

We recursively partition all cells in A into smaller and
smaller cells until no more than 4k links are assigned to each
cell. We say that the cells created at the ith iteration of the
partitioning belong to the ith level of the hierarchy. We de-
fine nij to be the number of cells at level i whose minimal
distance from cell j (j = 0, . . . , 2i − 1) is less than 2r. From

the construction it is simple to show that
P2i

−1
j=0 nij = O(2i).

Each cell is represented in the hierarchy by an AABB con-
structed around the cell by increasing each of its dimensions
by r in each direction. This AABB will obviously bound all
links assigned to the cell. It will also overlap all cells within
a distance of 2r from the cell, but nothing farther away since
the side of each cell is at least 2r. The number of neighbors
of neighbors is also linear in the number of cells at each
level so the total number of possible overlaps is bounded by
O(N).

We now proceed to show a lower bound:

Lemma 2. The number of BV overlap tests needed to de-
tect self-collision in a well-behaved chain of N links using a
spatially-adapted, tight BVH is Ω(N).

Proof. This bound is straightforward and can be im-
mediately deduced from the configuration in Figure 5. In
this configuration we have two rows of spheres whose cen-
ters all lie on the same plane. Each sphere is tangent to
all of its neighboring spheres. We note that no two spheres
can be bounded inside a convex BV that does not overlap
some other sphere in the configuration. This is obvious from
the configuration. Therefore, at the level of the hierarchy,
where we group pairs of spheres together into BVs, each
BV is guaranteed to overlap at least one other BV. Since at
this level there are N

2
BVs, the number of overlaps is clearly

Ω(N), and the lemma is proven.

Putting together the results of Lemmas 1 and 2 yields the
proof of Theorem 1.

Figure 5: A 2D projection of a chain configuration
achieving the Ω(N) lower bound.

4.2 Chain-Aligned BVH
We now turn to the proof of Theorem 2. We will first prove

the upper bound and then present a chain configuration, for
which the bound is attained for any convex BVH.

Lemma 3. Given a chain-aligned, loose BVH over a well-
behaved chain as described in Section 2.2, the number of BV

overlap tests needed to detect self-collision is O(N
4
3 ).

In order to prove this lemma we first show that this bound
holds for tight bounding spheres, and then proceed to show
that the OBBs in our loose hierarchy can be bounded inside
“well-behaved” spheres, giving our hierarchy the same upper
bound.

Lemma 4. Given a chain-aligned and tight BVH of spheres
over a well-behaved chain, the number of BV overlap tests

needed to detect self-collision is O(N
4
3 ).

Proof. We construct a hierarchy bottom-up as described
in Section 2.2 using spheres as BVs, making sure it is tight.
Let’s look at level i of the hierarchy, where each consecutive
gi = 2i links are bounded by a single sphere. The largest
bounding sphere at level i has radius gir. It is obtained
when the links are arranged on a straight line. We take one
group of gi spheres at level i, and let Bi be its bounding
sphere. Consider a sphere Ci concentric with Bi and having
radius 3gir. Any bounding sphere at level i intersecting
Bi is fully contained in Ci, since at the least it has to be
tangent to Bi, and its maximum radius is gir. Now let’s
bound the number of groups whose bounding sphere may
lie in Ci. Since we aim for an upper bound we assume that
each such group is tightly packed. Nevertheless, there is a
lower bound on the volume it occupies which is qgi

4
3
πr3,

where q is a positive constant smaller than 1 due to the
fact that each link can overlap at most k other links. Hence,
from volume considerations the number of bounding spheres
contained in Ci is at most:

Mi =
4
3
π27g3

i r3

4
3
qgiπr3

=
27g2

i

q
(2)

Mi is therefore the maximum number of bounding spheres
that overlap Bi. We note that there are exactly N

gi
bounding

spheres at this level, so the number of spheres that intersect
one sphere can only grow until it reaches N

gi

:

N

gi
≥ 27g2

i

q

gi ≤ 1

3
q

1
3 N

1
3 (3)



We recall that gi = 2i, and plug that into Equation (3) to
find the level at which Mi reaches its maximal value:

imax =
1

3
log N + log

1

3
q

1
3 (4)

We define Ti to be the maximum number of possible BV
(sphere) overlaps at level i of the hierarchy, where i =
0, . . . , log N (0 is the bottom level). For all levels smaller
than imax, Ti = N

gi
Mi. For all levels greater than imax we

can use the trivial upper bound of ( N
gi

)2 for the number of

collisions at each level. In what follows we ignore the con-
stant part of Equation (4) as it has no effect on the bounds
we prove. The total number of collisions at all levels is
therefore:

T =

log N
X

i=0

Ti

=

1
3

log N
X

i=0

„

27g2
i

q

«„

N

gi

«

+

log N
X

i= 1
3

log N

„

N

gi

«2

=
27N

q

1
3

log N
X

i=0

2i + N2
log N
X

1
3

log N

“

2−i
”2

=
27N

q

“

2N
1
3 − 1

”

+
4

3

“

N
4
3 − 1

”

= O
“

N
4
3

”

+ O
“

N
4
3

”

= O
“

N
4
3

”

(5)

We have shown an upper bound of O(N
4
3 ) on the number

of overlapping spheres. In a side note, we would like to
draw the reader’s attention to the fact that we could easily
extend this proof to d > 3 dimensional links bounded by a
d dimensional BVH of spheres, using the same proof with
very minor changes. In that case we would get an upper

bound of O
“

N
2(d−1)

d

”

.

The upper bound we have just proven in Lemma 4, would
hold for all chain-aligned and loose BVH as long as the BV
at level i can be bounded by a sphere of radius c 2ir, for an
absolute constant c. In what follows we use that to show
that the same upper bound holds for our OBB hierarchy as
well. We start by proving the following helper lemma:

Lemma 5. Given two OBBs contained in a sphere D of
radius R, the OBB bounding both of them is contained in a
sphere of radius

√
3R concentric with D.

Proof. Let the two boxes b1 and b2 be bounded inside
the sphere D of radius R. Let B12 denote their OBB. Con-
struct a bounding cube Q for sphere D, whose faces are
parallel to those of B12. Q contains B12 since along any of
the main axes that define B12, the faces of Q are farther out
(or touching). Now take a bounding sphere of Q. Since a
side of Q is of length 2R, its diagonal has length 2

√
3R, and

hence the radius of the bounding sphere E of Q is
√

3R. E
is concentric with D because along each of the axes defining
B12 the farthest point of b1 or b2 from the center of D is
at distance at most R, hence the farthest point of B12 from
the center of D is at a distance at most

√
3R.

Next we prove another helper lemma:

Lemma 6. At level i, where 2i links are grouped together
inside one bounding box, each OBB can be bounded inside a
sphere of radius c 2ir, where c is an absolute constant.

Proof. We prove this lemma by induction on the level
of the hierarchy. For i = 0, 1, . . . , 4 we verify this fact. Since
there is a constant number of spheres involved, we compute
the worst case scenario and extract a constant — c1. We will
take our constant c to be at least c1. We assume the lemma
is correct up to level i−1. Now consider a consecutive set of
32 OBB’s bj , j = 0, . . . , 31, at level i−5 that are (eventually)
bounded together at level i. The bounding sphere of each bj

has radius at most c 2i−5r by the induction hypothesis. We
take a ball S of radius 2ir that contains the entire part of
the chain bounded by the 32 bj boxes. Assume for simplicity
that it is centered at the origin. Now each sphere bounding
one of the bj boxes must intersect S or at least touch it. This
means that the farthest point on a box bj from the origin is
at distance at most 2ir(1+ c

16
) from the origin. We therefore

construct another sphere T0 concentric with S whose radius
is 2ir(1 + c

16
).

Every pair of boxes in the set bj is clearly bounded by T0.
In particular those pairs which will be bounded together at
the next level. We now apply Lemma 5 to those pairs and
realize that a sphere T1 of radius

√
3 times larger than the

radius of T0 and concentric with T0 will bound the OBBs
created at level i − 4. Continuing this line of argument up

to level i we get that a sphere T5 of radius 2ir(1 + c
16

)
√

3
5

bounds the OBB that bounds all of the bj boxes. We need
this radius to be smaller than c 2ir to complete the proof.

2ir
“

1 +
c

16

”√
3
5 ≤ c 2ir

c

 

1
√

3
5 − 1

16

!

≥ 1 (6)

We choose c according to Inequality (6) (which is a valid

choice since
√

3
5

< 16). If c1 > c we make c1 be the desired
constant.

Lemma 6 assures us that our hierarchy is well behaved,
and the OBB’s do not become too big. Therefore Lemma 4
applies and the upper bound on the number of possible over-

laps of OBBs is O(N
4
3 ).

We now turn to showing that this upper bound is tight
(for any convex BVH):

Lemma 7. Given a chain-aligned BVH of convex BVs
over a well-behaved chain, the number of BV overlap tests

needed to detect self collision is Ω(N
4
3 ).

Proof. We prove the lemma by presenting a chain con-
figuration whose BVH requires this much work. We start by
taking d links and placing them along the X axis starting at
the origin and proceeding in the positive direction. The cen-
ter of the dth link is therefore positioned at x0 = 2(d − 1)r.
We now place d more links parallel to the Y axis, starting
at (x0, 2r) and moving in the positive direction. Finally we
place another set of d links parallel to the Z axis starting
just above where we left off. This sub-chain of 3d links we
call a unit. We take this unit and make d

8
− 1 copies of it



placing each one translated by (2r,−2r, 0) relative to the
previous. We connect the units either at their beginning or
end to create a chain. We call these d

8
units a layer. Figure 6

illustrates one such layer.

Figure 6: One layer of the chain construction.

We now produce d
8
− 1 copies of the layer and place them

above the first layer, each translated by (0,−2r, 2r) relative
to the one below it. We connect the layers at the point where
the lower ends. The direction of the chain along an upper
layer is exactly the reverse order of the lower. It can be
shown that the convex hull of each unit of the construction
above contains the point (2(d−1)r, (d−1)r, 1

4
(d−1)r). This

means that all these convex hulls are pairwise intersecting
and hence any hierarchy of convex BVs will therefore induce
that many intersecting pairs at the level where all the links

of each unit are grouped together in one BV. We have d2

64

units each consisting of 3d links, so we used 3d3/64 links.

This makes d be N1/3 times a small constant. Since we
have d2/64 units, we get Ω(N2/3) convex hulls and therefore

Ω(N4/3) intersecting pairs.

We have shown that at one level of the hierarchy there
could be Ω(N4/3) overlapping BVs, and therefore the lower
bound of Lemma 7 is achieved. Putting Lemma 3 and 7
together, we have proven Theorem 2.

5. EXPERIMENTAL RESULTS
We tested our algorithm, which will henceforth be called

ChainTree, in two benchmarks against the following three
algorithms, based on standard approaches:

Grid - Explicit maintenance of the chain and collision de-
tection by indexing into a 3D grid using a hash table.
Both updating and testing for self-collisions in O(N)
time.

1-OBBTree - An OBB hierarchy is created from scratch
after each set of changes, and then tested against it-
self for self-collisions. Updating takes O(N log N) time
and testing is worst case O(N).

K-OBBTree - After each set of changes an OBB hierar-
chy is created from scratch for each piece of the chain
that remained rigid. Each pair of OBB hierarchies is
tested for overlap. Updating takes O(N log N) time
and testing is worst case O(N).

The 1-OBBTree and K-OBBTree structures, as well as
the OBB overlap testing used by the ChainTree are based
on the PQP library [10, 18] from UNC. The benchmarks
were run on a Sun Ultra Enterprise 5500 machine with eight
400 MHz UltraSPARC-II CPUs and 4.0 GB of RAM (no
parallelization was used).

For the first benchmark, we created a pseudo-molecular
chain of spheres of radius 1, spaced 4 apart. We looked at
chains of 1,000, 2,500, 5,000 and 10,000 spheres in a compact
cube-like configuration. We ran each structure for 20,000 it-
erations. Each iteration the chain underwent one torsional
change and then tested for self-collision. If a collision is
detected the last move is undone before applying the next
change. The results showing average time per operation are
presented in Figure 7. Note that the testing time for Chain-
Tree and K-OBBTree may be too small to be discernable
in the graph.
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Figure 7: Detecting a collision in a compact chain.

For the second benchmark we used real protein backbones
taken from protein structures in the Protein Data Bank
(PDB). The proteins were chosen because of their size so
we would have a small, a medium and a long backbone.
The starting configuration of the proteins was the highly
compact folded state. We extracted the positions of the
backbone atoms for each of the proteins and ran the same
simulation as in the previous benchmark for each of them.
The results are in Figure 8.

In Table 1 we see the number of box overlap tests that
our algorithm uses in each of the benchmarks. Clearly the
average number of box tests performed in practice is much

smaller than the O(N
4
3 ) worst case bound, although it is not
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Figure 8: Detecting a collision in protein backbones
(each residue contributes 3 atoms to the chain).

as small as the number attained by the adapted hierarchy
of the K-OBBTree structure.

1000 2500 5000 10000

ChainTree 703 715 905 964
K-OBBTree 114 131 163 178

(a)

1SHG 1B4E 1LOX

ChainTree 242 664 747
K-OBBTree 73 113 146

(b)

Table 1: The average number of box overlap tests
per self-collision test for (a) the compact pseudo-
molecular chain and (b) the protein backbones.

6. EXTENSIONS AND FUTURE WORK

6.1 Tighter Bounding
To achieve the O(log N) update time our bounding boxes

are not tight around the geometry of the chain. Each box
is built to bound the two boxes below it in the hierarchy
and thus a box will not bound the geometry perfectly. That
is, there will be some amount of extra volume in every box.
This wasted space accumulates the higher a box is located
in the hierarchy and may cause unnecessary work when test-
ing for collisions. Obviously, the extra volume in each box
is located along its faces. During the update stage, imme-
diately after a box is recomputed, we would like to shrink
it, i.e. push in each face until it actually touches a piece of
the chain. To accomplish this we came up with a shrinking
scheme that can be incorporated into the update procedure,
which makes sure all boxes are tight. The basic idea is that

we can recursively find extremal features of the underlying
geometry by exploiting the hierarchy below each box we are
trying to “shrink”.

In the worst case this scheme requires examining all bot-
tom level links contained in a box, which requires Θ(N)
work for high level boxes. However, our experience shows
that in practice it performs much better, since we use the
hierarchy to prune the number of links that actually need
to be examined.

6.2 Proteins and Side-Chains
A protein molecule is built by stringing together elemen-

tary pieces called amino acids. An amino acid has two parts:
a backbone (a chain of three atoms) and a side-chain of up
to 20 atoms. The backbone pieces of all the amino acids of a
protein are concatenated to form the main chain, each con-
tributing two torsional degrees of freedom. The side-chains
then stick out from the backbone, each having between 0
and 4 degrees of freedom. A first approximation to inte-
grate side-chains is to consider each one together with the
backbone atom it is connected to as one rigid piece and ap-
proximate it using a sphere or a box. This way we are left
with a simple kinematic chain and no modifications to the
algorithm are required.

At this stage it is important to notice that our algorithm
does not require the links of the chain to be simple objects.
A link may be a complex entity described by its own hier-
archy. Moreover, a link does not have to be rigid, as long as
its degrees of freedom do not affect the chain, but only its
own shape. We can build a small hierarchy that represents
the side-chain and the backbone atom it is connected to,
and use the top level box (or sphere) as an elementary piece
in the main kinematic chain. The hierarchy for a side-chain
could be very crude because it is made up of 20 atoms or
less. A change to a degree of freedom of a side-chain will
require updating all the boxes that contain it (the same as
for a chain joint change) but no shortcut transformations.

6.3 Other Extensions
Our BVH could also be used to find collisions between

a chain and other objects. If the other object is simple,
namely similar in size and geometric complexity to a link

of the chain, we can detect a collision in worst case Θ(N
2
3 )

time. If the object is another chain of equal size we can

detect a collision in worst case Θ(N
4
3 ) time. In general, it is

possible to test for collisions against any object represented
as a hierarchy of the same type of BVs. Another useful
extension to our algorithm allows for finding all pairs of
links, which are less than some cutoff distance away from
each other. This capability is very useful when computing
internal energy for macro-molecules. This is accomplished
by growing the links by half the cutoff distance and then
finding all self-collisions.

The hierarchy could also be used to efficiently compute
minimal distance from some obstacle. The obstacle could
either be simple or have its own hierarchy. Finding mini-
mal separation is analogous to testing for a collision. As the
hierarchies are traversed, when checking two BVs, we com-
pute the minimal distance between them, and proceed down
that path only if the distance is smaller than the minimum
found so far. This use of BVHs was suggested by Quinlan
[22], and later by Larsen et al [18], who also suggest RSS as



a better BV for this application. We believe our algorithm
would work well with RSS for both self-collision detection
and answering minimal distance queries.

7. CONCLUSIONS
We presented a novel representation for kinematic chains,

allowing for efficient maintenance of the relative positions
of the links, as well as fast detection of self-collision, as
the chain undergoes changes at its joints. We update the
chain structure of N links in O(log N) time per change, with
an upper bound of O(N) for as many as N simultaneous
changes. We build an OBB hierarchy over the chain, and
use it to detect self-collisions with a proven worst-case com-

plexity of O(N
4
3 ). However we found that in practice we

can expect a much better performance in most cases. The
benchmarks we performed clearly show the superiority of
our method in maintaining chains of 1000 to 10000 links,
with better than 30 time speed up over all other algorithms
for chains of 10000 links. Our approach has immediate ap-
plications in the fields of robotics and molecular biology. It
can be extended to dealing with chains having links with
complex geometry, as well as short side-chains.
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