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Abstract. Understanding the basis of human movement and reproducing it in robotic environ-
ments is a compelling challenge that has engaged a multidisciplinary audience. In addressing this
challenge, an important initial step involves reconstructing motion from experimental motion cap-
ture data. To this end we propose a new algorithm to reconstruct human motion from motion
capture data through direct control of captured marker trajectories. This algorithm is based on a
task/posture decomposition and prioritized control approach. This approach ensures smooth track-
ing of desired marker trajectories as well as the extraction of joint angles in real-time without
the need for inverse kinematics. It also provides flexibility over traditional inverse kinematic ap-
proaches. Our algorithm was validated on a sequence of tai chi motions. The results demonstrate
the efficacy of the direct marker control approach for motion reconstruction from experimental
marker data.
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1 Introduction

The central nervous system (CNS) is able to elegantly coordinate the complex struc-
ture of the human body to perform movements of great agility and sophistication.
An effective way of understanding human movement involves mimicking motions
which are optimal in performance. Such optimal movements include those exhibited
by highly skilled practitioners in sports and the martial arts. Human motor perform-
ance depends on skilled motor coordination and posture control as well as physical
strength and perception. Drawing inspiration from their biological counterparts hu-
manoid robots are being imbued with skilled dynamic behaviors. Enhancing the
authenticity of synthesized human motion in robotic systems has been a continu-
ing challenge that draws together researchers from the fields of physiology, neuros-
cience, biomechanics, and robotics. This challenge has been addressed by research-
ers through retargetting methods [1, 10]. Additionally, adapting existing motion for
a human character with a given set of constraints has been explored [4,9]. However,
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these techniques, which map motion-capture data to different characters and scenes,
require inverse kinematic computations.

We propose a new algorithm to reconstruct human movement through direct con-
trol of optical marker trajectory data. This approach directly projects marker points
onto a simulated human model and tracks the trajectory in Cartesian space. Tracking
the desired trajectories is accomplished using the operational space control frame-
work [5]. With our algorithm we can drive a simulated model of the human body
to experimental marker locations in real-time. This allows smooth tracking of the
desired marker trajectories and extraction of joint angles within a reasonable er-
ror boundary. Further, the task/posture decomposition used in the operational space
method constitutes a natural decomposition for dealing with marker data, thus avoid-
ing the performance of inverse kinematics.

The algorithm presented here is validated through a sequence of slow tai chi
motions. Tai chi motions are light, lively, and balanced, and they constitute a rich
variety of motions useful for testing purposes. With our new algorithm we show that
human movement can be controlled and reconstructed in real-time. This facilitates
the investigation of other high performance dynamic skills.

2 Direct Marker Control Approach

Optical motion capture constitutes a common and effective method for capturing
human motion. A series of markers attached to a subject’s body are imaged by a set
of cameras and the spatial positions of the markers are triangulated from the image
data. A number of post processing steps need to be performed to convert the raw
marker positions into useful kinematic data. The most significant step is to convert
the marker trajectories into joint space trajectories. This has commonly been done
using inverse kinematic techniques.

As an alternative to performing inverse kinematics on marker data we propose
to dynamically track the markers using a task-level control approach. We will refer
to this approach as direct marker control. For the purposes of our direct marker
control application, we will define task space as the space of Cartesian coordinates
for the motion capture markers. However, it must be noted that marker trajectories
obtained through motion capture are not independent. For example, markers on the
same body link are rigidly constrained to each other and the relative motion between
markers on adjacent links is limited by the freedom in the connecting joints. To
accommodate for motion dependencies the markers are grouped into independent
subsets, {m1, ..., my}. Each subset, m;, is represented by a single task vector, x,,;,
that is formed by concatenating the Cartesian coordinates of the individual markers
contained within that subset. Using a prioritized control approach a hierarchy of
marker task vectors is formed where the tasks that are lower in the hierarchy are
projected into the null space of the tasks that are higher in the hierarchy. At the end
of this recursive process, independent subsets of marker tasks are obtained, ensuring
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the overall feasibility of the marker control. The operational space formulation [5]
is then used to directly control the marker trajectories.

2.1 Prioritized Control in Marker Space

In this section, we develop the proposed framework for direct control of marker
trajectories. The need to address high performance dynamic behaviors and the need
for flexibility over traditional inverse kinematic approaches constitute the motivation
for our approach.

A behavioral task generally involves descriptions of various parts of the multi-
body mechanism, each represented by an operational point x;;y. The full task is
represented as an m x 1 vector, x;, formed by vertically concatenating the coordin-
ates of all operational points. The Jacobian associated with this task is denoted as
J:. The derivation of the operational space formulation begins with the joint space
dynamics of the robot [8]

Aj+b+g=T (1)

where ¢ is the the vector of n generalized coordinates of the articulated system, A is
the n x n kinetic energy matrix, b is the vector of centrifugal and Coriolis generalized
forces, g is the vector of gravity forces, and I' is the vector of generalized control
forces.

Task dynamic behavior is obtained by projecting (1) into the space associated
with the task, which can be done with the following operation

JAG+b+g=T1= Afi+p+p=J T )

Here, J tT is the dynamically-consistent generalized inverse of J; [8], A; isthe m xm
kinetic energy matrix associated with the task and w, and p; are the associated
centrifugal/Coriolis and gravity force vectors.

The operational space framework [5] is used as the basis for our direct marker
control algorithm. In this formulation, the task behavior is divided into a set of
independent task points and the torque component for the task is determined in a
manner that compensates for the dynamics in task space. For a task behavior, x;,
with decoupled dynamics and unit inertial properties X, = F}*, this torque is given
by the force transformation

Tusk = J' F; 3)

where J; is the Jacobian of the task and F; is the operational space force. This
operational space force is given by

_ *
= !
Fr = A FS + e + py 4

A task/posture decomposition allows us to represent the dynamics of a simulated
human subject in a relevant task space that is complemented by a posture space. The
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total control torque is decomposed into two dynamically decoupled torque vectors:
the torque corresponding to the commanded task behavior and the torque that only
affects posture behavior in the null space of the task

' = Deask + 1_‘posture = JTTFt + NTTFp (5)

In this expression N,T is the null space projection matrix, and I'j, is the torque pro-
jected into the null space.

The prioritized control framework [7, 11] is used to control the collection of
marker task vectors. In this framework the torque decomposition is:

I'=J"F+N(]F,) ©)
where the posture torque can be rewritten as

1_‘posture = (JpNt)TFp = J;\;Fp\t @)

Consequently, Equation (5) can be represented as:

T =J'F+J},Fp ®)

Alternately, if an additional task is projected into the posture we express this as
T=JlF + ), Fon )

Kln

This is generalized for an arbitrary number of additional tasks
T =J Fi+ 7 Fon + -+ 0o Fultao 10 (10)

21t

2.2 Direct Marker Control Formulation

For the application to marker space we will use m; to denote the task for a particular
marker subset. Equation (10) then becomes:

I'= JI‘Z] E"l + J$2|m1Fm2|’"l +ot Jerw,l|m,l,1\~~~‘m1F'mn‘mn—]""lml (11)

The Jacobian and the force associated with marker space are deduced from the above
equation as follows:

Iy Fo,
Imalm Finy\m
Jo £ 2 1 and Fg 2 2 (12)
Ty |-y Eony iy |-y

The overall control torque is then
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T
r=J!lFg (13)

An analysis on the bounds of the joint space errors can be performed using the
Jacobian associated with the marker space. We note

Axg = JoAgq (14)
The inverse of this relationship is
Agq = JgAxg (15)

where Jg, is the dynamically-consistent generalized inverse of Jg. Joint angles ob-
tained through prioritized control in marker space deviate from the actual values but
are bounded by:

lAql < gl Axg] (16)

This allows us to tune the prioritized marker controller to accommodate the desired
accuracy, for given configurations.

3 Simulation and Validation

A series of real-time movements performed by a tai chi master were recently cap-
tured using an optical marker system to provide validation for our new algorithm.
The subject was a fifty-five year old male of average build. An eight-camera retro-
reflective motion capture system was used to capture his movements at a rate of
60 Hz.

Among the motions performed, a sequence of slow movements were chosen for
validation and real-time simulation. Marker data of the recorded motion were then
segmented and smoothed using the EVART software (Motion Analysis Corpora-
tion).

Marker trajectories were imported into the SAI environment [6] which allows
dynamic 3D simulations. Our existing human model which consists of 25 joints,
was scaled to match the anthropometry of the tai chi master. The data used in this
model have been derived from SIMM models [2]. The skeleton has been modeled
as a multibody system within SAI and scaled based on body segment mass-center
locations [3]. Figure 1 depicts the scaled human model simulated in the SAI envir-
onment.

The human motion reconstruction described in Section 2 was executed using cru-
cial upper body joint marker trajectories (e.g. shoulder, elbow and wrist of both right
and left arms). Sets of two decoupled markers were grouped into distinct marker
subsets. The first subset consisted of the right shoulder and the left wrist mark-
ers and the second set consisted of the left elbow and the right wrist markers. The
markers were then directly tracked through the entire movement sequence using
prioritization.
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Fig. 1 The scaled human model of the tai chi master simulated in the SAI environment. Markers of
the right shoulder and the left wrist are selected to form the first marker set to be controlled (dark
spheres). The second subset is formed by the left elbow and the right wrist markers (light spheres).

Joint angles over the entire trajectory were directly obtained as a natural con-
sequence of the direct marker control approach, thus avoiding any need for comput-
ing inverse kinematics. Figure 2 illustrates the joint angles obtained through direct
marker tracking.

The commanded and tracked positions of the controlled markers, as well as the
joint angles, were recorded during real-time simulation. Figure 3 shows the com-
parison between tracked and commanded positions of each tracked marker. The
consistency between the two curves in each plot suggests the efficacy of the human
motion reconstruction algorithm proposed.

Bounds on the joint angle errors can be addressed using Equation (15). We can
compute the maximum and minimum joint angle error bounds among all the joints.
Thus

Agmax = max(Ag) and  Agmin = min(Aq) (17)

where Ag = JgAxg. Figure 4 shows the margin of marker position errors and the
margin of joint angle errors respectively. Maximum and minimum joint angle error
magnitudes vary stably over the trajectory, suggesting well bounded errors on the
joint angles.
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Fig. 2 Joint angles obtained through direct control of marker data. The joint angles for the
shoulder, elbow and wrist segments are shown for the corresponding arm. Smooth joint space
trajectories are generated without inverse kinematics.

4 Conclusions

In this paper, we presented a new algorithm to control marker trajectories based
on the operational space method of Khatib [5], and task/posture decomposition us-
ing prioritization. The algorithm reconstructs human motion in real-time through
smooth tracking of marker trajectories. This facilitates the extraction of joint angles
without the need for inverse kinematic calculations. The algorithm also easily ac-
commodates anthropometric scaling of the simulation model to the human subject.

We validated our new algorithm through a set of tai chi movement data. The
results illustrate smooth tracking of the marker trajectories in marker space. Smooth
joint angles trajectories were obtained as a natural output of the marker tracking
methodology. A bound on the joint space error was obtained and the results of this
analysis indicated stable error bounds over the trajectory. The errors can further be
decreased with a more precise camera calibration during motion capture experiment
and a more accurate model scaling of the simulation.

There are plans to extend our algorithm to address task/posture decomposition
in the camera space of the optical motion capture system. This may exploit further
advantages of our approach by accommodating arbitrary operational spaces. Ad-
ditionally, where precise knowledge of the subject anthropometry is not known a
priori, our approach can be adapted so that limb lengths can be adjusted until they
optimally track the marker data. This provides a way of inferring more precise an-
thropometry through direct tracking of marker data. By extending our new algorithm
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Fig. 3 Tracked and goal trajectories of markers. The tracked trajectories (solid lines) are shown
for markers attached to the wrist, shoulder, and elbow segments. It can be seen that the generated

trajectories closely track the corresponding goal trajectories (dotted lines).
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Fig. 4 Margin of marker position errors and margin of joint angle errors over the trajectory. Joint
angle error magnitudes show a stable variation over the trajectory, thus ensuring well bounded
errors on the joint angles.

to incorporate other operational spaces, we hope to synthesize and investigate motor
control models for skilled human movement using a task-level framework.
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