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Abstract Generating coordinated natural motion in human-like robotic structures
has proved to be a challenging task. Given that humans easily solve this
problem, we propose a methodology to devise the underlying strategies
of human movement and apply them for robotic control. We use this
approach to examine how humans utilize their muscles while perform-
ing positioning tasks. This analysis suggests an effort potential that
is shown to characterize human postural motion. By applying this
methodology to other criteria, we seek to establish a basis of human
motion characteristics.
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1. Introduction
The challenge of synthesizing motion behaviors is a long-standing

problem within the robotics community. With the recent advent of com-
plex humanoid systems, this challenge grows ever demanding. Due to
their anthropomorphic design, humanoids should move in a human-like
manner to facilitate movement within man-made environments and to
promote interaction with their biological counterparts. Common strate-
gies involve generating joint space trajectories (Kuroki, 2003) or learning
specific motions (Ijspeert, 2002), but these approaches require off-line
computations and do not generalize well to related tasks. There is a
pressing need for a framework where natural motion is generated in
real-time for a large range of tasks.

From observations of human motion, it is apparent that people per-
form many different behaviors while executing a task. These secondary
criteria are the essence of natural human motion, affecting not whether
but how the task is achieved. Fig. 1 contrasts poses of two humanoids
performing a hands positioning task. By simultaneously controlling the
balance and maximizing mobility, the left humanoid visibly exhibits a
more human-like behavior. With this as motivation, we have developed



Figure 1. Comparison of configurations while performing a hand positioning task.
By maintaining balance and maximizing mobility, the left humanoid has a markedly
more natural posture than the one on the right.

a prioritized multiple task controller that in real-time dynamically de-
couples each task.

Equipped with this control framework, we propose a general method-
ology to discover the innate subtasks of human motion. These behaviors
are initially identified by hypothesis or direct observation. By design-
ing targeted motion capture experiments that excite these behaviors,
we then confirm or refute their presence and ascertain their importance
relative to other tasks. After identification, these behaviors are then
incorporated into our robotic controller, incrementally creating a basis
of tasks that characterize human-like movement.

We will illustrate this methodology by examining the muscular effort
required to perform positioning tasks. In general terms, it is evident that
humans avoid overexertion in commonplace motions. However, this con-
cept is not easily quantified, nor is it clear of its relative importance to
other behaviors. By utilizing biomechanical models for neuromuscular
dynamics and control (Zajac, 1993; Hogan, 1991), we demonstrate that
humans seek to minimize the muscular effort (normalized by torque ca-
pacity) needed to compensate for gravity while performing positioning
tasks. While there are additional behaviors that characterize human
motion, humans use much of the available redundancy for gravity effort
minimization.

2. Prioritized Task-Level Control Framework
For any human movement, a person satisfies various criteria while

performing the task at hand. These tasks have different priorities -
maintaining balance is typically more vital than minimizing the required



effort - but all are addressed subject to this hierarchy. With this model in
mind, we have previously developed a task-level control framework that
performs multiple behaviors in a prioritized manner (Khatib, 2004).

To illustrate this framework, we examine the scenario involving two
tasks. We begin by describing the dynamics of the robot in terms of its
joints coordinates, q,

A(q)q̈ + b(q, q̇) + g(q) = Γ (1)

For this system of n equations, Γ is the set of generalized joint torques,
A(q) is the inertia matrix, b(q, q̇) represents the centrifugal and Coriolis
forces and g(q) is the gravity effect.

We denote the m parameters of the primary task as xt, with Jt(q)
representing its joint space Jacobian. The operational space framework
(Khatib, 1987) first introduced the dynamically consistent inverse of the
Jacobian,

J̄ t = A−1JT
t

[
J tA

−1JT
t

]−1
(2)

and demonstrated that its use provides a task dynamic behavior model.
More explicitly, J̄T

t projects the joint space dynamics (Eq. 1) into task
space,

J̄
T
t [Aq̈ + b + g = Γ] =⇒ Λtẍt + µt + pt = F t (3)

In this space, Λt is the m ×m task inertia matrix, and µt, pt, and F t

are respectively the centrifugal and Coriolis forces, gravity effect, and
generalized force.

By the principle of virtual work, forces in the task space, F t, are
transformed into a joint torque, Γtask, by the relationship,

Γtask = JT
t F t (4)

This torque/force relationship allows for the decomposition of the total
torque into two dynamically decoupled vectors: the torque controlling
the task behavior of xt and a torque that does not affect the task but
controls the robotic posture (Khatib, 1995),

Γ = Γtask + Γposture (5)

Torques are projected into the posture space by the operator,

NT
t = [I − JT

t J̄
T
t ] (6)

and it is within this space that we will address our secondary task.
Since it will be controlled within the posture space of the primary

task, we choose xp to denote the coordinates of the subtask and Jp as



its Jacobian. The task-consistent posture Jacobian was introduced to
incorporate the constraints of xt (Khatib, 2004),

Jp|t = JpN t (7)

The subtask may not be achievable if it conflicts with the primary task,
but this Jacobian identifies the controllable directions. Moreover, the
task-consistent posture Jacobian provides the dynamic behavior model
of the subtask in this posture space,

J̄
T
p|t[Aq̈ + b + g = Γ] =⇒ Λp|tẍp|t + µp|t + pp|t = F p|t (8)

and the force/torque relationship,

Γposture = JT
p|tF p|t (9)

With these dynamic behavior models we can formulate a dynamically
decoupled control to perform both tasks. For each task, we have a
desired unit inertial behavior ẍt = F ?

t and ẍp = F ?
p. To compensate for

the dynamics within their respective spaces, we select control forces F t

and F p|t by,
F t = Λ̂tF

?
t + µ̂t + p̂t

F p|t = Λ̂p|tF ?
p|t + µ̂p|t + p̂p|t

(10)

where .̂ denotes the estimates of the components of the dynamic mod-
els. (The modification F ?

p|t = F ?
p − ẍ

p|t is needed since Γtask induces
a bias acceleration on xp.) Using the task/posture decomposition of
torque and the force/torque relationships, the resulting control torque
Γ is determined by,

Γ = Γtask + Γposture = JT
t F t + JT

p|tF p|t (11)

This control framework allows for a conceptual partitioning of motion.
The task can be controlled by a task field Ut that determines the desired
behavior by its gradient: F ?

t = −∇xtUt. In a similar manner, the
posture behavior F ?

p can be specified by a separate posture field Up. We
can therefore incorporate human motion behaviors by expressing these
strategies as energy potentials. In the following sections we examine how
humans address muscular effort and construct a posture field to capture
this behavior.

3. Human Model
To examine muscular effort within the prioritized task control frame-

work we have constructed a musculoskeletal model in conjunction with a



dynamic simulation environment. The SAI environment (Khatib, 2002)
uses an O(n) recursive algorithm for computing the dynamics and con-
trol of an n-joint branching, articulated robotic mechanism.

Our human model consists of 25 joints and 144 musculo-tendon ac-
tuators (Fig. 2). The musculoskeletal data used in this model has been
derived from SIMM models (Delp and Loan, 1995). The skeleton is
modelled as a multibody system within SAI and each musculo-tendon
unit is modelled using a three element Hill-type model (Schutte, 1992).
In this model all musculo-tendon lengths, l, can be uniquely determined
from the skeletal configuration. From kinematics, differential changes in
l are given by dl = L dq, where L(q) is the muscle Jacobian. From the
principle of virtual work we conclude,

Γ = LT f (12)

where f is the vector of net musculo-tendon forces (with an appropriate
sign convention adopted).

Figure 2. A human musculoskeletal model simulated in the SAI environment. This
model consists of 25 joints and 144 musculo-tendon actuators.

The contraction dynamics of each musculo-tendon unit is modelled as
depicted in Fig. 3a. The force-length-velocity relationship of the muscle
at full activation is depicted in Fig. 3b. The active force component of
this surface linearly scales by activation (a ∈ [0, 1]).



Figure 3. (a). Muscle model consisting of a parallel-series arrangement of active and
passive elements. (b). Force-length-velocity relationship showing normalized muscle

force, f̂M , as a function of muscle length, l̂M , and rate of contraction,
̂̇
lM .

This overall model can be simplified if we take the tendon to be in-
finitely stiff. In this case the musculo-tendon force, f , can be computed
as a function of q, q̇, and a. From this we can compute feasible ranges
for the tendon forces (between zero and full activation). Using Eq. 12,
in conjunction with the feasible ranges of tendon forces, muscle induced
torque boundaries, ΓB, can be determined.

4. Muscular Effort Induced Postures
With the premise that musculoskeletal physiology plays an important

role in the nature of human motion, we conducted preliminary exper-

Figure 4. Captured skeletal configurations associated with a subject reaching to
four different target locations with weight in hand. Muscle paths were overlayed
based on the muscle model.



iments to investigate the manner in which humans address muscular
effort while performing tasks. Three subjects were tracked using a mo-
tion capture system while performing whole-body reaching movements.
This set of tasks required the subject to move a normalized weight to
visual goal locations while keeping both feet grounded. Upon reaching
a goal location, the subject maintained this task for 5 seconds while ad-
justing his posture to minimize discomfort. Fig. 4 depicts frames from
the motion capture of a subject moving to separate target locations.
Computational muscle models were used to overlay muscle paths over
the configuration data.

Figure 5. Captured skeletal configurations for reaching tasks, with selected gravity
compensation torques shown. Boundaries represent muscle induced torque capacities.

From the joint space trajectories and our musculoskeletal model we
can determine the muscular effort required to compensate for gravity.
Fig. 5 shows samples of the processed data for two tests. We observe
a strong trend that the gravity torques are balanced over the various
joints in a manner that is correlated to the available torque capacity
at each joint. Based on these observations, and past use of muscle-level
weighted norm criteria in the biomechanics community (Anderson, 2001;
Crowninshield, 1981), we conjecture that postural motion involves the
minimization of a muscle effort potential, U(q), of the form,

U(q) =
n∑

i=1

wi
gi(q)2

ΓBi(q)2
(13)



where gi is the gravity torque about joint i, ΓBi is the muscle induced
boundary torque (upper or lower boundary depending on the sign of gi),
and wi is a weighting term.

We analyzed the suitability of the muscle effort potential in predict-
ing quasi-static postures. Fig. 6 shows muscle effort computed over null
space motion of arm configuration. A one dimensional null space was
chosen for illustrative purposes. The variable qp spans the task consistent
manifold in configuration space (self motion manifold) and, in this case,
represents the inclination angle of the plane of the arm. The configura-
tion qpo

is the observed steady state configuration from the experimental
data (third configuration in Fig. 4). This observed configuration is 0.13
radians (7.5◦) from the configuration where the computed minimum oc-
curs. The muscle effort computed at the observed configuration exceeds
the minimum computed muscle effort by 1.6%.

Figure 6. Plot showing muscle effort over null-space motion of arm configuration.
Observed configuration, qpo

, is 0.13 radians (7.5◦) from the configuration where the
computed minimum occurs.

We also computed muscle effort over null space motion in whole body
configuration. This is shown in Fig. 7. In addition to a task point
at the right hand, xO, balancing was imposed with a task point at
the center of mass of the system, xcm. Joints above the chest were
locked to limit the dimension of the null space to one. The observed
steady state configuration (second configuration in Fig. 4) is 0.27 radians
(15.5◦) from the configuration where the computed minimum occurs.
The muscle effort computed at the observed configuration exceeds the
minimum computed muscle effort by 3.6%.



For both the arm and whole body, uniform weighting was applied
in computing the muscle effort. The efforts computed at the observed
configurations exceed the minimum computed muscle efforts by less than
4%. This suggests strong correlation between task consistent human
postures and a muscular effort criteria. While there are a number of
sources of variability, including experimental error, model inaccuracies,
and intrinsic variability in human motion (e.g. motion deadband); the
results suggest a robust relationship between human motion and task-
level muscular effort minimization.

Figure 7. Plot showing muscle effort over null-space motion in whole body posture.
Observed configuration, qpo

, is 0.27 radians (15.5◦) from the configuration where the
computed minimum occurs.

The identification of this important postural behavior is encouraging
for our research to map human motion behaviors for humanoid robot
control. By using this potential to define the posture field Up , we can
utilize the posture space to minimize effort in real-time while performing
any primary task xt. Moreover, the flexibility of our control framework
will easily incorporate other behaviors upon identification. By establish-
ing this basis, we expect to capture the characterstics that drive most
of natural human motion.

5. Conclusions
Having constructed a dynamic musculoskeletal model of a human, we

have proposed a methodology for identifying physiological characteris-
tics and constraints that shape human motion. These characteristics are
then mapped for robotic control by incorporating potentials into a prior-



itized task-level control framework. We investigated the muscular effort
required for reaching tasks using this approach, and our analysis sug-
gests that minimization of muscular effort is a vital objective of postural
motion. By applying this methodology to other motion characteristics,
we seek to incrementally construct a basis of human motion strategies.
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