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Abstract—This paper addresses the problem of coordinating
great numbers of vehicles in large geographical areas under
network connective constraints. We leverage previous work on
hierarchical potential fields to create advanced skills in multi-
robot systems. Skills group together various field objectives to
accomplish the performance requirements in response to high-
level commands. Our framework calculates trajectories that
comply with priority constraints while optimizing the desired task
objectives in their null spaces. We use a model-based dynamics
approach that provides a direct map from field objectives to ve-
hicle accelerations, yielding smooth and accurate trajectory gen-
eration. We develop a real-time software system that implements
the proposed methods and simulates the coordinated behaviors
in a 3D graphical environment. To validate the methodology, we
simulate a large exploration task and demonstrate that we can
effectively enforce the required constraints while optimizing the
exploration goals.

I. INTRODUCTION

The development of technologies for the surveillance, mon-
itoring, and gathering of information in large geographical ar-
eas is an important research domain for assessing and planning
complex cooperative scenarios. An important problem in this
context is the coordination of multitudes of robotic vehicles
under network connective and geographical constraints.

One of the main challenges in this domain is the execution
of many low level objectives as part of the global coordination
strategy. This problem arises in our application, in which
we must impose network topology and collision avoidance
constraints while simultaneously executing path tracking ob-
jectives and formation behaviors. Another challenge we are
faced with is the design of an architecture that scales efficiently
to very large numbers of vehicles.

To address these challenges, we employ potential field
criteria extensively. The main advantages of using poten-
tials is the low computational overhead associated with task
representations and the simplicity of using gradient descent
controllers. We develop a centralized system, which allows us
to guarantee network connectivity, facilitate decision making
at the group level, and create vehicle formations based on
global criteria. An important characteristic of our methods is
its hierarchical structure, which provides a layer to analyze
and resolve possible conflicts between task objectives.

To implement potential field strategies, we create a gener-
alized dynamic model of the robotic group that relates vehicle
accelerations to control fields. This model provides an effective
interface to project artificial potentials into actuator space. The
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Fig. 1.

Tllustration of multi-vehicle scenario.

resulting generalized accelerations are then integrated to obtain
trajectories that can be tracked by the individual vehicles.

Prioritization is implemented by projecting lower priority
objectives into the algebraic null-space of higher priority
fields. This technique guarantees that lower priority objectives
are constrained and therefore do not interfere with higher
priority objectives.

To compensate for potential fields falling into local minima,
we complement our framework with A* search algorithms
providing optimal path plans of task behavior.

Potential field techniques in robotics have been widely
employed since their introduction in [S]. At the same time,
obstacle avoidance techniques have been explored in the
context of redundant kinematic-based manipulation [9], [1]
operating as soft constraints. Task priorities were later de-
veloped to simultaneously achieve multiple objectives [12],
[16]. Recently, we have developed model-based prioritized
control methods to add rigid constraints to the potential field
approach. [15].

In this paper, we leverage potential field methods in the con-
text of multi-robot systems. Multi-robot cooperation goes back
to variations of the piano’s mover motion planning problem
given several robotic entities [14]. In [17], a distributed multi-
agent system was presented for multi-robot coordination using
subsumption control and the principle of self-organization.
A more advanced approach for distributed coordination was
developed in [11], addressing collision avoidance and basic
formation behaviors.
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Advanced mission specifications with temporal sequencing
were explored in [10]. In [2], motor schemas were outlined for
the control of UGVs. In [18], the problem of role assignment
for robotic teams was tackled.

In recent years, new efforts have been placed on developing
low-level control methods for multi vehicle coordination. The
integration of geometric planning strategies with reactive for-
mation behaviors was explored in [4]. To create rich behaviors,
the concept of competing behaviors was explored in [8]. In [3],
non-hierarchical methods to enforce ad-hoc networks were
developed.

In this paper we present a comprehensive control method-
ology that addresses the important problems of (1) ensuring
network connectivity between vehicles, (2) enforcing geo-
metric constraints, (3) resolving conflicts between competing
objectives, and (4) executing goal tracking and formation
behaviors.

II. MODELS AND CONTROL METHODS

We leverage our previous work on control of multi-
dimensional systems under constraints in order to solve the
problem of coordinating multi-robot systems. The important
issues we address here are: (1) combination of multiple objec-
tives to form rich behaviors, (2) scalability of the algorithms to
large numbers of vehicles, and (3) low computational overhead
on control and planning processes.

We consider the problem of coordinating the behavior of
a group formed by large number of vehicles cooperating in
a network. The group must be able to accomplish arbitrarily
complex tasks, maintain an optimized network topology, and
handle geographical constraints.

To implement potential field techniques, we assign a dy-
namic model to the group. Consider the vector of generalized
coordinates for the 2D positions of n vehicles,

b= <p117p1y7p2:1:7p2y7-~'7pna:7pny>' (l)

To apply field potentials onto the vehicles, we assign the
following dynamical model characterizing the behavior of the
multi-robot group

Mp=T, 2

where I' is a 2n dimensional vector of generalized forces ap-
plied to the group, M is the 2n x 2n diagonal matrix of vehicle
masses, and p is the 2n vector of vehicle accelerations. This
model allows us to treat vehicles as physical objects subject
to generalized forces. In particular, the desired generalized
forces can be translated into path trajectories by numerical
integration, i.e.

p.des = M71F7

At
pdes = ]50 + / ﬁdesdT; (3)
0

At
Pdes = Po + / pdcs (T)dT,
0

where py and py represent the current generalized position
and velocity trajectories and Pges, Pdes, and Pyes represent the
estimated output trajectories of the vechicles.

A task criterion in our framework defines a function from 2n
vehicle coordinates to m task coordinates. Task coordinates are
chosen to represent functional quantities as part of the desired
action. We represent a m dimensional task with coordinates

- Tm) “4)

which are defined as a transformation 7' from generalized
vehicle coordinates, i.e., x = T'[p].

We then associate a differential representation involving a
group-wide Jacobian transformation of task coordinates, i.e.
J = Ox/0p. Our objective is to create task forces derived from
the potential field and apply them on the vehicle actuators.
Based on the principle of virtual work, forces that produce
work in systems in motion can be translated into generalized
forces using the duality

A
x = (z1, 22, ..

r=Jr'r )

where F' is the control force that will optimize the gradient
descent policy.
We define potential fields as quadratic functions, i.e.

Veriterion é|| T — Tdes ”2 . (6)

Our goal is to develop control policies that minimize the
potential field and thus satisfy the criteria we designed. In
order to do that, we need to relate the criteria x to the forces F'
associated with the potentials. This relation can be established
by developing a dynamic model of task behavior. By left-
multiplying (2) by JM~!, we find & — Jp = JM~'T, and
by using (5), we derive the dynamic equation

Ai+p=F. 7)

Here we denote A = (JM~'JT)~! to be analogous to
a mass/inertial factor and p £ Ajp to be analogous to a
Coriolis/centrifugal velocity factor. In view of (7), the choice
of the control policy F' will enable us to instantaneously guide
the task towards the goal.

Ultimately we want to control & so that we can achieve the
goal established by the potential field. In view of Equations (5)
and (7), our control becomes:

I = JT(AF* + ) ®)

where F'* is the desired control law that implements the
potential field. This choice gives us the linear feedback control
law [6]

i=F". 9

To make the task field converge, we implement proportional-
derivative control laws by performing a closed-form gradient
descent on the potential field.

To combine multiple objectives, we define /K independent
fields where each field characterizes a simple stand-alone goal.
In [15] we introduced a prioritized architecture for multi-
dimensional systems that addresses redundancy by imposing
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priorities between the control fields. Because we treat groups
of vehicles as multi-dimensional systems, we leverage this
architecture to the multi-robot problem. Therefore, the math-
ematical derivations described below are borrowed from this
previous work and the reader should refer to the citation to
follow the derivations.

Priorities are used as a mechanism to temporarily override
certain non-critical fields in order to fulfill critical constraints.
In this approach, fields are ordered according to their relative
importance in the safe and successful accomplishment of
the instantaneous actions. We leverage this methodology for
the problem of coordinating large numbers of vehicles. By
designing behaviors which assign high priority to geographical
and network enforcement fields, we guarantee these constraints
are satisfied while optimizing the mission goals. To establish
priorities between fields, we define the prioritized control
structure

K
=T+ D9 + s+ +Dpy :ZFPJ, (10)
j=1

where the piped notation ¢ | j | ... indicates a prioritized
ordering from left to right, Pj £ {j | j —1|---| 1} is the
prioritized ordering of the jth priority level, and I'p; represents
the projection of the generalized forces of the jth field onto
the null space of higher priority fields. The control structure
for a given field is

I'p,

A T
i 7‘]Pj FPJ

(1)

where

Jp, £ J;Np,, (12)

is the prioritized Jacobian of the jth field and N, P; is the
prioritized null-space associated with all higher priority fields.

To demonstrate that (11) has the desired decoupling behav-
ior, we determine the dynamic equation of each field and study
their mutual coupling. Similarly to (7), by left-multiplying (2)
by Jp, M ~! we obtain the dynamic equation

ip, — Jphy = Jp, M~ 'T. (13)

To design controllers that optimize the gradient descent of
the potential fields, we choose control structures of the form

j—1
Tp, = Jh (Apj Fj + ppy, — Ap, Jp, M~ er,), (14)
=1
where

Ap, 2 (JPJM*IJIZ,;)+ (15)

is a prioritized mass matrix, (.)" represents the Moore-Penrose
pseudoinverse, and pp, is a prioritized Coriolis/centrifugal
factor.
Substituting (14) into (13) via (10), we obtain a decoupled
set of linear behaviors
Vi,

ip, = Ff,, (16)

which are used to implement feedback controllers that opti-
mize the desired gradient descent policies for the objectives.

Fig. 2. Conflict scenario: The goal of the group is to reach the centroid,
which has been placed in an inaccessible location surrounded by mountains.
Because the obstacle field does not let the group through the mountains, the
goal field is rendered infeasible.

The above property is only true when all fields are feasible
within the group’s available redundancy. A common scenario
is when two fields have conflicting goals. For example, a
field imposing network separation constraints can conflict
with a field that attracts vehicles to a geometric centroid, as
illustrated in Figure 2. In this particular case we normally
assign higher control priority to the network constraint since
it guarantees communication at all times. During conflicting
scenarios, higher priority fields leave too few degrees of free-
dom available for the full execution of low priority fields, and
the low priority fields are considered only partially feasible.
In the representation given in (12), this situation occurs if
the null-space matrix Np, does not span the lower priority
field coordinates represented by J;. In turn, the prioritized
Jacobian Jp, becomes ill conditioned causing the mass matrix
in (15) to become singular. Let us define the Singular Value
Decomposition of the term,
¥, 0 T
0 o|(UF

where U, and U, are eigenvectors that span the rank and
null kernels, and ¥, are the non-zero eigenvalues. Then, (15)
becomes

Jp, M~ Jh = U, U,] . an

Ap, =U, 2 'UT. (18)

In this case, combining (14) with (13) by means of (10) yields
the following set of partially controlled dimensions

T (.
Ul (itr, = F2,) -
Since U, corresponds to the rank eigenspace, the above
equation achieves a linear mapping within the controllable
directions. As a result, the potential field acts in the subspace

of U, descending the gradient optimally until it reaches the
minimum energy within that space.

(19)

III. BEHAVIOR COORDINATION

We consider the problem of using high level commands for
controlling large scale robotic systems. An action primitive is
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Control Field
Obstacle avoidance
Network topology
Network graph
Goal pursuit
Formation

Friction

Coordinates Pri
distance to obstacles

distance between vehicles
distance between clusters
distance from centroid to goal
formation coordinates
generalized coordinates

TABLE 1
DECOMPOSITION FOR EXPLORATION PRIMITIVE

(o) O N S

our mechanism to encapsulate multiple criteria for executing
meaningful group behaviors. It defines a complete ordering
where more critical objectives take precedence over less
important objectives. The criteria are represented by reactive
control fields with the following parameters: (1) coordinates,
(2) goals, and (3) control policies.

We develop a case scenario to analyze and develop an
action primitive that coordinates an exploration mission in a
complex geographical environment. We introduce six criteria
that characterize the design specifications of this case scenario
as shown in Table L.

In general, the most critical fields are the ones that
contribute to the preservation of the group and maintain
network connectivity. In our problem, these fields correspond
to obstacle avoidance and the two fields that maintain
network connectivity. The goal pursuit field comes next in
the hierarchy. As such, a simple criterion for controlling the
group’s centroid will naturally result in vehicle distributions
that comply with network and geographical constraints. Next,
we place a formation field which uses the residual redundancy
to optimize the given geometries. A friction field is placed in
the last priority level to dampen the uncontrolled modes. We
describe each field of Table I in detail:

Obstacle avoidance field

An obstacle avoidance field guarantees that vehicles react to
geometric constraints in the terrain. The coordinates defining
the field are

where

di,obs éH Pi — pobs,i H (21)

represents the distance from vehicle ¢ to the perimeter of
obstacle obs. The field operates based on the principle of
repulsion with repulsion goals equal to

dij,des =7r;+ daway (22)

where r; is the radius of the vehicle and dgway is a safe
distance away from the perimeter of the obstacle. To control
the field effectively, we set an activation threshold d ¢ that
determines when vehicles are too close to the obstacle, and
we require that daway > dclose- Pushing vehicles beyond the
activation threshold is needed to prevent the field from bonding
the vehicles to the obstacle permanently.

™., Maximum
Commuication
Range

Fig. 3. Network connected field diagram. The nodes (labeled “Subgraph” in
the figure) are attracted so that the vehicles remain in communication range
and maintain a connected network.

A naive approach is to repel vehicles in the direction of
the distance vector. A better approach is to add a tangential
component to the avoidance field in the direction of the flow.

Network topological field

A network topological field is designed to prevent vehicles
from violating proximity conditions that result in communi-
cation interference. This field consists of applying repulsion
forces between pairs of vehicles in proximity. An activation
threshold is defined based on network specifications and a
repulsive goal is imposed on every pair of vehicles within

range.
The coordinates defining the field are described as
where
dij £ pi —p; | (24)

represents the distance between pairs of close vehicles. The
field operates based on the principle of repulsion with repul-
sion goals equal to

dij»dCS =T+ Tj + dpush (25)

where r; and r; are the radii of the vehicles and dpyen is a
safe distance between vehicles. To control the field effectively,
we reqUire that dpush > dinterference where dinterference is the
threshold that determines when a pair of vehicles is too close.

Network connected graph field

Communication specifications in our problem require that
there exists at least one path of communication links between
any two vehicles in the network. We define another network
enforcement field shown in Figure (3) to ensure the existence
of communications paths.

We represent the communication network of vehicles using
an undirected, weighted graph. A communication threshold
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drange 1s defined to monitor when vehicles are nearing the lim-
its of communication range. We also characterize the desired
optimal communication distance doptimal between neighbors.

Each node in the graph represents a cluster of vehicles that
form a connected sub-network with communication links no
greater than d;ange. Between each pair of nodes, we create
an edge with weight equal to the distance between neighbors.
The goal is to attract the nodes so that they no longer exceed
drange- We apply a minimum spanning tree (MST) algorithm to
the graph. Since a MST happens to minimize the length of the
longest edge, it guarantees that our entire group reconfigures
in minimal time.

We define a network connected graph field that imposes
the attraction forces between nodes in the graph. This field
has coordinates for every pair of nodes in the graph that are
joined in the MST. For each pair of attracted nodes ¢ and j,
d;; represents the distance between nodes. The coordinates of
the field are described as

where

dij =\ pi- — pj- | 27)

represents the distance between the closest pairs of vehicles ¢*
and j* in each node. The field operates based on the principle
of attraction with attraction goals equal to

dij,des = doptimal (28)

When the nodes exceed d;ange, this field activates and attracts
the nodes before they breach the communication range.

Goal pursuit field

We now design a field to maneuver the group around the
geography of the terrain. The goal pursuit field uses only
a single coordinate = to represent the distance from the
group’s geometric centroid to the desired pgoa1. The coordinate
defining the field is

z :H Pcog — Pgoal ” . (29)

The field operates based on the principle of attraction with
attraction goal equal to

Zdes = 0. (30)

As we move the desired centroid, the constraint fields will
ensure that the group locally adapts to geometric and network
changes as it follows.

Formation field

Formation fields are tools to distribute vehicles in geometric
topologies. The main idea of formations is to enhance group
performance in some desired metric. For instance, to maximize
the area swept in an exploration mission, we have designed
a circle formation field shown in Figure 4 that uniformly

8 ‘*" L ‘ .
o0 ¢
| AU >0 ()
0@ .:’”‘- o o
® o ©

Fig. 4. Circle formation field diagram. Each vehicle is attracted to the closest
position on the perimeter of the circle.

distributes vehicles around the group’s geometric centroid
using the maximal achievable radius. The coordinates defining
the field are

&1V

T = [ o || Pi — pcircle,i H .. ] s

where Dcircle;i = DPeog + Tcircle [cos ﬁ sin 2:;"} is chosen
so that each vehicle ¢ positions itself to the closest point on
the circumference. We compute 7o Offline based on the
number of vehicles and their optimal network ranges. The field
operates based on the principle of attraction with attraction
goals equal to

Lj,des = 0. (32)

Friction field

The friction field is designed to dampen uncontrolled modes.
The coordinates defining this field are the vehicle generalized
coordinates

T = [pl,z P1,y Pn,x pn,y} . (33)

The idea of the friction field is to minimize the uncontrolled
movement of the vehicles while pursuing higher priority
objectives. The field operates on the velocities & by imposing
a damped behavior

pi,des =0 (34)

causing each vehicle to decrease velocity in its uncontrolled
directions.

IV. SIMULATION RESULTS

We perform an experiment of multi-robot coordination on
a simulated geographical environment. Using the Python pro-
gramming language, we have developed a software framework
that includes control modules, a simulator, and an OpenGL
3D graphical environment. To efficiently perform the mathe-
matical computations necessary for the controller, we use the
Numpy library. The software framework contains a centralized
servo control loop that calculates the trajectories of all the
vehicles at every iteration.

We simulate 50 vehicles exploring a realistic terrain with an
area of 10000km? which includes various mountains and lakes.
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The maximum allowed velocity per vehicle is 110km/hr and
a maximum acceleration of Sm/s2. The network specifications
impose a maximum communication distance between neigh-
boring vehicles of 2km, and a minimum interference distance
of 0.5km.

For this experiment, we use the action primitive described in
Table 1. The gains and velocity constraints for each field have
been empirically tuned to achieve good control performance.

To explore the terrain efficiently, we guide the group’s
geometric centroid in expanding concentric circles. To enhance
the trajectories, we complement the goal pursuit field with
a high level A* planner which optimally steers the centroid
around geometric constraints.

An interesting situation arises when the group of vehicles is
large enough to surround an obstacle on the way to the goal.
In such cases, the natural behavior is to pass the obstacle on
both sides and reconnect the sides of the group on the leading
fronts. This is accomplished due to the interplay between the
goal pursuit field and the network connected graph field. Once
the leading fronts of the group pass the obstacle, the back of
the group has pressure to split due to the action of the goal
pursuit field, causing the connected graph field to reconnect
the fronts.

In Figure 5 we present screenshots of the exploration
behavior discussed above. The upper-left screenshot shows the
vehicles crossing a 12km passage between two large mountain
chains. The A* planner calculates a trajectory through the
passage and provides this data to the goal pursuit field. Since
the diameter of the formation is 16km, the vehicle group
deforms its shape upon entering the passage to cross it.
The situation shown in the upper-right screenshot illustrates
the navigation around an obstacle much smaller than the
group’s size, demonstrating the ability of the framework to
reconnect fronts after obstacle-induced splits. The screenshot
is taken moments before the two fronts reconnect. The lower-
left screenshot shows local deformations induced in the group
due to the interactions with a large lake structure. Due to the
action of the obstacle avoidance field and the goal pursuit
field, the group adapts to the contour of the lake. The lower-
right screenshot shows a snapshot taken near the end of the
exploration experiment, demonstrating that the overall terrain
swept by the group (diplayed in dark green) covers almost the
entire area.

In Figure 6 we show various data graphs taken during the
simulated exploration mission. The overall duration of the
mission is 45000s (12.5hr) in simulated time. In the upper-left
graph we show the minimum distance measurements between
vehicles and obstacles. The safety threshold is represented
with a dotted line at the zero ordinate value. As expected,
the safety threshold to obstacles is never violated. Similarly,
the lower-left graph shows the minimum distances between
neighboring vehicles. The optimal distance is set at lkm,
which is confirmed by the small variance of movement around
this distance. Not shown here is the verification we performed
separetely showing that the network always remains connected
under the maximum communication range constraint. In the

Number of vehicles  Controller iteration time

10 0.005
30 0.012
50 0.025
100 0.091
200 0.466
500 5.425

TABLE I

SIMULATION BENCHMARK OF WALL-CLOCK TIME PER SIMULATION
FRAME FOR VARYING NUMBERS OF VEHICLES.

right two data graphs we show tracking data of the group’s
centroid. The sinusoidal pattern represents the expanding con-
centric circles. The dotted lines correspond to the resulting
goal trajectories. As we can see, the centroid closely tracks
the goal trajectory, albeit not perfectly. The errors are induced
by the local responses to obstacles which are not modeled.

We benchmark the software performance for a variety of
group sizes. In Table II we illustrate benchmarks for 1000
controller iterations. We fit a power-law best fit approximation
curve to the data, and find that simulation time grows at a
nearly quadratic rate with respect to the number of vehicles.
As we can see in the table, the speed to simulate 50 vehicles
at 1 simulated second per controller iteration is 40 times faster
than real time. Simulating 200 vehicles results in a 2x speedup,
demonstrating the capability of our system to scale up to
hundreds of vehicles. These results corroborate the efficiency
of using potential fields in combination with low-dimensional
planners.

V. CONCLUSION

Potential fields provide a modular reactive layer that can
individually address the design specifications of complex
missions. It is easy to complement our framework with low-
dimensional planners to take care of global requirements and
handle local minima more robustly.

Contrary to previous methods, our framework handles con-
straints as rigid prioritized criteria. In feasible situations, it is
guaranteed to find a solution for the constraints, while tem-
porarily overriding the execution of less important objectives.
Setting priorities enables the design of control strategies that
adapt field execution in an optimal manner.

One significant assumption we make in our framework
is that the vehicles have global information: because they
maintain a connected communication network, we assume
they have a communication protocol in which information
is exchanged perfectly among all vehicles. Furthermore, we
assume vehicles can use triangulation or GPS techniques to
determine their relative positions, enabling the design of fields
that exploit global information.

Using a model-based approach, we express a direct rela-
tionship between potential fields and vehicle accelerations.
This representation provides a direct map between behavior
and vehicle accelerations, which yields much smoother and
accurate responses than in purely kinematic approaches.
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Fig. 5.
the brown formations are mountains, the blue ellipses are lakes, the small circles are the vehicles maintaining the optimal communication ranges, the dark
trace is the trajectory followed by the group’s centroid, the dark green area is the terrain visited by the vehicles.

Suggestions for future work include exploring high level
behaviors that coordinate multiple action primitives using
temporal and event-based models. Because of the modularity
of the control abstractons defining fields and action primitives,
our methods are well-suited for the design of advanced skills
in accordance with mission specifications.

In summary, we have developed a dynamic model of groups
of vehicles guided by potential fields. We have established a
model-based hierarchical control framework that optimizes the
execution of behavioral objectives while enforcing critical con-
straints. We have developed modular action primitives made
of multiple control fields to address the design specifications
of a large scale exploration mission. To test the capabilities of
our framework, we have implemented a software system that
integrates the hierarchical controller, a dynamic simulator, and
a 3D graphics environment for outdoor terrain explorations.
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