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Abstract

The study of belief change has been an active area in philoso-
phy and AI. In recent years two special cases of belief change,
belief revision and belief update, have been studied in detail.
Belief revision and update are clearly not the only possible
notions of belief change. In this paper we investigate prop-
erties of a range of possible belief change operations. We
start with an abstract notion of a belief change system and
provide a logical language that describes belief change in
such systems. We then consider several reasonable proper-
ties one can impose on such systems and characterize them
axiomatically. We show that both belief revision and update
fit into our classification. As a consequence, we get both a
semantic and an axiomatic (proof-theoretic) characterization
of belief revision and update (as well as some belief change
operations that generalize them), in one natural framework.

Introduction

The study of belief change has been an active area in
philosophy and in artificial intelligence (Gärdenfors 1988;
Katsuno & Mendelzon 1991). The focus of this research
is to understand how an agent should change his beliefs as
a result of getting new information. In the literature, two
types of belief change operation have been studied in detail:
belief revision (Alchourrón, Gärdenfors, & Makinson 1985;
Gärdenfors 1988) and belief update (Katsuno & Mendelzon
1991). Belief revision and update are two cases of belief
change, but clearly not the only ones. In this paper we
investigate properties of a range of possible belief change
operations.

We start with the notion of a belief change system (BCS).
A BCS contains three components: The set of possible
epistemic states that the agent can be in, a belief assignment
that maps each epistemic state to a set of beliefs, and a
transition function that determines how the agent changes
epistemic states as a result of learning new information. We
assume some logical language

�
that describes the agent’s

world, and assume that the agent’s beliefs are closed under
deduction in

�
. Thus, the belief assignment maps each state

to a deductively closed set of formulas in
�

. We make the�
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assumption (which is standard in the literature) that the agent
learns a formula in

�
, i.e., that events that cause the agent to

change epistemic state can be described by formulas. Thus,
the transition function takes a formula in

�
and an epistemic

state to another epistemic state.
The notion of a BCS is quite general. It is easy to show

that any operator satisfying the axioms of belief revision or
update can be represented as a BCS. However, by starting at
this level of abstraction, we can more easily investigate the
general properties of belief change. We do so by considering
a language that reasons about the belief change in a BCS.
The language contains two modal operators: a unary modal
operator � for belief and a binary modal operator � to
represent change, where, as usual, ��� should be read “the
agent believes � ”, while ���	� should be read “after learning� , the agent will be in an epistemic state satisfying � ”. We
show that the language is expressive enough to capture the
belief change process. More precisely, the set of (modal)
formulas holding at a state uniquely determines the agent’s
beliefs after any sequence of events. Thus, it is possible
to describe the agent’s belief change behavior by specifying
what formulas in the extended language of conditionals hold
at the agent’s initial state. We also characterize the class of
all BCS’s axiomatically in this language.

We then investigate an important class of BCS’s that
we call preferential BCS’s. This class can be viewed as
an abstraction of the semantic models considered in pa-
pers such as (Grove 1988; Katsuno & Mendelzon 1991;
Boutilier 1992; Katsuno & Satoh 1991). Roughly speaking,
a preferential BCS is a BCS where an epistemic state can be
identified with a set of possible worlds, where a world is a
complete truth assignment to

�
, together with a preference

ordering on worlds. An agent believes � in epistemic state
 exactly if � is true in all the worlds considered possible
at 
 , and the agent believes � after learning � in epistemic
state 
 exactly if � is true in all the minimal worlds that
satisfy � (according to the preference ordering at 
 ).1

1We note that there is some confusion in the literature between
the Ramsey conditional (i.e., � ) and preference conditional that
describes the agent preferences (see (Boutilier 1992) for example).
There is a strong connection between the two in preferential BCS’s,
but even in that context they have different properties. We think it
is important to distinguish them. (See also (Friedman & Halpern



The class of preferential BCS’s includes, in a precise
sense,� the class of operators for belief revision and the class
of operators for belief update, so it can be viewed as a gener-
alization of these notions. We consider a number of reason-
able properties that one can impose on preferential BCS’s,
and characterize them axiomatically. It turns out that both
belief revision and update can be characterized in terms of
these properties. As a consequence, we get both a seman-
tic and an axiomatic (proof-theoretic) characterization of
belief revision and update (as well as some belief change
operations that generalize them), in one natural framework.

There are some similarities between our work and oth-
ers that have appeared in the literature. In particular, our
language and its semantics bear some similarities to others
that have been considered in the literature (for example,
in papers such as (Gärdenfors 1978; 1986; Grahne 1991;
Lewis 1973; Stalnaker 1968; Wobcke 1992)), and our no-
tion of a BCS is very similar to Gärdenfors’ belief revision
systems (Gärdenfors 1978; 1986; 1988). However, there
are some significant differences as well, both philosophical
and technical. We discuss these in more detail in the next
section. These differences allow us to avoid Gärdenfors’
triviality result 1986, which essentially says that there are
no interesting BCS’s that satisfy the AGM postulates (Al-
chourrón, Gärdenfors, & Makinson 1985).

Belief change systems

A belief change system describes the possible states the
agent might be in, the beliefs of the agent in each state, and
how the agent changes state when receiving new informa-
tion. We assume beliefs are described in some logical lan-
guage

�
with a consequence relation 
 ��� , which contains the

usual truth-functional propositional connectives and satis-
fies the deduction theorem. We define a belief change system
as a tuple ����������������� , where � is a set of states, � is a be-
lief assignment that maps a state 
! � to a set of sentences�#" 
%$ that is deductively closed (with respect to 
 � � ), and �
is a function that maps a state 
& � and sentence �  �
to a new state �'" 
 ��� $! � . We differ from some work in
the area of conditional logic (for example, (Grahne 1991;
Lewis 1973; Stalnaker 1968)) in taking epistemic states
rather than worlds as our primitive objects, while we
differ from other work (for example, (Gärdenfors 1978;
1986)) by not identifying epistemic states with belief sets.
In our view, while the

�
-beliefs of an agent are certainly an

important part of his epistemic state, they do not in general
characterize it. Notice that because we do not identify be-
lief sets with epistemic states, the function � may behave
differently at two epistemic states that agree on the beliefs
in
�

.2

A BCS describes how the agent’s beliefs about the world
change. We use a logical language we call

�)(
to reason

about BCS’s. As we said in the introduction, the language

1994b) for a discussion of this issue.)
2A similar distinction between epistemic states and belief sets

can be found in (Rott 1990; Boutilier 1992). See also (Friedman
& Halpern 1994b).

� (
augments

�
with a unary modal operator � and a binary

modal operator � to capture belief change. Formally, we
take

�)(
be the least set of formulas such that if �  � and�*�+��,  �-( then ��� , �.� , /0� , �213��, , and �4�5� are in�)(

. A number of observations should be made with regard
to the choice of language. First observe that

�
and

�)(
are disjoint languages. The language

�
consists intuitively

of objective formulas (talking about the world), while
�)(

consists of subjective formulas (talking about the agent’s
epistemic state). Thus, the formula �  � is not in

�-(
,

although ��� is. We view the states in a BCS as epistemic
states, and thus use the language

�-(
for reasoning about

BCS’s. There is no notion of an “actual world” in a BCS
(as there is, by way of contrast, in a Kripke structure), so we
have no way in our semantic model to evaluate whether a
formula �  � is true. Of course, we could augment BCS’s
in a way that would let us do this, but there is no need for the
purposes of this paper. (In fact, this is done in (Friedman
& Halpern 1994a; 1994b), where we examine a broader
framework that models both the agent and world and allows
us to evaluate objective and subjective formulas.) We could
have also interpreted a formula �  � to mean “the agent
believes � ” (as in (Gärdenfors 1978)), but it turns out to be
technically more convenient to add the � operator, since it
lets us distinguish between the agent believing /0� and the
agent not believing � .

Another significant difference between our language and
other languages considered in the literature for reasoning
about belief change (for example, (Gärdenfors 1978; 1986;
Grahne 1991; Wobcke 1992)) is that on the left-hand side
of � , we only allow formulas in

�
rather than arbitrary

formulas in
�)(

. For example, 67�&"98:�5��; $ is in
�)(

, but"<67�5��8 $ �=��; is not. Recall that the formula on the left-
hand side of � represents something that the agent could
learn. It is not clear how an agent could come to learn a
formula like 67�5��8 . Our intuition is that an agent learns
about the external world, as described by

�
, and not facts

about the belief change process itself. Our language
�)(

is
used to reason about the belief change process.3

We now assign truth values to formulas in
�)(

. We write">�?� 
%$ 
 �?� if � holds in epistemic state 
 in the system � .
We interpret "9�?� 
@$ 
 �A� to mean that the agent believes� in epistemic state 
 . Since we take our agents to be
introspective, we would expect that if "9�?� 
%$ 
 �B� , then

3Our position in this respect bears some similarity to that of
(Levi 1988). However, Levi seems to be arguing against the agent
learning any modal formula, while our quarrel is only with the
agent learning modal formulas of the form CD��E . The formulas
in F may be modal. It may seem to the reader familiar with the
recent work of (Boutilier & Goldszmidt 1993) that they are dealing
with precisely the problem of revising beliefs by formulas of the
form CD�0E . However, their interpretation of a formula such asCD��E is “normally if C is true then E is true”. Although there is a
relationship between the two interpretations of � in the preferential
BCS’s we consider in the next section, they are distinct, and should
be represented by two distinct modal operators. We would have
no problem with normality formulas of the form considered by
Boutilier and Goldszmidt appearing in F , and thus on the left-
hand side of � .



">�G� 
%$ 
 �H��� . Our semantics enforces this expectation.
We have already given the intuition for � , namely, that�4�=� should hold precisely if � holds in the epistemic state
that results after updating by � . Our semantics enforces this
as well.I "9�?� 
@$ 
 �G��� if �  ��" 
@$ for �  �I "9�?� 
@$ 
 �G��� if ">�?� 
%$ 
 �?� for �  �)(I "9�?� 
@$ 
 �G/0� if "9�?� 
%$!J
 �K� .I "9�?� 
@$ 
 �G�&1L� if ">�?� 
%$ 
 �K� and ">�?� 
%$ 
 �?�I "9�?� 
@$ 
 �G�4�5� if "9�?���'" 
 �+� $�$ 
 �K� .

Because Gärdenfors (Gärdenfors 1978; 1986) identifies
each state, not with a set of beliefs in

�
, but with a set of

beliefs in
�)(

, he cannot define 
 � inductively as we do here.
Rather, he puts constraints on the transition function � so
that � satisfies the Ramsey test; i.e., he requires that �4�5�
holds at epistemic state 
 if and only if � holds at �M" 
 �+� $ .

Notice that this condition amounts to the agent having
positive introspection about his belief change protocol. One
can imagine an agent who is unaware of his belief change
protocol, so that although it is true that the agent will be-
lieve � after learning � in epistemic state 
 , the agent is
not aware of this, so that �4�5� does not hold at 
 . At
the other extreme is an agent who is completely aware of
his belief change protocol, so that if learning � in state 

results in the agent’s believing � , then �4�=� holds at 
 ,
otherwise /4"9�4�5� $ holds. We are implicitly assuming such
complete introspective power on the part of the agent: Our
semantics guarantees that one of �4�=� or /4">���5� $ must
hold at every state 
 . Gärdenfors’ semantics enforces pos-
itive introspection, but not complete introspection. As a
result, his epistemic states may be incomplete with respect
to conditional formulas; it is possible that neither �4�5� nor/4">�4�=� $ holds at a given epistemic state. It is not clear
what the rationale is for this intermediate position.

Given a state 
 we define Bel " 
%$ to be the (extended)
beliefs of the agent at 
 :

Bel " 
%$ �ONP�  � ( 
Q"9�?� 
@$ 
 �?�SR
Intuitively, Bel " 
%$ describes the agent’s beliefs when he is
in state 
 , and how these belief change after each possible
sequence of observations. This intuition is justified, since">�G� 
%$ 
 �K� if and only if "9�?� 
@$ 
 �K��� for any �  �)( .

It is easy to see that given Bel " 
%$ we can reconstruct�#" 
%$ , i.e., for �  � , �  ��" 
%$ if and only if �.�  Bel " 
%$ .
Indeed, as the following results show, Bel " 
%$ completely
characterizes the belief change process at 
 .
Proposition 1: Let � be a BCS, 
 a state in � , and �  �
a formula. Then Bel "9�M" 
 �+� $T$ �UNV�-
 ���5�  Bel " 
@$ R .

Applying this result repeatedly we get

Corollary 2 : Let �?�+�?, be BCS structures, and let
 , 
 , be states in � and �?, , respectively. Bel " 
%$ �
Bel " 
 , $ if and only if for any sequence of observations� 1 �@W%W%W+���DX it is the case that ��">�'"+W%W%WT�'" 
 ��� 1

$ W%W%W+���DX $T$ ��Y,>"9�:,Z"+W%W@W��'" 
 ,>�+� 1
$ W@W%W��+�DX $�$ .

This implies that Bel " 
%$ � Bel " 
 , $ if and only if 
 and 
 ,
cannot be distinguished by the belief change process. Thus,

the language
� (

is appropriate for describing the belief
change process; it captures all the details of the process, but
no unnecessary details.

We next turn our attention to the problem of axiomatizing
belief change. Given a BCS � , we say that �  �)( is valid
in � , denoted �[
�?� , if "9�?� 
%$ 
 �G� for every 
 . Let \
be the class of all BCS structures, and let ] be a subclass
of \ . We say that �  �-( is valid with respect to ] if
it is valid in all �  ] . An axiom system is sound and
complete for

�)(
with respect to ] if � is provable if and

only if it is valid in ] . We are interested in characterizing
various subclasses of \ axiomatically. We start with \
itself. Consider the following axiom system, which we
call AX. In all the axioms and inference rules of AX, the
formulas range over allowable formulas in

�)(
(so that when

we write �4�=� , we are implicitly assuming that �  � and
that �  �)( ):

B1. All substitution instances of propositional tautologies
B2. �.� , if �  � is

�
-valid

B3. �.�L1^�	">�`_a� $ _b���
B4. �c_b���
B5. �.�`_b/S��/0� for �  �-(
B6. �4� true �'d
B7. �4�5� 1 1^�4�&"9� 1 _e� 2

$ _b�4�5� 2

B8. /f"9�4�5� $0g ���5/0�
RB1. From � and �`_b� infer �
RB2. From � 1 _a� 2 infer �4�h� 1 _b�4�5� 2

Axioms B3–B5 capture the standard properties of introspec-
tive belief. Notice that B4 relies on the fact that all formu-
las are taken to be subjective, that is, statements about the
agent’s beliefs. Although it may appear that B2 should fol-
low from B1 and B4, it does not, since �i_���� is not an
instance of B4 if �  � (since it is not a formula in

�)(
).

B5 states that the agent’s beliefs about subjective formu-
las are always consistent. This follows naturally from our
semantics. For any �  �-( , either � or /S� is true at a
state 
 , and thus only one of them will be believed. It is
important to note that this axiom does not force the agent’s
beliefs about the world to be consistent. More precisely,
let false � be 651`/j6 for some 6  � , and let false � d be�*6�1	/0�k6 . Clearly, false �  � and false � d  �-( . Axiom
B5 states that /0� false � d is valid, but it does not imply
that /0� false � is valid. In fact, � false � is satisfiable in our
semantics. (Of course, the formula true � d used in B6 is the
valid

�)(
formula / false � d ; we take true � to be / false � .)

B8 follows from the fact that we have assumed the tran-
sition function � is deterministic. Axiom B8 is known as
law of conditional excluded middle (Stalnaker 1968). This
axiom has been controversial in the literature (Lewis 1973;
Harper, Stalnaker, & Pearce 1981). It does not seem as
problematic here, since we are applying it to only subjec-
tive formulas, rather than objective formulas.

The following result shows that AX does indeed charac-
terize belief change.

Theorem 3: AX is a sound and complete axiomatization of�)(
with respect to \ .



It is interesting to compare our axiomatization with the
systeml CM discussed in (Gärdenfors 1978). All of his ax-
ioms are sound in our framework. We have some extra ax-
ioms due to the fact that our language includes a � operator,
but this could be easily added to Gärdenfors’ framework as
well. A more interesting difference is our axiom B8, which
does not hold in CM. B8 essentially says that Bel " 
@$ is com-
plete for each epistemic state 
 . As we already observed,
Gärdenfors does not require completeness for formulas of
the form �4�5� , so B8 is not valid for him.

Preferential BCS’s

Up to now we examined a very abstract notion of belief
change. The definition of BCS puts few restrictions on the
belief change process and does not provide much insight into
the structure of such processes. We now describe a more
specific class of systems that has a semantic representation
similar to that of (Grove 1988; Katsuno & Mendelzon 1991;
Boutilier 1992; Katsuno & Satoh 1991). The basic intuition
is the following. We introduce possible worlds. Each pos-
sible world describes a way the world can be. We then
associate with each epistemic set a set of possible worlds
and a preference (or plausibility) ordering on worlds. The
set of possible worlds associated with a state 
 defines the
agent’s beliefs at 
 in the usual manner, and the agent’s
epistemic state after learning � corresponds to the minimal
(i.e., most plausible) worlds satisfying � .

We proceed as follows. A preferential interpretation of
a BCS ������������� is a tuple �>mc�+n���o3��p!� , where m is a set of
possible worlds, n is a function mapping each world q  m
to a maximally consistent subset of

�
(i.e., nD">q $ must be

consistent, and have the additional property that for each
formula �  � , either �  nD"9q $ or /0�  nD">q $ ), o is a
mapping from � to subsets of m , and p is a function that
maps each state 
! � to a relation r-s over m .

The set oc" 
%$ associated with each 
& � describes the
worlds considered possible when the agent is in state 
 . The
ordering associated with each 
! � describes a plausibility
measure, or preference, among worlds. We define t-s in
the usual manner: qUt-s-q*, if qUr-s!qk, and qk, Jr-s)q . We
require that r s be smooth, i.e., for every �  � there are
no infinite sequences of worlds W%W@Wut*skq 1 t-skq 0 such that�  nD">q4v $ for all w . Following (Lewis 1973), we definem s �xNPq  my
 z�q*,  mc�+q�r s q*,{R as the set of worlds
considered plausible when the agent is in state 
 . We require
that r s be a pre-order (i.e., reflexive and transitive relation)
over m3s . Given � , the set min " 
 ��� $ is the set of minimal
worlds in m s that satisfy � , i.e., q  min " 
 ��� $ if �  nD"9q $ ,q  m s and there is no q*,|t s q such that �  nD"9q*, $ .

We want preferential interpretations to satisfy several
consistency requirements that ensure that they satisfy the
intuition we outlined above. Formally, we require that for
all 
! � the following hold:I �  �#" 
%$ if and only if �  nD"9q $ for all q  o}" 
%$ .I If 
 ,M�~�'" 
 �+� $ then oc" 
 , $ � min " 
 ��� $ .
Thus, each belief set is characterized by the set of worlds
considered possible and belief change is described through

the preference ordering associated with each belief set. A
BCS is preferential if it has a preferential interpretation. Let\H� be the class of preferential belief structures.

Let AX � be AX combined with the following axioms:

P1. ���5���
P2. "9� 1 �=�.� $ 1�"9� 1 �h�.� 2

$ _�"9� 1 1c� 2
$ �=�.� if �*�+� 1

and � 2 are in
�

P3. "9� 1 �=�.� $ 1."9� 2 �=�.� $ _e">� 1 � � 2
$ �5��� if �k��� 1 and� 2 are in

�
P4. ���5��� g �D,>�h�.� if � g �D, is � -valid and �  � .

Theorem 4: AX � is a sound and complete axiomatization
of
�-(

with respect to \H� .

We shall also be interested in subclasses of \H� that
satisfy additional properties; these will help us capture belief
revision and update.

The first property of interest is that the most preferred
worlds according to the ordering r s are precisely the worlds
in oc" 
%$ . Formally, we say that the ordering r s in a prefer-
ential interpretation is faithful if oc" 
%$ � min " 
 � true � $ . Ifr-s is faithful, then o}"9�'" 
 ��� $T$ �?oc" 
%$ if �  ��" 
@$ , so that
an agent does not modify his beliefs if he learns something
that he already believes. A preferential interpretation is
faithful if r-s is faithful for every 
! � . This definition im-
plies that once the agent is in an inconsistent state (i.e., one
such that oc" 
@$ �?� ) he cannot leave it, i.e., min ">����� $ �K� ,
for any � .4 This leads us to define a slightly weaker notion:
A preferential interpretation is weakly faithful if r s is faith-
ful for all 
	 � such that oc" 
%$5J��� . A preferential BCS
is (weakly) faithful if it has a (weakly) faithful preferential
interpretation. (Similarly, for other properties of interest,
we say below that a preferential BCS has the property if it
has a preferential interpretation that has it.)

We can characterize faithful and weakly faithful BCS’s
(in a sense made precise by Theorem 5 below) by the axioms
PF and PW, respectively:

PF. ��� g " true � �=�.� $ for �  � .
PW. /0�	" false � $ _e"9��� g " true ���5��� $T$ for �  � .

Notice that these axioms say only that in a (weakly) faithful
BCS, the agent believes � if and only if learning a valid
formula results in him believing � .

The property of faithfulness guarantees that if the agent
learns something that he currently believes, then he still
maintains all of his former

�
-beliefs. What happens if

he learns something consistent with his current beliefs, al-
though not necessarily in the belief set? The next condi-
tion guarantees that the agent does not remove any of his
previous beliefs in this case. A preferential structure is
ranked if r-s is a total pre-order over m�s for every epis-
temic state 
 , i.e., for every q���qk,  m s , either q~r s qk, orq*,7r s q . Combining ranking with faithfulness guarantees
that if the agent learns something that is consistent with

4This is one of the differences between revision and update
(Katsuno & Mendelzon 1991); in revision the agent can “escape”
the inconsistent state by revision with a consistent formula, and in
update he cannot.



what he believes—i.e., if �  nD">q $ for some q  oc" 
%$ —
then� it must be the case that oc">�'" 
 ��� $�$k� o}" 
%$ , since the
most preferred worlds (with respect to r-s ) where � holds
are precisely those worlds in oc" 
@$ where � is true. To see
this, note that in a ranked and faithful ordering it must be
the case that if q  oc" 
@$ and qk, J oc" 
%$ , then q�t s q*, .
It follows that, in this case, ��"9�M" 
 �+� $T$)� �#" 
%$ . Thus, if an
agent learns something consistent with his current beliefs,
he maintains all of his current

�
-beliefs. Ranked BCS’s can

be characterized by the following axiom:

PR. "T">� 1 � � 2
$ �5��/0� 2

$ _�"�"9� 2 � � $ �5��/0� 2
$ � "T">� 1 �� $ �=��/0� $ if � 1 ��� 2 ���  � .5

Axiom PR is an analogue of a standard axiom of conditional
logic that captures the ranking condition (Burgess 1981).
We must restrict the axiom here to

�
-beliefs, whereas the

corresponding axiom in conditional logic need not be re-
stricted. This difference is rooted in the fact that we take
epistemic states as the primitive objects, while standard
conditional logic takes worlds to be the primitive objects.6

What happens when the agent learns something incon-
sistent with his current beliefs? The next condition puts
another (rather weak) restriction on the set min " 
 ��� $ in this
case: a preferential structure is saturated if for every 
 and
for every consistent �  � , min " 
 ��� $ is not empty. Thus, in
a saturated preferential BCS, as long as what the agent learns
is consistent, then his belief set will be consistent. Saturated
BCS’s can be characterized by the following axiom:

PS. /4">�4�h�h" false � $T$ if �  � is consistent.

Typically we are interested in axiom schemes that are re-
cursive (or at least r.e.). This scheme, however, may not be.
It depends on how hard it is to check consistency in

�
. For

example, if
�

is first-order logic, this scheme is co-r.e.
Belief revision and belief update assume that the belief

change process depends only on the agent’s
�

-beliefs. This
is clearly a strong assumption. We feel that a more rea-
sonable approach is to have the revision process depend on
the full epistemic state, not just on the agent’s

�
-beliefs.

Nevertheless, we can capture the assumption that all that
matters are the agent’s

�
-beliefs quite simply. A BCS � is

propositional if for all epistemic states 
 � 
 ,  � , we have
that ��" 
%$ ����" 
 , $ implies ��">�'" 
 �+� $�$ ���#"9�'" 
 ,>��� $�$ for all�  � .

A stronger version of P4 holds in propositional preferen-
tial structures. We no longer have to restrict to

�
-beliefs.

Thus we get:

PP1. �4�5� g �7,>�5� if � g �D, is
�

-valid

In propositional preferential structures that are (weakly)
faithful, we need to strengthen axioms PF and PW in an
analogous way. Call these strengthened axioms PF , and
PW , , respectively.

5Alternatively, we can use the rational monotonicity axiom
(Kraus, Lehmann, & Magidor 1990) ��CD���)E 1 �+�S� ��CD�0� � E 2 �|���C � E 2 ���)E 1 � , which is similar to what has been used by (Grahne
1991; Katsuno & Satoh 1991) to capture ranked structures.

6For similar reasons, the axioms P2 and P3 are restricted while
their counterparts in conditional logic (see (Lewis 1973)) are not.

These changes do not suffice to characterize propositional
preferential structures. To do that, we need some additional
machinery. We are interested in formulas that describe
epistemic states. Given a belief set � � � , we say that�D� describes � if for all preferential BCS’s, ">�G� 
%$ 
 �G�D�
if and only if ��" 
%$ ��� . We say that a formula is a state
description if it describes some belief set. Note that the
inconsistent belief state is always describable by �	" false � $ ,
the describability of other states depends on the logic

�
. It

is easy to see that if
�

is a propositional logic over a finite
number of primitive propositions, then all belief states are
describable, while if

�
is propositional logic with infinitely

many primitive propositions, then the inconsistent set is
the only describable belief set. We remark if

�
included an

only knowing operator of (Levesque1990) (as in (Rott 1989;
Boutilier 1992)), then more belief sets would be describable.

The following axiom, together with PP1 (and PF , and
PW , , if we are considering (weakly) faithful structures),
characterizes propositional preferential BCS’s:

PP2. "9�e1�">� 1 �?�@�%���5���:�5� $�$ _ "�"9� 1 �5� 2
$ g

� 1 �?�%�@���5���:�=� 1 �5� 2
$ if � is a state description.

Axiom PP2 says that if � 1 �5� 2 holds in the current state
and � characterizes the agent’s current beliefs, then if after
learning a number of facts the agent reaches a state with
exactly the same beliefs, then � 1 �5� 2 also holds in that
state.

The next condition we consider says that the orderingr s is determined by orderings rk� associated with worldsq  o}" 
%$ . This corresponds to the intuition of (Katsuno
& Mendelzon 1991) that in belief update, we do the update
pointwise (so that if we consider a set of worlds possible,
we update each of them individually). Formally, we say
that a preferential interpretation is decomposable if there is
a mapping that associates each q  m with an ordering rk�
such that rk� is a pre-order on mL�2�UNVqk,>
 z#qk,�,���qk,'rk�2qk,�,{R
and the following condition is satisfied: for all 
� � , such
that o}" 
%$=J��� , we have q�t-s�q*, if and only if q�tk�=qk,
for all �  o}" 
%$ . It easy to show that this definition implies
that min " 
 �+� $ ��� �V�V�-�{s�  min ">����� $ , (where min ">����� $ is
defined similarly to min " 
 ��� $ ) matching the condition of
(Katsuno & Mendelzon 1991) for update.

Characterizing decomposable BCS’s is nontrivial. How-
ever, in two cases we have (different) characterizations of
decomposable BCS’s. When we examine decomposable
BCS’s that are also (weakly) faithful and ranked we need
the following two axioms:

PD1. "�"9/0��/S�31c"9� 1 �=��� 2
$T$ _��4�5� 1 �5��� 2 if �4��� 2

 �
PD2. ">�	"9� 1 � W@W%W � � � $ 1?"91 �¡%¢ 1 ">� ¡ �h� 1 �5��� 2

$T$T$ _� 1 �&��� 2 if � 1 �%W%W@W��+� � ��� 1 ��� 2
 � .

Both axioms rely on the property of ranked and (weakly)
faithful structures that if � is consistent with �#" 
%$ theno}"9�'" 
 ��� $T$4� oc" 
%$ . Another situation where we can char-
acterize decomposable structures is where we also assume
that the structures are propositional. In this case we can use
state descriptions and the fact that all subsets that are equiv-
alent in terms of belief sets also revise in the same manner.



We get two axioms PD1 , and PD2 , that are analogues of
PD1£ and PD2. We omit them here for lack of space; they
are described in the technical report.

Finally, we say that a BCS � is complete if for each
belief set � , there is some state 
 in � such that ��" 
@$ �K� .
We have no axiom to characterize completeness, and we do
not need one. As we shall see, in structures of interest to us,
completeness does not add extra properties.

Let ¤ be a subset of NV¥'�+q.�+;V� 
 ��6D�+¦'�T§%R . We denote by\H�¨ the class of preferential BCS’s that satisfy the respec-
tive subset of N faithful, weakly faithful, ranked, saturated,
propositional, decomposable, complete R . For example,\H�©�ª s is the class of ranked and saturated preferential BCS’s.

We can now state precisely the sense in which the axioms
characterize the conditions we have described. Roughly, the
axiom system contains AX � and for each one of NP¥'��q���;V� 
 R
in « , the matching axiom described above. When « con-
tains ¦ the axiom system may also contain PD1 and PD2
(depending on the contents of « ). When « contains 6 , the
axiom system also contains PP1 and PP2 and the strength-
ened versions of the axioms corresponding to ¥ and q .
Moreover, PD1 , and PD2 , are required to deal with ¦ . This
is captured by the following theorem.

Theorem 5: Let « be a subset of NP¥'�+q.�+;¬� 
 R , let ­ be a
subset of NP¦#R , and let ® be a subset of NP§%R . Let ¤ be the
subset of N PF, PW, PR, PS R corresponding to « , let ¤-, be
the subset of N PF , , PW , , PR, PS R corresponding to « , let

�U�
¯ N PD1,PD2 R if ¦  ­-��;  «^��NP¥'��q!R�°±« J�K�� otherwise,

and let

� , �
¯ N PD1 , ,PD2 ,²R if ¦  ­� otherwise,

Then AX �h³ ¤ ³ � is a sound and complete axiomatization
of
�-(

with respect to \H�´0µ:¶�µ¬· , and AX �¸³ ¤-, ³ �!, ³NV¹�¹ 1 ��¹�¹ 2 R is a sound and complete axiomatization of�)(
with respect to \H�´ºµ:¶�µ:»Dµ½¼²¾V¿ .

Belief revision and belief update

The standard approach to defining belief revision and belief
update is in terms of functions mapping deductively closed
subsets of

�
and formulas in

�
to deductively closed subsets

of
�

, satisfying certain properties. We do not describe these
properties here due to lack of space, but they can be found
in (Gärdenfors 1988; Katsuno & Mendelzon 1991).

Given an update or revision operator ¥ , we can asso-
ciate with it a BCS �cÀK�a"9��������� $ in a straightforward
way: the elements of � are all the deductively closed sub-
sets of

�
, for 
Á � , we define ��" 
@$ � 
 , and we define�'" 
 ��� $ �?¥|"²��" 
%$ ��� $ . It is not hard to show that ¥ is a revi-

sion (resp. update) operator if and only if � À  \H�� ª ©�ª s ª ¾ ª Â
(resp. � À  \H�À ª s ª ¾ ª ÃÄª Â ). We might also hope to show
that every system in \H�� ª ©Tª s ª ¾ ª Â is of the form �cÀ for
some revision operator ¥ , so that \H�� ª ©�ª s ª ¾ ª Â character-
izes revision operators (and similarly for \H�À ª s ª ¾ ª ÃÄª Â and

update operators). However, we have a slight technical
problem, since even a propositional a BCS might contain
more than one state with the same belief set, while � À
contains each belief set exactly once. This turns out to
be not such a serious problem. We say that two BCS’s� and �?, are equivalent if for every 
^ � there is an
 ,  �?, such that Bel " 
%$ � Bel " 
 , $ and vice versa. It
follows from Proposition 1 that if Bel " 
%$ � Bel " 
 , $ , then
Bel "9�'" 
 ��� $T$ � Bel "9�'" 
 ,T��� $T$ for all �  � . Hence, we can
identify two equivalent BCS’s (and, in particular, the same
formulas are valid in equivalent BCS’s).

Theorem 6:

(a) ¥ is a belief revision operator if and only if �cÀ  
\H�� ª ©�ª s ª ¾ ª Â . Moreover, �  \H�� ª ©Tª s ª ¾ ª Â if and only if� is equivalent to � À for some belief revision operator¥ .

(b) ¥ is a belief update operator if and only if �cÀ  
\H�À ª s ª ¾ ª ÃÄª Â . Moreover, �  \H�À ª s ª ¾ ª ÃÄª Â if and only if� is equivalent to � À for some belief update operator¥ .

This theorem, which can be viewed as a complete char-
acterization of belief revision and belief update in terms
of BCS’s, is perhaps not so surprising, since it is in much
the same spirit as other characterizations of belief revision
and update (Grove 1988; Katsuno & Mendelzon 1991). On
the other hand, when combined with Theorem 5, it means
we have a complete axiomatization of belief change under
belief revision and belief update.

It is interesting to compare this result to the work of
(Gärdenfors 1978; 1986). In Theorem 6, the belief revi-
sion functions learned only formulas in

�
, not

�)(
. It fol-

lows from the theorem that in structures in \H�� ª ©�ª s ª ¾ ª Â , the
AGM postulates hold, if we consider revision with respect
to formulas in

�
and take belief sets to be subsets of

�
,

not
�-(

. Because we restrict to belief sets in
�

and revise
only by formulas in

�
, we avoid the triviality problem that

occurs when applying the AGM postulates to conditional
beliefs (Gärdenfors 1986) or to nested beliefs (Levi 1988;
Fuhrmann 1989). We remark that this approach to dealing
with the triviality problem is in the spirit of suggestions
made earlier (Levi 1988; Rott 1989; Boutilier 1992).

Discussion

We have analyzed belief change systems, starting with a
very abstract notion of belief change and adding structure
to it. The main contribution of this work lies in giving a
logical (proof-theoretic) characterization of belief change
operators and, in particular, belief revision and belief up-
date. Our analysis shows what choices, in terms of semantic
properties, lead to these two notions, and gives us a natural
class of belief change operators that generalizes both.

Our work is also relevant to the problem of iterated belief
revision. It is clear that the axiomatization we provide for
belief revision captures all the properties of iterated AGM
belief revision. This axiomatization highlights the fact the



AGM postulates put few restrictions on iterated belief revi-
sion.� (Boutilier 1993) and (Darwiche & Pearl 1994) suggest
strengthening belief revision by adding postulates on iter-
ated belief change. In the full paper we show that these
constraints can be easily axiomatized in our language, thus
providing a proof system for iterated belief revision.

An important aspect of our work is the distinction be-
tween objective statements about the world and subjec-
tive statements about the agents beliefs. To analyze belief
change we need to examine only the latter, and this is re-
flected in our choice of language. However, we believe that
it is important to study belief change in frameworks that de-
scribe both the world and the agent’s beliefs, and how both
change over time. This type of investigation, which we
are currently undertaking (see (Friedman & Halpern 1994a;
1994b)), should provide guidance in selecting the most rea-
sonable and useful properties of belief change.
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