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3 Éole Normale Supérieure, CNRS-INRIA, Paris, FraneAbstrat. Distributed-password publi-key ryptography (DPwPKC)allows the members of a group of people, eah one holding a small seretpassword only, to help a leader to perform the private operation, asso-iated to a publi-key ryptosystem. Abdalla et al. reently de�ned thistool [1℄, with a pratial onstrution. Unfortunately, the latter appliedto the ElGamal deryption only, and relied on the DDH assumption, ex-luding any reent pairing-based ryptosystems. In this paper, we extendtheir tehniques to support, and exploit, pairing-based properties: wetake advantage of pairing-friendly groups to obtain e�ient (simulation-sound) zero-knowledge proofs, whose seurity relies on the DeisionalLinear assumption. As a onsequene, we provide e�ient protools, se-ure in the standard model, for ElGamal deryption as in [1℄, but also forLinear deryption, as well as extration of several identity-based ryp-tosystems [6, 4℄. Furthermore, we strenghten their seurity model by sup-pressing the useless testPwd queries in the funtionality.1 IntrodutionReently, Abdalla et al. [1℄ proposed the notion of distributed-password publi-key ryptography (DPwPKC), whih allows the members of a group of people,eah one holding a small independent seret password, to at olletively (forthe bene�t of one of them, who �owns� the group) as the ustodian of a privatekey in some ordinary publi-key ryptosystem � without relying on any seure(seret and/or authenti) storage � as long as eah member remembers his orher password. Preisely, in DPwPKC, the members initially reate a �virtual�key pair (sk, pk), by engaging in some distributed protool over adversarial han-nels, where only pk is revealed, while sk is impliitly determined by the olletionof passwords. Third parties an perform the publi-key operation(s) of the un-derlying system using pk. Members an help the leader of the group performprivate-key operation(s) in a distributed manner, by engaging in some protoolusing only their knowledge of their respetive passwords.Password-based publi-key ryptography is generally onsidered infeasiblebeause password-based seret-key spaes are easy to enumerate, and the knowl-edge of the publi key makes it possible to test the orret key from that spae,without interating with anyone (o�ine ditionary attak). In DPwPKC, there



are as many passwords as partiipants, and (unlike in virtually all appliations ofpasswords) the passwords are not meant to be shared: they are hosen indepen-dently by eah player. Sine the passwords need not be related, they will likelybe diverse, and the min-entropy of their ombination ought to grow linearly withthe number of partiipants, even if every single password is itself minusule. Forinstane, with ten players eah holding a random 20-bit password, the virtualseret key will be a random 200-bit string, whih is more than enough to builda seure publi-key system for usual values of the seurity parameter. This iswhat makes sk in DPwPKC resistant to brute-fore o�-line ditionary attaks,even though the orresponding pk is publi.The main ontribution of [1℄ was to de�ne general funtionalities for dis-tributed password-based key generation and private omputation in the UCmodel, and to give a onstrution for ElGamal deryption as a proof of on-ept. However, the onstrution proposed in [1℄ was merely illustrative beauseit required generi simulation-sound non-interative zero-knowledge (SSNIZK)proofs for NP languages, whih an only be performed e�iently in the randomorale model [3℄. Furthermore, their distributed private omputation protoolould only perform the task of omputing csk from the impliit seret key sk,and the seurity of their protool relied on the DDH assumption. Together, theserestritions limited its appliability to ElGamal deryption.In this work, we �rst improve and strengthen the ideal funtionalities de�nedin [1℄, by further restriting the information that the adversary an gain from anattak. This will make any protool that we an prove to realize those funtion-alities stronger, sine the simulation will have to work without this information.(Reall that in the UC model, the funtionalities are supposed to apture every-thing that we allow the adversary (and thus the simulator) to learn.)Then, we extend the tehniques from [1℄ to support a muh broader lass ofprivate-key operations in disrete-log-hard groups, inluding operations involv-ing random ephemerals and/or operations in bilinear groups. More preisely, ouronstrution still targets the distributed omputation of csk, but under the De-ision Linear assumption, whih makes the proof more intriate sine the DDHis now veri�able: we had to hange the workings of the protool to introdueseret values. Furthermore, the onstrution works for several values of c atone, and now allows to share random ephemerals in the exponent. It thus al-lows a muh greater variety of publi-key ryptosystems to be onverted to dis-tributed password-based ryptosystems, inluding extration of identity-basedprivate keys � thus giving us the new interesting notion of �password-baseddistributed identity-based enryption� (DPwIBE). Contrarily to regular IBE,the �entral� key extration authority is now distributed among a group of peo-ple (su�iently many of them trusted), with the �master key� being impliitlyontained in the olletions of short independent passwords held by those users.In the proess of strengthening and generalizing the protools, we also makethem muh more e�ient. To do so, we develop speial-purpose simulation-soundnon-interative zero-knowledge proofs (SSNIZK) for our languages of interest,in the standard model, and show how to use them instead of the ine�ient2



general SSNIZK onsidered in [1℄. We do this using bilinear maps, in the CRSmodel, relying on a lassi deisional hardness assumption for bilinear groups.The SSNIZK proofs we onstrut revisit the tehniques of [12℄ and use e�ientproofs inspired by the reent Groth-(Ostrovsky)-Sahai sequene of e�ient NIZKonstrution in bilinear groups [14℄, but do not trivially follow from them.A number of new tehnial hallenges had to be solved. We spei�ally men-tion the following: 1) the use of pairings not only helps us make e�ient zero-knowledge proofs for various languages, it would also help the adversary verifythe result of the private omputation csk in the basi DPwPKC protool from[1℄. Sine the UC model requires that the simulation be arried out until the endon both orret and inorret inputs, this will make our new seurity redutionsomewhat more intriate sine the result sent at the end of the simulation is ran-dom and we do not want the adversary to beome aware of it. 2) In onnetionwith the stronger and simpler funtionality de�nitions we propose, the adversaryis no longer allowed to ondut expliit password ompatibility tests prior to theprivate-key operation. This should intuitively further ompliate the simulation,though we remarkably note that these queries were indeed useless in the proofsand thus getting rid of them has no negative impat. 3) Generally speaking, weahieved muh of our seurity and e�ieny gains over [1℄, by sueeding to makeour protools being fully robust by the use of publi veri�ations (omputationsof pairings) rather than intermediate validity tests (SSNIZK proofs, relying onthe random orale model in [1℄). This is generally both more e�ient (no moreSSNIZK proofs) and more seure than testing, but it an lead to signi�antlymore omplex simulations owing to the ideal funtionality being less �helpful�.2 Seurity ModelSplit Funtionalities. Throughout this paper, we assume basi familiaritywith the universal omposability framework [9℄. Without any strong authenti-ation mehanisms, the adversary an always partition the players into disjointsubgroups and exeute independent sessions of the protool with eah subgroup,playing the role of the other players. Suh an attak is unavoidable sine playersannot distinguish the ase in whih they interat with eah other from the asewhere they interat with the adversary. The authors of [2℄ addressed this issueby proposing a new model based on split funtionalities whih guarantees thatthis attak is the only one available to the adversary.The split funtionality is a generi onstrution based upon an ideal fun-tionality. In the initialization stage, the adversary A adaptively hooses disjointsubsets of the honest parties (with a unique session identi�er that is �xed for theduration of the protool). During the omputation, eah subset H ativates aseparate instane of the funtionality F . All these funtionality instanes are in-dependent: The exeutions of the protool for eah subset H an only be relatedin the way A hooses the inputs of the players it ontrols. The parties Pi ∈ Hprovide their own inputs and reeive their own outputs, whereas A plays therole of all the parties Pj /∈ H . 3



Note that the use of these split funtionalities already allows the adversaryto try some passwords for users by hoosing subgroups of size 1 and trying apassword for eah of them while impersonating the other players. They are thusenough to model on-line ditionary attaks. In [1℄, additional TestPwd querieswere available to the adversary, thus allowing additional password trials. In thispaper, we limit the adversary against the ideal funtionality (i.e. the simulator),to the unavoidable on-line ditionary attak but in the strit sense, and thuswithout any additional TestPwd queries. This means that we give less power tothe simulator. Both the onstrutions in [1℄ and ours do not need them in theseurity proofs, whih means that a stronger seurity level is reahed.In the sequel, as we desribe our two general funtionalities FpwDistPublicKeyGenand FpwDistPrivateComp (the omplete desriptions an be found in the full ver-sion [8℄), one has to keep in mind that an attaker ontrolling the ommu-niation hannels an always hoose to view them as the split funtionalities
sFpwDistPublicKeyGen and sFpwDistPrivateComp, whih impliitly onsist of multiple in-stanes of FpwDistPublicKeyGen and FpwDistPrivateComp for non-overlapping subsets ofthe original players. Furthermore, one annot preventA from keeping some �ows,whih will never arrive. This is modelled in our funtionalities by a bit b, whihspei�es whether the �ow is really sent or not.The Players and the Group Leader. We denote by n the number of usersinvolved in a given exeution of the protool. All the omputation is done for thebene�t of only one of them, denoted as the group leader. The role of all the otherones, the players, is to help it in its use of the group's virtual key. A group is thusformed arbitrarily and is de�ned by its omposition, whih annot be hanged:a leader, whih is the only one to reeive the result of a private omputation inthe end, and a (ordered or not, aording to the seret key omputation fromthe passwords) set of players to assist it.The Aim of the Funtionalities. The funtionalities are intended to ap-ture distributed-password protools for (the key-generation and private-key op-eration of) an arbitrary publi-key primitive, but taking into onsideration theunavoidable on-line ditionary attaks. More preisely, the aim of the distributedkey generation funtionality FpwDistPublicKeyGen is to provide a publi key tothe users, omputed aording to their passwords with respet to a funtionPubliKeyGen given as parameter. Moreover, it ensures that the group leadernever reeives an inorret key in the end, whatever the adversary does.In the distributed private omputation funtionality FpwDistPrivateComp, theaim is to perform a private omputation for the sole bene�t of the group leader,whih is responsible for the orretness of the omputation; in addition, it isthe only user to reeive the end result. This funtionality will thus ompute afuntion of some supplied input in , depending on a set of passwords that mustde�ne a seret key orresponding to a given publi key. More preisely, it willbe able to hek the ompatibility of the passwords with the publi key thanksto a veri�ation funtion PubliKeyVer, and if it is orret it will then omputethe seret key sk from the passwords with the help of a funtion SeretKeyGen,and from there evaluate PrivateComp(sk, in) and give the result to the leader.4



The funtion PrivateComp ould be the deryption funtion De of a publi-keyenryption sheme, or the signing funtion Sign in a signature sheme, or theidentity-based key extration funtion Extrat in an IBE system.Note that SeretKeyGen and PubliKeyVer are naturally related to the fun-tion PubliKeyGen alled by the former funtionality. In all generality, unlessSeretKeyGen and PubliKeyGen are both assumed to be deterministi, we needthe prediate PubliKeyVer in order to verify that a publi key is �orret� with-out neessarily being �equal� (to some anonial publi key). Also note that thefuntion SeretKeyGen is not assumed to be injetive, lest it unduly restrit thenumber of users and the total size of their passwords. The distributed ompu-tations should not reveal more information than the non-distributed ones, andthus the ideal funtionalities an make use of these funtions as blak-boxes.The Funtionalities. We only reall here the main points of the funtionali-ties, referring the interested reader to [1℄ for details. But, importantly, as in [10℄,the funtionalities are not in harge of providing the passwords to the partii-pants. The passwords are hosen by the environment whih then hands them tothe parties as inputs. This guarantees seurity even in the ase where an honestuser exeutes the protool with an inorret password: This models, for instane,the ase where a user mistypes its password. It also implies that the seurity ispreserved for all password distributions (not neessarily the uniform one) and inall situations where related passwords are used in di�erent protools.The private-omputation funtionality fails diretly at the end of the initial-ization phase if the users do not share the same (publi) inputs. In priniple,after the initialization stage (the NewSession queries) is over, the eligible usersare ready to reeive the result. However the funtionality waits for the adver-sary S to send a ompute message before proeeding. This allows S to deidethe exat moment when the result should be sent to the users and, in partiu-lar, it allows S to hoose the exat moment when orruptions should our (forinstane S may deide to orrupt some party Pi before the result is sent butafter Pi deided to partiipate to a given session of the protool; see [15℄). Also,although in the key generation funtionality all users are normally eligible toreeive the publi key, in the private omputation funtionality it is importantthat only the group leader reeives the output (though he may hoose to revealit afterwards to others, outside of the protool, depending on the appliation). Inboth ases, after the result is omputed, S an hoose whether the group leaderindeed reeives it. If delivery is denied (b = 0), then nobody gets it, and it is asif it was never omputed. Otherwise, in the �rst funtionality, the other playersmay be allowed to reeive it too, aording to a shedule hosen by S.Note that given the publi key, if the adversary knows/ontrols su�ientlymany passwords so that the ombined entropy of the remaining passwords islow enough, he will be able to reover these remaining passwords by brute foreattak. This is unavoidable and has nothing to do with the fat that the system isdistributed: o�-line attaks are always possible in priniple in publi-key systems,and beome feasible as soon as a su�ient portion of the private key is known.5



3 Notations and Building BloksThe authors of [1℄ propose a protool that deals with a partiular ase of unau-thentiated distributed private omputation [2℄, as aptured by their funtion-alities realled in the former setion. Informally, assuming s to be a seret key,the aim of the protool is to ompute a value cs given an element c of the group.They laim that this omputation an be used to perform distributed BLS sig-natures [7℄, ElGamal deryptions [11℄, linear deryptions [5℄, and BF or BB1identity-based key extration [6, 4℄ but they only fous on ElGamal deryptions,relying on the DDH assumption.Here, we show how to really ahieve suh results, by onstruting a protoolrelying on the Deision Linear assumption [5℄ for ompatibility with bilineargroups. This protool will easily enable �password-based� Boneh-Franklin IBEsheme [6℄. In the following setion, we show how to modify the protool to obtain�password-based� Boneh-Boyen (BB1) IBE sheme [4℄ and linear deryptions [5℄.Notations. Let G be a multipliative yli group of prime order p and g3a generator of G. The linear enryption works as follows: The private key is apair of salars, sklin = (x1, x2), and the publi key, pklin = (g1, g2, g3), where
g1 = g3

1/x1 , g2 = g3
1/x2 . In order to enrypt M ∈ G, one hooses r1, r2 $

← Zp,and the iphertext onsists of C = Epklin(M ; r1, r2) = (C1, C2, C3) = (g1
r1 , g2

r2 ,
Mg3

r1+r2). The deryption proess onsists ofM = Dpklin(C) = C3/(C1
x1C2

x2).This enryption sheme is seure under the Deisional Linear (DLin) as-sumption, �rst presented in [5℄ and stated here for ompleteness: For random
x, y, r, s ∈ Z∗

p and (g, f = gx, h = gy, f r, hs) ∈ G5, it is omputationally in-tratable given gd to distinguish between the ase where d = r + s or d israndom. More preisely, a triple (f r, hs, gd) is named a linear triple in basis
(f, h, g) if d = r+ s. We also onsider a one-time signature sheme onsisting ofthe three algorithms (SKG, Sign,Ver).Passwords, Publi Key and Private Key. Eah user Pi owns a privatelyseleted password pwi, to at as the i-th share of the seret key sk (see below).For onveniene, we write pwi = pwi,1 . . . pwi,ℓ ∈ {0, . . . , 2

ℓ − 1}, i.e., we furtherdivide eah password pwi into ℓ bits pwi,j , where p < 2ℓ (p is the order of thegroup G). Notie that although we allow full-size passwords of up to ℓ bits (thesize of p), users are of ourse permitted to hoose shorter passwords.The authors of [1℄ disussed the use of suh passwords to ombine properlyinto a private key sk: the ombination should be reproduible, it should allowto reover either of the passwords from the key and the other passwords, andit should preserve the joint entropy of the set of paswords. They also disussedpossible anellation or aliasing e�ets of the passwords. The preferable solutionis to do standard pre-proessing using hashing, i.e. that eah user independentlytransforms his or her true password pw∗
i into an e�etive password pwi by ap-plying a suitable extrator pwi = H(i, pw∗

i , Zi) where Zi is any relevant publiinformation. We an then safely take sk =
∑

i pwi and be assured that the en-tropy of sk will losely math the joint entropy of the vetor (pw∗
1, . . . , pw∗

n).6



The disrete-log-based key pair (sk, pk = gsk) is then de�ned as follows:sk = SeretKeyGen(pw1, . . . , pwn)
def
=

∑n
i=1 pwipk = PubliKeyGen(pw1, . . . , pwn)

def
= g

P pwiThe password/publi-key veri�ation funtion is thenPubliKeyVer(pw1, . . . , pwn, pk) def
=

(pk ?
= g

P pwi

).In the following, we fous on a spei� format for the PrivateComp funtion,de�ned by (sk, c) 7→ m = csk. We show how to perform it in a distributed way,and how to use if for deryption proesses, and private key extration in IBE.Building Bloks.Extratable Homomorphi Commitments. As in [1℄, the �rst step ofour distributed deryption protool is for eah user to ommit to his password(the details are given in the following setion). The ommitment needs to beextratable, homomorphi, and ompatible with the shape of the publi key.Generally speaking, one needs a ommitment Commit(pw, R) that is additivelyhomomorphi on pw and with ertain properties on R. Instead of ElGamal'ssheme [11℄ used in [1℄, we fous here on linear ommitments Commitg(pw, r, s) =
(U1

pwg1r, U2
pwg2s, gpwg3r+s), where (U1, U2, U3 = g) is not a linear triple in basis

(g1, g2, g3) in order to provide extratability, or enryptions Encryptg(pw, r, s) =
(g1

r, g2
s, gpwg3r+s) (here, g1, g2 and g3 are de�ned as before and g is a generatorof G). In both ases, the hiding property or the semanti seurity rely on theDLin assumption. Extratability is possible granted the private/deryption key

(x1, x2), suh that g3 = g1
x1 = g2

x2 , and realling that the users ommit tobits. Denoting by (c1, c2, c3) the ommitment, it is thus enough to hek that
c3/(c1

x1c2
x2) = 1 or (c3/g)/((c1/U1)

x1(c2/U2)
x2) = 1.Proofs of Membership. For the robustness and soundness of the protools,we need some proofs of honest omputations. We use witness-indistinguishableand SSNIZK proofs/arguments. The di�ulty onsists in designing suh simula-tion-sound proofs without random orales: they are desribed in Setion 6. Alongthese lines, we use the following kinds of non-interative proofs:� CDH(g,G, h,H), to prove that (g,G, h,H) lies in the CDH language: thereexists a ommon exponent x suh that G = gx and H = hx. Granted pairing-friendly groups, this an be easily done by simple pairing omputations;� WIProofBit(C), to prove that the ommitment or the iphertext C ontainsa bit. We will use a WI proof from [13℄, whih basially proves that either Cor C divided by the basis is a linear 3-tuple;� SSNIZKEqg,c(C1, C2), to prove that the iphertexts/ommitments C1 and C2ontain the same value, possibly in the di�erent bases g and c, that is,

C1 enrypts/ommits to ga and C2 enrypts/ommits to ca, with the same a.We use a SSNIZK argument, following the overall approah by Groth [12℄ toobtain simulation soundness, but using the Groth-Sahai proof system [14℄for e�ieny (see Setion 6 � the proof is omitted, but very similar to [12℄).7



4 Desription of the ProtoolsThe Distributed Key Generation Protool. This protool is desribedin Figure 1 and realizes the funtionality FpwDistPublicKeyGen. All the users areprovided with a password pwi and want to obtain a publi key pk. One of themis the leader of the group, denoted by P1, and the others are P2, . . . , Pn.The protool starts with a round of ommitments of these passwords. Eahuser sends a ommitment Ci of pwi (divided into ℓ bloks pw1,1, . . . , pwi,ℓ oflength L � here, L = 1): it omputes Ci,j = (C
(1)
i,j , C

(2)
i,j , C

(3)
i,j ) = (U1

pwi,jg1
ri,j ,

U2
pwi,jg2

si,j , gpwi,jg3
ri,j+si,j ) for j = 1, . . . , ℓ and random values ri,j and si,j ,and publishes Ci = (Ci,1, . . . , Ci,ℓ), with a set of proofs WIProofBit(Ci,j) thateah ommitment indeed ommits to an L-bit blok. As we see in the proof (seethe full version), this ommitment needs to be extratable so that the simulatoris able to reover the passwords used by the adversary, whih is the reasonwhy we segmented all the passwords and make ommitments of bits, along witha WIProofBit that the ommitted value is atually a bit. Eah user also runsthe signature key generation algorithm to obtain a signature key SKi and averi�ation key VKi. The users will be split aording to the values reeived inthis �rst �ow (i.e. the ommitments, the proofs and the veri�ation keys), as wesee in the seond �ow where they send a signature of all they have reeived upto this point. Thus, the protool annot ontinue past this point if some playersdo not share the same values as the others (i.e. one of the signatures σi will berejeted later on and at least a user will abort).One this �rst step is done, the users ommit again to their passwords (byenrypting them, for e�ieny reasons), but this time in a single blok: C′

i =

(C′
i
(1), C′

i
(2), C′

i
(3)) = (g1

ti , g2
ui , gpwig3

ti+ui) (with random values ti and ui) andpublish it along with a SSNIZK proof that the passwords ommitted are the samein the two ommitments: SSNIZKEqg,g(Ci, C
′
i), Ci roughly being the produt ofthe Ci,j , i.e. a ommitment of pwi. The new enryptions C′

i will be the ones usedin the rest of the protool. They need not be segmented (sine we will not extratanything from them, but just make omputations on enrypted values), but weask the users to prove that they are ompatible with the former ommitments.Eah user Pi omputes H = H(C1, . . . ,Cn), and sends a signature of thevalues that identi�es this exeution, under an ephemeral one-time signature key,to avoid malleability and replay from previous sessions: σi = Sign(H ; SKi). Thisallows the protool to realize the split funtionality by ensuring that everybodyhas reeived the same values in the �rst round (more preisely, the players havebeen split aording to what they reeived in the �rst round, so that we anassume that they have all reeived the same values). Note that the protool willfail if the adversary drops or modi�es a �ow reeived by a user, even if everythingwas orret. This situation is modeled by the bit b of the key delivery queries inthe funtionality, for when everything goes well but some of the players do notobtain the result.The need for an additional extratable ommitment Ci of gpwi (and a proofthat the password used is the same, and that everybody reeived the same value)8



is a requirement of the UC model, as in [10℄. Indeed, we show later on that
S needs to be able to simulate everything without knowing any passwords: Thus,he reovers the passwords by extrating them from the ommitments Ci madeby the adversary in the �rst round, enabling him to adjust his own values beforethe subsequent enryptions C′

i, so that all the passwords are ompatible withthe publi key (if they should be in the situation at hand).After these rounds of ommitments/enryptions, the players hek the signa-tures and abort if one of them is not valid. A omputation step then allows themto ompute the publi key. Note that everything has beome publily veri�able.Computation starts from the iphertexts C′
i, and involves two �blinding rings�to raise sequentially the values ∏

iC
′
i
(3)

= g
P

i
pwig3

P

i
(ti+ui), g1, g2 and g3to some distributed random exponent α =

∑
i αi. The players then broadast

g3
α(ti+ui) (the values g1 and g2 are only here to hek the onsisteny of the val-ues ti and ui and avoid heating), leaving every player able to ompute gα

P

i
pwi .A �nal �unblinding� allows for the reovery of gP

i
pwi = pk. We stress that everyuser is able to hek the validity of this omputation (at eah step, it heks theCDH values to ensure that the same exponent was used eah time): A dishonestexeution annot ontinue without an honest user beoming aware of it (andaborting). Note however that an honest exeution an also be stopped by a userif the adversary modi�es a �ow, as re�eted by the bit b in the funtionality.The Distributed Private Computation Protool. This protool is pre-sented in Figure 2 and realizes FpwDistPrivateComp. Here, in addition to their pass-words, the users are also provided a publi key pk and a group element c ∈ G.For this given c ∈ G, the leader wants to obtain m = csk. A big di�erene withthe previous protool is that this result will be private to the leader. But beforeomputing it, everybody wants to be sure that all the users are honest, or atleast that the ombination of the passwords is ompatible with the publi key.This veri�ation step is exatly the same as the omputation step in theprevious protool. The protool starts by verifying that they will be able toperform this omputation, and thus that they indeed know a representation ofthe seret key into shares. Eah user sends a ommitment Ci = {Ci,j}j of itspassword as before, and the assoiated set of WIProofBit(Ci,j).As in the former protool, one this �rst step (whih enables the users to besplit into subgroups aording to what values they have reeived) is done, theusers ommit again to their passwords in the value C′

i, whih will be the onesused in the rest of the protool, and also send a signature whih enables them tohek that they share the same publi key pk, the same group element c, and havereeived the same values in the �rst round. It thus avoids situations in whih agroup leader with an inorret key obtains a orret private omputation result,ontrary to the ideal funtionality. The protool will thus fail if all these valuesare not the same to everyone, whih is the result required by the funtionality.Next, the users make yet another enryption Ai of their passwords, but thistime they do a linear enryption of pwi in base c instead of in base g (in theabove C′
i iphertext): Ai = Encryptc(pwi, vi, wi) = (g1

vi , g2
wi , cpwig3

vi+wi). Theiphertexts C′
i will be used to hek the possibility of the private omputation9
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After these rounds of ommitments/enryptions, a veri�ation step allows forall the players to hek whether the publi key and the passwords are ompatible.Note that at this point, everything has beome publily veri�able so that thegroup leader will not be able to heat and make the other players believe thateverything is orret when it is not. Veri�ation starts from the iphertexts C′
i,and involves a blinding and an unblinding ring as desribed above. This endswith a deision by the group leader on whether to abort the protool (when thepasswords are inompatible) or go on to the omputation step. Every user is ableto hek the validity of the group leader's deision, as in the former protool.If the group leader deides to go on, the players assist it in the omputationof csk, again with the help of a blinding and an unblinding rings, starting from theiphertexts Ai. However, note that this time, the group leader does not reveal thevalues G′

1,1 = (δ
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n )v1 , G′

2,1 = (δ
(2)
n )w1 , G′
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n )w1 at theend of the blinding ring, but it is the only one able to ompute cβ P

j
pwj . Insteadof revealing it to the others, it hooses at random an exponent x R
← Z∗

q andbroadasts the value cβx
P

j
pwj . The unblinding ring then takes plae as before,leading to a publi value cβ1x

P

j pwj that the environment annot distinguishfrom random thanks to the random exponent x. Furthermore, the whole proessis robust, whih means that nobody an make the deryption result beomeinorret. Exept of ourse the group leader itself who broadasts any value itwants as ζ′n+1, without having to prove anything. But this does not help it toobtain a omputation whih it ould not do alone, exept the result csk.Note that if at some point a user fails to send its value (denial of servie at-tak) or if the adversary modi�es a �ow (man-in-the-middle attak), the protoolwill fail. In the ideal world this means that the simulator makes a omputationdelivery query to the funtionality with a bit b set to zero. Beause of the publiveri�ations of the CDH values, in these blinding/unblinding rounds exatly thesame sequene of passwords as in the �rst rounds has to be used by the players.This neessarily implies ompatibility with the publi key, but may be an evenstronger ondition.As a side note, observe that all the blinding rings in the veri�ation and om-putation steps ould be made onurrent instead of sequential, to simplify theprotool. Notie however that the �nal unblinding ring of csk in the omputationstep should only be arried out after the publi key and the ommitted pass-words are known to be ompatible, and the passwords to be the same in bothsequenes of ommitments/enryptions, i.e. after the veri�ation step sueeded.All the witness-indistinguishable and SSNIZK proofs and arguments will bedesribed in Setion 6. We show in the full version [8℄ that we an e�ientlysimulate these omputations without the knowledge of the pwi's, so that theydo not reveal anything more about the pwi's than pk already does. More pre-isely, we show that suh omputations are indistinguishable to A under theDLin assumption.
11
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Seurity Theorems. Assuming that the proofs of membership WIProof-Bit and SSNIZKEq are instantiated as desribed in Setion 6 (relying on theCDH), we have the following results, provided that DLin is infeasible in G and
H is ollision-resistant. The proofs of these theorems an be found in the fullversion [8℄.Theorem 1 Let F̂pwDistPublicKeyGen be the onurrent multi-session extension of
FpwDistPublicKeyGen. The distributed key generation protool in Figure 1 seurelyrealizes F̂pwDistPublicKeyGen for ElGamal key generation, in the CRS model, in thepresene of stati adversaries.Theorem 2 Let F̂pwDistPrivateComp be the onurrent multi-session extension of
FpwDistPrivateComp. The distributed deryption protool in Figure 2 seurely realizes
F̂pwDistPrivateComp for ElGamal deryption, in the CRS model, in the presene ofstati adversaries.As stated above, our protools are only proven seure against stati adver-saries. Unlike adaptive ones, stati adversaries are only allowed to orrupt pro-tool partiipants prior to the beginning of the protool exeution.5 Extensions of the ProtoolsBoneh-Franklin IBE Sheme [6℄. We need to ompute did = H(id)sk where
H(id) is a publi hash of a user's identity. This is analogous to csk, and thus ourprotool works as is.Boneh-Boyen (BB1) IBE Sheme [4℄. Here, did is randomized and ofthe form (h0

sk(hid1 h2)
r, h3

r). Sine (h0
sk) is a private value, the protool an beadapted as follows: 1) In the ommitment steps, the user also ommits (one)in (2a) to a value ri, whih will be its share of r. 2) Up to (2f), everything worksas before in order to hek pk (there is no need to hek r, onstruted on the �y).3) The blinding rings are made in parallel, one for (h0

sk)β , one for ((hid1 h2)
r)β ,and one for (h3

r)β , the CDH being heked to ensure that the same r and βi areused eah time. 4) The players obtain (h0
sk(hid1 h2)

r)β and the unblinding ringis made globally for this value. An unblinding ring is also done for (h3
r)β , withthe same veri�ation for the exponents βi.Linear Deryptions [5℄. Let (f = g1/x, g, h = g1/y) be the publi key of alinear enryption sheme, (x, y) being the private key. Assuming z = y/x, thesekeys an be seen as pk = (hz , hy, h) and sk = (y, z). Using these notations,

c = Epk(m; r) = (c1, c2, c3) = (f r, hs,mgr+s)
m = Dsk(c) = c3(c1

xc2
y)−1 = mgr+sg−rg−sIn the �rst protool, the players need to use two passwords zi and yi toreate the publi key pk. In the seond one, the ommitment steps are doubledto ommit to both zi and yi. As soon as pk is heked, the blinding rings aremade separately, one for (c1

x)β and one for (c2
y)β . The players obtain (c1

xc2
y)βand the unblinding ring an be made globally for this value. In both rings, theCDH is heked to ensure that the same βi is used eah time.13



6 Employed Proof Systems6.1 GOS WI Proof of Commitments Being to BitsLet (g1, g2, g3) ∈ G3 be a �basis� and let (U1, U2, g) ∈ G3 be a ommitmentkey (whih is in general non-linear w.r.t. (g1, g2, g3), but for simulation purposesit will be linear). Let C = (Ux
1 g

r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a ommitment to x usingrandomness (r, s). Groth et al. [13℄ onstrut a WI proof system to show that oneof two triples is linear. Applying it to (C1, C2, C3) and (C1U

−1
1 , C2U

−1
2 , C3g

−1)yields a proof that x ∈ {0, 1}, thus implements WIProofBit, in an e�ient wayand without random orales.6.2 Simulation-Sound NIZK Arguments for Relations ofCiphertexts and CommitmentsWe onstrut two simulation-sound NIZK argument systems implementing theproof SSNIZKEq. Given two iphertexts, the �rst proves that the enrypted mes-sages m1 and m2 are in CDH w.r.t. some �xed basis (c, d), i.e., m1 = cµ and
m2 = dµ for some µ. The seond SSNIZK proves that for a given linear om-mitment to x and a linear enryption of gy it holds that x = y. We follow theoverall approah by Groth [12℄ to obtain simulation soundness, but using theGroth-Sahai proof system [14℄ we get an e�ient result: the proofs themselvesare e�ient, and we need not enrypt some of the witnesses in order to guaranteeextratability, as the employed Groth-Sahai proofs are witness extratable.Overview. We start with some intuition on how [12℄ onstruts simulation-sound proofs for satis�abilityofaset of pairing produt equations (PPEs) {Ek}

KE

k=1(and later show how to express the statements we want to prove this way). Let
Σot be a strong one-time signature sheme4 and let Σma be a signature shemethat is existentially unforgeable under hosen message attak (EUF-CMA), andwhose signatures σ on a message M are veri�ed by heking a set of PPEs overa veri�ation key vk and M , denoted {Vk(vk,M, σ)}KV

k=1.The ommon referene string (CRS) of our argument system will ontain averi�ation key vk for Σma (whose orresponding signing key serves as sim-ulation trapdoor). When making an argument, one �rst hooses a key pair
(vkot, skot) for Σot, proves a statement and, at the end, adds a signature un-der vkot on the instane and the proof. The statement one atually proves isthe following: to either know a witness satisfying Equations {Ek} or to knowa signature on vkot valid under vk. Groth [12℄ shows how to onstrut a newset of equations whih is satis�able i� {Ek} or {Vk(vk, vkot, ·)} are satis�able.Moreover, knowing witnesses for either of them, one an ompute witnesses ofthe new set of equations. Using the tehniques of [14℄, one then ommits tothe witnesses and proves that the ommitted values satisfy the new PPEs in awitness-indistinguishable (WI) way.To simulate an argument, after hoosing a pair (vkot, skot), one uses thetrapdoor to produe a signature σ on vkot valid under vk and uses σ as a witness4 A signature sheme is strong one-time if no adversary, after getting a signature σ onone message m of his hoie, an produe a valid pair (m∗, σ∗) 6= (m, σ).14



for {Vk(vk, vkot, ·)}. (It follows from WI of the Groth-Sahai proof that this isindistinguishable from using a witness for {Ek}.) Even after seeing many proofsof this kind, no adversary is able to produe one for a new false statement:Sine it has to sign the instane and the argument at the end, it must hoosea new pair (vk∗ot, sk∗ot) (by one-time seurity of Σot). Soundness of Groth-Sahaiproofs imposes that to prove a false statement (meaning that the �rst lause ofthe disjuntion is not satis�able), it must use a witness for the seond lause,thus know a signature on vkot. This however is infeasible by EUF-CMA of Σma(sine we an extrat the witnesses and thus a forged signature). We start byinstantiating the mentioned building bloks.Building Bloks. The main motivation for our hoies of instantiations ofthese bloks is that their seurity is implied by DLin only. We insist that byadmitting more exoti assumptions, the e�ieny of our proof system ouldbe improved.The Strong One-Time Signature Sheme Σot. We pik the sheme de-sribed in [12℄ (but any other would equally do), sine its seurity follows fromthe disrete-log assumption whih is implied by DLin.The Waters Signature Sheme. The signature sheme from [16℄ suits ourpurposes, it requires no additional assumption and�more importantly�signa-tures are veri�ed by heking PPEs.Setup. In a bilinear group (p,G,GT , e, g), de�ne parameters f ← G∗ and h :=
(h0, h1, . . . , hℓ)← G

ℓ+1. A seret key x← Zp de�nes a publi key X := gx.For ease of notation, de�ne W(M) := h0

∏ℓ
i=1 h

Mi

i .Signing. To sign a message M ∈ {0, 1}ℓ, hoose r ← Zp and de�ne a signatureas σ := (fxW(M)r, g−r).Veri�ation. A signature σ = (σ1, σ2) is aepted for message M i�
e(σ1, g) e(W(M), σ2) = e(f,X) (1)Seurity. EUF-CMA follows from the omputational Di�e-Hellman assumptionwhih is implied by DLin.The Groth-Sahai Proof System. Consider a set of pairing produt equations

{Ek}
KE

k=1 on variables {Xi}
n
i=1 in G of the form

n∏
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e(Ak,i, Xi)

n∏

i=1

n∏

j=1

e(Xi, Xj)
γk,i,j = Tk (Ek)for given Ak,i ∈ G, γk,i,j ∈ Zp, and Tk ∈ GT . Groth and Sahai [14℄ builda non-interative witness-indistinguishable proof of satis�ability of {Ek} fromwhih�given a trapdoor�an be extrated the witnesses Xi (we will use theirinstantiation with DLin): the CRS is a (binding) key for linear ommitments togroup elements. The proof onsists of ommitments to eah Xi and 9 elementsof G per equation proving that it is satis�ed by the ommitted values. By DLin,replaing the CRS by a hiding ommitment key is indistinguishable. In thissetting now every witness {Xi}

n
i=1 satisfying the equations generates the samedistribution of proofs, whih implies witness-indistinguishability of the proofs.15



Moreover, we assume a ollision-resistant hash funtion H that maps stringsof elements of G to elements in Zp whih we identify with their bit-representationin {0, 1}⌈log p⌉. Thus, when we say we sign a vetor of group elements, we atuallymean that we sign their hash values.Equations for Proof of Plaintexts Being in CDH. Let c, d ∈ G be�xed and let (g1, g2, g3) be a linear enryption key. Given two iphertexts C =
(gr

1 , g
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2,m1g
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3 ) and D = (gt
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2 ,m2g
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3 ), we give a set of PPEs that are satis-�able by a witness a if and only if there exists µ ∈ Zp suh that m1 = cµ and

m2 = dµ.
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3 ). The �rst four equationsprove that the logarithms of the ai's are those of C1, C2, D1, D2 w.r.t. theirrespetive bases. Thus, C3a

−1
1 a−1

2 = m1 and D3a
−1
3 a−1

4 = m2 and the lastequation shows that (m1,m2) is in CDH w.r.t. (c, d).Disjuntion of Equations. Following [12℄ (and optimizing sine the pairingshave variables in ommon), we de�ne a set of equations whih we an provesatis�able if we have witnesses for either (2) or (1), i.e., if we either know asatisfying (2) or σ satisfying (1). We �rst introdue the following new variables:
χ1, χ2 φ1, φ2, φ3, φ4, φ5 ψ1, ψ2, ψ3We de�ne the following 15 equations expressing a disjuntion of (2) and (1),therefore termed �(2 ∨ 1)�.Equation for Disjuntion: e(g−1χ1χ2, g) = 1From (1): e(χ2, ψ

−1
1 σ1) = 1 e(χ2, ψ

−1
2 W(M)) = 1 e(χ2, ψ

−1
3 f) = 1

e(ψ1, g) e(ψ2, σ2) e(ψ3, X)−1 = 1From (2): e(χ1, φ
−1
1 g1) = 1 e(χ1, φ

−1
2 g2) = 1

e(χ1, φ
−1
3 g3) = 1 e(χ1, φ

−1
4 c) = 1 e(χ1, φ

−1
5 d) = 1

e(C1, φ3) e(φ1, a1)
−1 = 1 e(C2, φ3) e(φ2, a2) = 1

e(D1, φ3) e(φ1, a3)
−1 = 1 e(D2, φ3) e(φ2, a4) = 1

e(C3a
−1
1 a−1

2 , φ5) e(φ4, D3a
−1
3 a−1

4 ) = 1Completeness. To produe a proof we proeed as follows: If we have an as-signment a for (2), we hoose χ1 := g, χ2 := 1, satisfying thus the �rst equation.Moreover, set φ1 := g1, φ2 := g2, φ3 := g3, φ4 := c, φ5 := d. Thus the equationsof the blok for (2) are satis�ed, beause a is a witness for (2). Sine χ2 = 1,we an set ψi := 1 (for all i) as well, whih satis�es the blok for (1), no matterwhat value we set σ.On the other hand, if we know a signature σ satisfying (1), we hoose χ1 :=
φi := 1 (for all i) and χ2 := g, ψ1 := σ1, ψ2 := W(M), ψ3 := f and get asatisfying assignment for any hoie of a.Soundness. We show that if (2 ∨ 1) is satis�ed then either a satis�es (2) or σsatis�es (1): From the �rst equation we have that either χ1 or χ2 must be non-trivial, whih either on�nes the values of the φi's to (g1, g2, g3, c, d) or those of16



the ψi's to (σ1,W(M), f). Now this imposes that either a satis�es (2) (by thelast �ve equations of the blok for (2)) or σ satis�es (1) (by the last equation ofthe blok for (1)).Equations for Proof of Commitment and Ciphertext Containing theSame Value. Let (g1, g2, g3) be a key for linear enryption, and let (U1, U2, g)be an assoiated ommitment key. Let C = (Ux
1 g

r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a ommit-ment to x and D = (gv

1 , g
w
2 , g

ygv+w
3 ) be an enryption of gy. We prove that

x = y: the witness is (a1 = Ux
1 , a2 = Ux

2 , a3 = gx, a4 = gr
3, a5 = gv

3) satisfying
e(a1, U2) = e(U1, a2) e(C1a

−1
1 , g3) = e(g1, a4) e(D1, g3) = e(g1, a5)

e(a1, g) = e(U1, a3) e(C2a
−1
2 , g3) = e(g2, C3a

−1
3 a−1

4 ) e(D2, g3) = e(g2, D3a
−1
3 a−1

5 ) (3)The equations in the �rst olumn show that a1 = Uz
1 , a2 = Uz

2 , a3 = gz forsome z, the seond olumn proves that (C1a
−1
1 , C2a

−1
2 , C3a

−1
2 ) is linear (i.e., Commits to z) and the third that D is an enryption of a3 = gz.Transformation. Transforming Equations (3) and (1) to a set (3 ∨ 1) analo-gously to the onstrution of (2 ∨ 1), we get a set of 16 equations we an provesatis�able adding 10 new witnesses if either we have a witness for C being aommitment to some x and D an enryption of gx, or we know a signature.(Assoiate the φi's to U1, a1, g1, g2 and g3.)Assembling the Piees. We desribe the SSNIZK proof system for �plaintextsin CDH�. The one for �ommitment and iphertext ontain the same value� isobtained by replaing (2 ∨ 1) by (3 ∨ 1).Common Referene String. Generate a key pair (vk, sk) for Waters' sig-nature sheme, and a CRS rsGS for the Groth-Sahai proof system. Letrs := (vk, rsGS) and let the simulation trapdoor be sk.Proof. Let (C,D) ∈ G6 be an instane and a a witness satisfying (2). Generatea key pair (vkot, skot) for Σot; using witness a, make a Groth-Sahai proof πGSw.r.t. rsGS of satis�ability of (2 ∨ 1) with M := vkot; produe a signature

σot on (C,D, vkot, πGS) using skot. The proof is π := (vkot, πGS, σot)Verifiation. Given π, verify σot on (C,D, vkot, πGS) under vkot, and πGS onthe respetive equations.Simulation. Proeed as in Proof, but using sk produe σ on vkot and usethat as a witness for (2 ∨ 1).Theorem 3 Under the DLin assumption, the above is a simulation-sound NIZKargument for the enryptions of two linear iphertexts forming a CDH-pair.Using the ideas given in the overview, the proof is analogous to that in [12℄exept that we do not require perfet soundness and that we use the extrationkey for rsGS to extrat a forged signature on vkot diretly rather than addingenryptions to the proof.AknowledgmentsThis work was supported in part by the European Commission through theICT Program under Contrat ICT-2007-216646 ECRYPT II and by the FrenhANR-07-SESU-008-01 PAMPA Projet.17
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