
Modeling of Web Robot Navigational Patterns�

Pang-Ning Tan
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

ptan@cs.umn.edu

Vipin Kumar
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

kumar@cs.umn.edu

ABSTRACT
In recent years, it is becoming increasingly diÆcult to ignore
the impact of Web robots on both commercial and institu-
tional Web sites. Not only do Web robots consume valuable
bandwidth and Web server resources, they are also making

it more diÆcult to apply Web Mining techniques e�ectively
on the Web logs. E-commerce Web sites are also concern
about unauthorized deployment of shopbots for the purpose
of gathering business intelligence at their Web sites. Ethical
robots can be easily detected because they tend to follow

most of the guidelines proposed for robot designers. On the
other hand, unethical robots are more diÆcult to identify
since they may camou
age their entries in the Web server
logs. In this paper, we examine the problem of identifying
Web robot sessions using standard classi�cation techniques.
Due to the temporal nature of the data, the classi�cation

model may vary depending on the number of requests made
by the Web user or robot. Our goal is to determine the
minimum number of requests needed to distinguish between
robot and non-robot sessions, with reasonably high accu-
racy. Our preliminary results show that highly accurate
models can be obtained after three requests using a small

set of access features computed from the Web server logs.

1. INTRODUCTION
Ever since Web robot 1 �rst appeared in 1993, the ease

with which it can be constructed has caused a rapid prolif-
eration of various types of Web agents on the Internet. A
Web robot is an autonomous agent that traverses the hy-
perlink structure of the Web for the purpose of locating and
retrieving information from the Internet. Web robots are
often used as resource discovery and retrieval tools for Web

�This work was supported by NSF ACI-9982274 and by
Army High Performance Computing Research Center con-
tract number DAAH04-95-C-0008. Access to computing fa-
cilities was provided by AHPCRC, Minnesota Supercom-
puter Institute.
1also known as a Web crawler, spider or worm.

search engines [1, 6], shopping comparison robots [3], email
collectors [4, 2], o�ine browsers [8, 7], browsing assistants
[11, 19], etc. They are also used by Web administrators for
site maintenance purposes (such as mirroring and checking
for dead hyperlinks). Some programming languages, such
as Python, have provided library functions to facilitate the

development of agents with Web crawling capabilities. All
of this has led to a situation in which one can no longer
ignore Web robot visits to a particular Web site.
There are a number of situations in which it is desirable

to identify Web robots and distinguish them from other ac-
cesses. First of all, e-commerce Web sites may be concerned

about unauthorized deployment of shopbots for gathering
business intelligence at their Web site. In such cases, it will
be desirable to disable accesses by non-authorized robots.
Secondly, visits by Web robots can distort the input data
distribution of Web Usage Mining systems. For example, at

least 10% of the server sessions in the University of Min-
nesota Computer Science department Web logs can be at-
tributed to Web robots. Many of these robots adopt a
breadth-�rst retrieval strategy to increase their coverage of
the Web site. Due to such accesses, the association rule min-
ing algorithm may inadvertantly generate frequent itemsets

involving Web pages from di�erent page categories. Such
spurious patterns may lead analysts of an e-commerce site
to believe that Web users are interested in products from
various categories when in fact such patterns are induced
by robot sessions. This can be avoided if Web robot ses-
sions are removed from the dataset during preprocessing.

Thirdly, the deployment of Web robots usually comes at the
expense of other users, as they may consume considerable
network bandwidth and server resources.
The main contributions of this paper are as follows :

� We provide a brief survey on the various types of Web

robots that are being deployed on the Internet.

� We describe the problem of identifying robot sessions
from Web server logs. A typical Web log contains in-

formation such as the IP address of the client (Web
browser or robot), the date and time a request is made,
the request method and protocol used, the URI of the
requested page, the status of the request handling, the
size of the document retrieved, the referrer page and
agent information (Table 1). Some robots can be eas-

ily identi�ed because they follow the ethical guidelines
proposed for robot designers; while others are more
diÆcult to detect.

� We identi�ed several distinguishing features that can



be used to characterize the access patterns of Web

robots. These features can be readily computed from
the Web server logs.

� The access features are used to construct classi�cation
models that will distinguish between robot and non-
robot sessions. However, due to the temporal nature
of the data, the classi�cation model may change de-

pending on the number of Web page requests made by
the Web user or robot. This is because some of the
features may not be computable when the number of
requests are small. Hence, it is desirable to know the
minimum number of requests needed to identify robot
sessions with reasonable accuracy.

2. WEB ROBOTS : OVERVIEW

2.1 Types of Web Robots
In order to understand the navigational behavior of Web

robots, it is important to know the di�erent types of Web
robots that are available today. This is because di�erent
robots may exhibit di�erent access patterns. Such knowl-

edge can be used to identify the set of relevant features to
characterize the access pattern of a Web robot.
Eichman [13] divides Web robots into two distinct cate-

gories : agents that are used to build information bases (e.g.
search engine robots such as T-Rex for Lycos [6] and Scooter

for Altavista [1]) and agents designed to accomplish a spe-
ci�c task (such as browsing assistants or hyperlink checkers).
Search engine robots often use breadth-�rst retrieval strat-
egy to maximize their coverage of a Web site.
Browsing assistants are interactive agents that can help

Web users to locate relevant documents on the Web by rec-

ommending hyperlinks based on the current user pro�le [11,
19]. These agents often rely on an underlying Web spidering
mechanism to pre-fetch new pages, and a learning module to
predict the relevance of these pages. Unlike search engine
robots, the browsing assistant robots adopt a more direct
search strategy focussing only on reference links that will

lead them to documents of interest.
Hyperlink checkers are Internet utility programs used by

Web site administrators to test for broken links or missing
pages [9, 5]. Many of these utilities use the HEAD method
to request information about a particular Web page. Unlike
the GET method, the response message to a HEAD request

contains only the Web page meta-information and does not
involve a full transfer of the Web document.
Kephart et al.[14] de�ned shopbots as programs that au-

tomatically search for information regarding the price and
quality of goods or services on behalf of a consumer. The

deployment of shopbots has received mixed reactions from
di�erent vendors. Some vendors attempt to block accesses
by these robots while others perceive them as a means of
attracting potential customers.
Email collectors [4, 2] are robots that automatically collect

email addresses available on theWeb. These robots are more

interested in traversing personal home pages rather than e-
commerce Web sites.
O�ine browsers are either stand-alone browsers or add-on

utilities that allow a Web user to download an entire Web
site to the local directory for o�ine viewing [8, 7]. In this
paper, we will treat such browsers as similar to Web robots,

primarily due to their spidering capabilities.

2.2 Guidelines for Web Robots
Eichman [13] and Koster [17, 15] have provided several

ethical guidelines for Web robot developers. The purpose of

these guidelines is to ensure that both the Web robot and
Web server can cooperate with each other in a way that
will bene�t both parties. Under these guidelines, a Web
robot must identify itself to the Web server and moderate
its rate of information acquisition. The Robot Exclusion
Standard [16, 10] was proposed to allow Web administrators

to specify which part of their site are o�-limits to visiting
robots. Whenever a robot visits a Web site, it should request
the robots.txt �le �rst. This �le contains information about
which documents can be accessed by the robot and which
are forbidden.

Robots that follow the proposed guidelines can be easily
identi�ed because (1) they access the robots.txt �le before
downloading other documents, and (2) they use the User-
agent and From �elds in the HTTP request header message
to declare their identity to the Web server. For example,
the last three log entries in Table 1 correspond to accesses

by Web robots. The robot corresponding to rows 4 and 5
can be easily identi�ed via its agent �eld while the robot
corresponding to the last row is identi�ed by the page it
has requested, i.e. robots.txt. Unfortunately, not every
Web robots obey these noble guidelines. Some robots con-
ceal their identities in various ways : (1) by ignoring the

robots.txt �le; (2) by creating several concurrent HTTP ses-
sions with a Web server, each having a di�erent IP address.
In some cases, the robots.txt �le is requested by one of these
concurrent sessions. As a result, if robot detection is based
on access to this �le alone, the rest of the concurrent robot
sessions may go undetected; (3) by having multiple agent

information or using the same agent information as conven-
tional Web browsers (row 6 of Table 1).

2.3 Robot Detection Problem
Despite the various attempts to regulate the behavior of

Web robots, not all of them are successful. This is because
implementation of such guidelines require full cooperation

from the Web robot designer. Some robots may intention-
ally want to remain anonymous while traversing a Web site.
Therefore, other means of robot identi�cation are needed.
In this paper, we will investigate how Web robots can be
detected based on information derived from the Web server
logs. Our goal is to construct a classi�cation model capa-

ble of detecting the presence of Web robot sessions in a fast
and accurate manner. Such a model can be used to pre-
dict whether the current session belongs to a Web robot or
a human user. However, since the amount of information
available changes as more pages are being requested by a

Web client (browser or robot), the classi�cation model may
change depending on the number of requests made by the
client. Here, we shall use the term request loosely. For Web
users, a request refers to all the pages transferred to the
browser as a result of a single user click action. For exam-
ple, the �rst three entries in Table 1 belongs to the same

request. For Web robots, an HTML page along with any
other documents embedded within the same page constitute
a single request.
Accuracy of the induced model is a crucial requirement.

For e-commerce Web sites, the cost of misclassifying user
sessions may far outweigh that of robot sessions. Intuitively,

the accuracy of the classi�cation model should improve as



Table 1: Example of a Web server log (some �elds such as total number of bytes transferred and status of the request

have been omitted for brevity).

IP Address Timestamp Method Requested Protocol Referrer User Agent
Page Page

171:64:68:115 10/Apr/2000 GET http://www-users.cs. HTTP/1.0 - Mozilla/4.61
01:00:10 umn.edu/~kumar/ [en] (WinNT; I)

171:64:68:115 10/Apr/2000 GET http://www-users.cs. HTTP/1.0 http://www-users. Mozilla/4.61
01:00:10 umn.edu/~kumar/krn.gif cs.umn.edu/~kumar/ [en] (WinNT; I)

171:64:68:115 10/Apr/2000 GET http://www-users.cs. HTTP/1.0 http://www-users. Mozilla4.61
01:00:10 umn.edu/~kumar/book.gif cs.umn.edu/~kumar/ [en] (WinNT; I)

160:94:1:194 10/Apr/2000 GET http://www.cs.umn. HTTP/1.0 - Ultraseek
01:43:05 edu/robots.txt

160:94:1:194 10/Apr/2000 GET http://www.cs.umn. HTTP/1.0 - Ultraseek
01:43:05 edu//~heimdahl/csci5802

212:27:205:29 10/Apr/2000 GET http://www.cs.umn. HTTP/1.0 - Mozilla/4.0
04:13:27 edu/robots.txt (compatible;

MSIE 5.0;
Windows 95;
DigExt)

more data is available. Hence, we need to determine the
minimum number of requests needed to obtain classi�ca-
tion models with acceptable accuracy. This is because early
detection will prevent more resources being tied up by unco-

operative Web robots. Speed is another important property.
The classi�cation model should rely on features that can be
derived easily from the Web logs.

3. METHODOLOGY
The robot detection problem can be decomposed into the

following subproblems:

1. Preprocess the Web server logs to identify server ses-
sions.

2. Identify and extract the set of features that can be
used to characterize the sessions.

3. Labeling of sessions as robot or non-robot sessions.

4. Construct the classi�cation models.

5. Evaluate the classi�cation models.

3.1 Preprocessing
During preprocessing, individual log entries are aggre-

gated into server sessions according to the IP Address and
agent information [20, 12]. New sessions are also identi�ed
using a 30-minute inter-session timeout period. Within each

session, the log entries are grouped into separate requests
where each request may correspond to an individual user
click or a single robot request. The best way to do the ag-
gregation is by parsing the entire site �les for embedded links
to be associated with each HTML page. However, this may
not be feasible for e-commerce Web sites having dynamic

HTML pages. Currently, we approximate the individual re-
quests heuristically based on the timestamp, referrer �elds
and type of the requested page (e.g. image or audio pages,
etc). For example, if two successive log entries of a partic-
ular session have the same referrer �eld (but not equal to
\-"), then they are associated to the same request (e.g. rows

2 and 3 of Table 1). Another heuristic we can use is if both

log entries involve image pages and have a \-" referrer �eld
(within a duration of 5 seconds), they will most likely belong
to the same request. We are still exploring other heuristics
for improving the request identi�cation problem.

3.2 Feature Selection and Session Labeling
After sessionization, the next step is to construct a fea-

ture vector representation for each session. Table 2 presents
a summary of the key attributes derived from the server
sessions. The computation of temporal attributes such as
TOTALTIME and and AVGTIME is illustrated in Fig. 1.
Note that the AVGTIME attribute is not computable un-

less there are more than one request. The STDEVTIME
attribute is meaningless unless there are more than two re-
quests. The WIDTH and DEPTH attributes are computed
by constructing a representative graph based on the path-
name of the requested pages. For example, if a session con-

tains requests for the following pages, f/A, /A/B, /A/B/Cg,
then its WIDTH will be 1 and its DEPTH will be 3. Ba-
sically, the WIDTH attribute measures the number of leaf
nodes generated in the graph while the DEPTH attribute
measures the maximum depth of the tree(s) in the graph.
Therefore, a session that contains requests for f/A, /A/B,

/C, /Dg will have a WIDTH = 3 and a DEPTH = 2. The
NIGHT attribute was chosen based on the assumption that
ethical robots would access a Web site during its low-usage
period (such as at night). As a result, the value of this at-
tribute is determined from the server local time rather than
the client's local time.

Some of the attributes in Table 2 are used as access fea-
tures while others are used to assign the appropriate class
label to a server session. The assignment of class labels can
be done in the following way :

1. If a session contains a request for the robots.txt �le,
then the session is identi�ed as a robot session (de-
noted as Class = 1).

2. If the agent �eld of a server session belongs to a known
Web robot, then Class = 1. An initial list of agent

information for known Web robots is needed.



Table 2: Summary of attributes derived from server sessions. The attributes are used for class labeling (denoted as

Labeling) or constructing the feature vector representation (Feature).

Id Attribute Remark Purpose
Name

1 TOTALPAGES Total number of pages requested. Feature
2 % IMAGE % of image pages (.gif/.jpg) requested. Feature
3 % BINARY DOC % of binary documents (.ps/.pdf) requested. Feature
4 % BINARY EXEC % binary program �les (.cgi/.exe/.class) requested. Feature
5 ROBOTS.TXT No. of times the robots.txt �le is accessed. Labeling
6 % HTML % of HTML pages requested. Feature
7 % ASCII % of Ascii �les (.txt/.c/.java) requested. Feature
8 % ZIP % of compressed �les (.zip/.gz) requested. Feature
9 % MULTIMEDIA % of multimedia �les (.wav/.mpg) requested. Feature
10 % OTHER % of other �le formats requested. Feature
11 TOTALTIME Temporal server session length (approx.). Feature
12 AVGTIME Average time between clicks (approx.). Feature
13 STDEVTIME Standard deviation of time between clicks (approx.). Feature
14 NIGHT % of requests made between 2am to 6am (local time). Feature
15 REPEATED Reoccurence rate of �le requests. Feature
16 ERROR % of requests with status � 400. Feature
17 GET % of requests made with GET method. Feature
18 POST % of requests made with POST method. Feature
19 HEAD % of page requests made with HEAD method. Labeling
20 OTHER % of requests made with other methods. Feature
21 WIDTH width of the traversal (in the URL space). Feature
22 DEPTH depth of the traversal (in the URL space). Feature
23 PATHLENGTH Server path length (no of requests). Feature
24 REFERRER = \-" % of requests with referrer = \-" Labeling

Client Server

request

t3
t2
t1

reply

Time

t4
t5

Request 2

Request 1

Figure 1: This session contains two requests. t1, t2, t3, t4 and t5 are the timestamps recorded in the server logs. The

value of the temporal attributes for this session are: TOTALTIME = t5� t1, AVGTIME = t4 � t3, STDEVTIME = 0.



There are other heuristics we can use to supplement the

above labeling scheme. For example, if all the requests are
made using the HEAD method, then the session is most
likely created by a link checker robot or a proxy server. An-
other heuristic could be based on the referrer �eld of the
session. If all the requests by a Web client use \-" as the
referrer �eld (e.g. rows 4 and 5 of Table 1) then there is

a strong possibility that the client is a Web robot, as long
as the number of requests is large. If number of requests is
small, the session can be created by a Web user. For exam-
ple, if a user supplies the URI of a Web document by typing
directly into the address window or clicking on a bookmark,
the referrer �eld of the corresponding Web log entry is \-".

Later, we will show that the number of Web robot sessions
generated using this heuristic is quite small compare to ses-
sions generated by other means. Thus, the accuracy of the
models will not be a�ected if we ignore the two heuristics.

3.3 Classification
In this paper, we have used the C4.5 algorithm [21] to

construct the classi�cation models. C4.5 is a widely used
classi�cation algorithm because it can induce models in the
form of decision trees and rules that are easier to compre-
hend compare to other algorithms (such as Naive Bayesian
or Support Vector Machines). Since the number of requests
vary from one session to another, it is not suÆcient to gen-

erate a single classi�cation model for all sessions. This is
because some of the features are not computable when the
number of requests are small. A better way is to induce
classi�cation models after each request. Hence, we need to
generate di�erent datasets for every number of request. For
instance, the dataset for one request is generated from all

the server sessions. Sessions with more than one request
will be truncated by computing the feature values up to
their �rst request. For dataset with two requests, we ignore
all single request sessions, and consider only sessions with
at least two requests. Again, sessions with larger number
of requests will be truncated so that the feature vector con-

tains only information up to the second request. From these
classi�cation models, we can determine the minimum num-
ber of requests required to detect Web robot sessions with
reasonable accuracy.

3.4 Evaluation
Accuracy is not the only metric we use to evaluate the

performance of our classi�ers. In the area of information
retrieval, recall and precision are two popular metrics used
to evaluate binary classi�ers :

recall; r =
no of robot sessions found correctly

total no of actual robot sessions
(1)

precision; p =
no of robot sessions found correctly

total no of predicted robot sessions
:(2)

A classi�er that assigns the value 1 to every session will
have perfect recall but poor precision. In practice, the two
metrics are often summarized into a single value, called the
F1-measure [22] :

F1 =
2rp

(r + p)
: (3)

This value is maximized when r and p are close to each
other. Otherwise, the value of F1-measure is dominated by

the smaller of r and p [23].

4. EMPIRICAL RESULTS
Our experiments were performed on the University of Min-

nesota Computer Science department server logs collected

from April 10th to April 24th, 2000. Initially, the Web log
contains 330,401 log entries. After preprocessing, 47925 ses-
sions are created; out of which 5442 sessions are labeled as
robot sessions while the rest are non-robot sessions. There
are only 172 non-robot sessions with HEAD = 1, which con-
stitutes less than 0:4% of the overall dataset. Furthermore,

only 36 of these sessions have more than one request. There-
fore, even though our dataset is not labeled based on the
HEAD attribute, we believe the the error of mislabeling ses-
sions due to this attribute is quite negligible. There are also
5253 robot sessions and 6304 non-robot sessions with RE-

FERRER = \-". Among the non-robot sessions, 4824 of
them have only a single request and 79 of them have more
than 10 requests. Since the REFERRER = \-" heuristic is
useful only when the number of requests are large, again the
accuracy of our models will not be a�ected if we ignore this
heuristic.

A summary of our datasets is given in Table 3. For each
dataset, we partitioned the samples into training and test
sets according to the ratio of 3:2. The training set is created
via random sampling on the full dataset. We also ensure
that there will be an equal number of robot and non-robot
sessions in the training set. To evaluate the accuracy of

our classi�ers, we generate a test set that contains the same
proportion of robot and non-robot sessions. On the other
hand, for recall and precision calculations, the test set is
comprised of all the sessions not included in the training
set. The C4.5 algorithm is then used to induce classi�cation
models for each dataset. The sampling and model building

procedure is repeated 20 times.
Figure 2 illustrates the correlation 2 between each at-

tribute and the class label for various number of requests.
The following results are observed from these graphs:

1. As expected, the class labeling attributes (i.e. HEAD,
ROBOTS.TXT, REFERRER) exhibit strong positive

correlation with the class labels. Although these at-
tributes can be used to detect ethical robots, they can
also be easily manipulated by other robot designers.

2. After two requests, both the TOTALTIME and AVG-

TIME have rather strong positive correlation with the
class label. The % HTML attribute also becomes in-
creasingly important.

3. After three requests, the correlation plot looks quite

similar as before, except that the STDEVTIME at-
tribute becomes more important.

4. The WIDTH and DEPTH attributes have opposite ef-
fects on the class label. Figure 2 show that robot ses-

sions tend to have broader width and smaller depth,
indicative of a breadth-�rst retrieval strategy.

Figure 3 illustrates the overall classi�cation accuracies for
various models induced from the dataset. Our results show
that after two requests, the accuracy improves from 71%
to almost 90%. The main reason for such a dramatic im-

provement is due to the addition of the TOTALTIME and

2Note that linear correlation may not be the best measure
of attribute dependence when non-linear dependencies exist
in the data.



Table 3: Summary of dataset parameters and results of experiment for various number of requests.
Number of No of robot No of non-robot Average Average Average F1

Requests Sessions Sessions Accuracy (%) Precision Recall Measure

1 5442 42483 71.52 0.6880 0.9571 0.8005
2 1872 17986 89.54 0.8998 0.9033 0.9015
3 849 10956 89.94 0.9139 0.8984 0.9061
4 526 7626 89.74 0.9276 0.8972 0.9121
5 384 5643 90.52 0.9188 0.8997 0.9091

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

2

5

6

17

19

24

Attribute

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

No of Clicks = 1

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

2

5

6

17

19

24

Attribute

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

No of Clicks = 2

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

2

5

6

17

19

24

Attribute

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

No of Clicks = 3

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

2

5

6

17

19

24

Attribute

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

No of Clicks = 4

Figure 2: Correlation between access attributes and the Robot class label for various number of requests. The labels

accompanying some of the vertical bars indicate their attribute ids (Table 2).

1 2 3 4 5
70

75

80

85

90

95

100

No of Clicks

%
 A

cc
ur

ac
y

Classification Features

All Attributes

1 2 3 4 5
5

10

15

20

25

30

No of Clicks

%
 E

rr
or

Classification Features

Training

Testing

Figure 3: Accuracy of classi�cation models for di�erent number of requests.



AVGTIME attributes. Our precision and recall results con-

sistently reach above 89 % after more than one request. The
improved precision at two requests indicates that the addi-
tion of AVGTIME and TOTALTIME attributes reduce the
amount of false positives due to misclassi�cation of non-
robots. The overall accuracy would level o� after 3 requests
until it begins to deteriorate after 5 requests. This can

be explained by the fact that the sample size may not be
large enough to induce accurate models. Improvement in
the training error for large number of requests can be at-
tributed to over�tting of the dataset; it does not add any
predictive power on the test set.

5. CONCLUSION
In summary, our results show that highly accurate mod-

els can be built using access features other than obvious at-

tributes such as ROBOTS.TXT, HEAD and REFERRER
= \-". These features can be easily derived from the Web
server logs. Our results also suggest that Web robot ses-
sions can be detected with reasonably high accuracy after 3
requests.
For future work, we would like to devise an incremental

scheme to infer anonymous Web robots. Our preliminary
results look promising because they indicate that such a
scheme can be realized if we have suÆciently large number
of training samples with highly accurate class labels. We
also plan to incorporate other metrics as de�ned by W3C
Web Characterization Metrics [18] into feature vectors. Our

current methodology can also be improved by incorporat-
ing Web content and structure data. For example, request
identi�cation can be improved using both type information.
Another important issue is the di�erent cost of misclassi�-
cation errors. We hope to address this problem in our future

work.

6. REFERENCES
[1] Altavista search engine. http://www.altavista.com.

[2] Email digger.
http://www.strayernet.com/webdesign/emailpro.html.

[3] evenbetter.com. http://www.evenbetter.com.

[4] Extractor pro. http://www.extract.com.

[5] Link scan. http://www.elsop.com/linkscan/.

[6] Lycos search engine. http://www.lycos.com.

[7] Teleport pro.
http://www.tenmax.com/teleport/pro/home.htm.

[8] Windows 95/98 o�ine browser tools.
http://win�les.cnet.com/apps/98/o�ine.html.

[9] Xenu's link sleuth.
http://home.snafu.de/tilman/xenulink.html.

[10] Robot exclusion standard revisited.
http://www.kollar.com/robots.html, 1996.

[11] M. Balabanovic and Y. Shoham. Learning information
retrieval agents: Experiments with automated web

browsing. In On-line Working Notes of the AAAI

Spring Symposium Series on Information Gathering

from Distributed, Heterogeneous Environments, 1995.

[12] Robert Cooley, Bamshad Mobasher, and Jaideep

Srivastava. Data preparation for mining world wide
web browsing patterns. Knowledge and Information

Systems, 1(1), 1999.

[13] D. Eichmann. Ethical web agents. Computer Networks

and ISDN Systems, 28(1), 1995.

[14] J. Kephart and A. Greenwald. Shopbot economics. In

Agents, 1999.

[15] M. Koster. Guidelines for robot writers.
http://info.webcrawler.com/mak/projects/robots/guidelines.html,
1994.

[16] M. Koster. A standard for robot exclusion.
http://info.webcrawler.com/mak/projects/robots/norobots.html,
1994.

[17] M. Koster. Robots in the web: threat or treat.
ConneXions, 9(4), 1995.

[18] B. Lavoie. Web characterization metrics.
http://www.oclc.org/oclc/research/projects/webstats/

currmetrics.htm, 1999.

[19] H. Lieberman. Letizia: An agent that assists web
browsing. In Proc. of the 1995 International Joint

Conference on Arti�cial Intelligence, Montreal,

Canada, 1995.

[20] James Pitkow. In search of reliable usage data on the
www. In Sixth International World Wide Web

Conference, pages 451{463, Santa Clara, CA, 1997.

[21] J.R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[22] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, 1979.

[23] Yiming Yang. An evaluation of statistical approaches
to text categorization. Information Retrieval, 1(1{2),

1999.


