Mining E-commerce Data: Challenges and Stories from the Trenches

Ronny Kohavi
Director, Data Mining
Blue Martini Software
ronny@bluemartini.com
http://robotics.Stanford.EDU/~ronnyk/

DIMACS/IBM Workshop on Data Mining in the Internet Age

Overview

➲ E-commerce: killer domain for data mining
➲ Blue Martini Software value proposition
➲ Architectural decisions
➲ Stories and Challenges
➲ Summary

E-commerce: the Killer Domain for Data Mining

➲ E-commerce provides all the right ingredients for successful data mining, including:
 ➻ Large amounts of data (many records)
 ➻ Rich data with many attributes (wide)
 ➻ Clean data
 ➻ Actionable domain
 ➻ Measurable return-on-investment

Why Data Mining and E-Commerce are a match made in heaven (or in the data warehouse):

➲ Clickstreams at sites provide data that dwarfs large warehouses built in previous years
➲ Designed correctly, sites can assign many attributes to content on web pages, customers, products, purchases.
➲ Data is collected electronically at the webstore and it is clean (no painful legacy transformations)
➲ Insight derived from data mining analysis is easily turned into action, closing the loop with the transactional systems
➲ ROI is easy to measure at a webstore

Data Mining becomes Important

➲ Prior to 2000, horizontal data mining companies were bought for about $10M
 ➻ Compression Sciences was bought by Genta ($12M)
 ➻ HyperParallel was bought by Yahoo ($2.3M)
 ➻ Clementine was bought by SPSS ($75M)
 ➻ Thinking Machines was bought by Oracle (~ $25M)
➲ Around 2000, a phase shift occurred in valuations, which were $100M-$500M
 ➻ NetPerceptions bought KD1 for 2.24 million shares worth $116M (now worth about $43 million)
 ➻ Epiphany bought RightPoint (previously DataMind) for 3.6 million shares worth $400M (now worth about $260M)
 ➻ Vignette bought DataSage for 3.16 million shares worth $577 (now worth $140M after 3 to 1 split)
 ➻ NeoVista bought by Accrue for 2.4 million shares worth $140M (now worth $70M)

Blue Martini Software

Blue Martini’s solution is built on the vision of a complete E-commerce solution with integrated data mining, called Micro Marketing

300+ employees
35+ customers including:
Levi’s
Harley Davidson
Gymboree
The Men’s Warehouse
gloss.com
gazelle.com
craft.com/
Value Proposition

- A company’s brand is a strategic asset
- Avoid diluting it with a mediocre web store
- Leverage the internet to build your brand and reinforce the same message from multiple touchpoints (web, call centers, wireless, bricks and mortar)
- Support personalized recommendations/cross-sells
 - Increase conversion rates (browse to buy)
 - Increase basket size (through cross sells, better navigation)
 - Increase customer retention and loyalty

The Webstore is an Experimental Laboratory

- Opening webstores will not dramatically impact revenues for established retailers, but lessons learned will affect other channels
- The webstore provides an experimental laboratory and a trend-discovery system
 - Which cross-sells work?
 - Which ads are effective?
 - What are people looking for (failed searches for pokédex)

World-Mart 1999 revenues: $162.8 B

Perils of Components

Blue Martini charges close to $1M for the software because we take the pain out of integration of multiple components

Average E-Commerce site costs $5.9M to assemble and $4.3M annually to maintain.

International Data Corporation, January 1999

Architectural Decisions

- Web pages are dynamic (jsp/html) making API calls everywhere
 - Everything is in the database, the web pages access it.
 - Every object can have attributes (e.g., customers, products, assortments, orders, content pages) which are accessible in the webstore and later in mining
 - Webstore’s app server writes clickstreams
 - Knows about sessions - avoid sessionizing problems
 - Knows what was displayed - products, assortments
 - Can save additional information not in weblogs
 - Central DB repository - avoid need to join weblogs
 - Can investigate orders and clickstreams together

Architectural Decisions (II)

- Provide automatic ETL (Extract/Transform/Load) to build Data Warehouse, cutting the 70-90% data preparation step in KDD dramatically
- Provide access to syndicated data (Acxiom)
 - About 60 customer attributes
- Personalization rules engine runs at the webstore, providing cross-sells, recommended images, assortments, etc.
- ShipToStore closes the loop, allowing model scores to be shipped back to store for personalization
Story I - Mysterious Birth Years

- The KDD-98 data contained interesting anomalies for date of birth:
 - Spikes on years ending in zero
 - No individuals were born prior to 1910
 - There were twice as many individuals who were born on even years as on odd years

Why?

Challenge I - Dates

- Dates/times are very important and appear very frequently in e-commerce, yet most data mining algorithms do not support them
- Common themes:
 - Provide well-used measurements in industry, such as Recency and Frequency (of RFM).
 - Provide strong support for date operations (days between dates, day-of-week, etc) and let the users define date operations

Is there something better we can do?

Story II - Gender Mystery

- A site has gender on the registration form
- Acxiom, a syndicated data provider, also provides gender
 - There was a very large discrepancy between the percentage of males according to registration and by Acxiom

Why?

Challenge II - Unknown vs. N/A

- A pregnant attribute on a customer can have four values: yes, no (response), unknown (we didn’t ask), and not applicable (e.g., for males or young children).
- E-commerce products have attributes that depend on their family:
 - Pants have length, inseam, fabric material
 - Microwaves have voltage, cubic inches, weight
- For data mining, we flatten all attributes and most values are N/A (e.g., voltage for pants)
- How should we handle N/A versus unknown?

Challenge II’ - Product Hierarchies

- Products are typically arranged in a hierarchy.
 - Most algorithms expect same-size records
- Common themes:
 - Flatten product attributes (lots of N/As).
 - Allow users to choose parts of hierarchy for pivots based on product id (SKU).
 - Add Boolean columns from hierarchy

Story III - Low Conversion Rates

- Conversion rate is the ratio of buyers to browsers.
- High conversion rates are obviously desired
- Reports we generate can show highest and lowest conversion rates
- Why do some products have really low conversion rates?
Challenge III - Changing Sites

➲ One of the hardest problems is dealing with changing sites - all our I.I.D assumptions do not hold!
➲ It is very easy to change personalization rules (cross-sells/up-sells), images shown, messages, etc
➲ Sites change their registration forms
➲ New products are introduced, old ones are deleted (especially with perishable products such as wines) or change attributes
➲ How do we deal with slowly changing dimensions? (or quickly changing?)

Challenge IV - Scalability

➲ Yahoo had 465 million page views per day in December of 1999 (*)
➲ That’s about 2-4GB of clickstream an hour, depending on the amount of clickstream information stored
➲ What can we do with such volumes?
➲ Are there useful aggregations of such data that can be done on the fly?

More Challenges

➲ How can we prune the number of associations generated?
➲ What is the loss metric for displaying a cross-sell?
 ➡ If you display the product most-likely to be purchased, would you display bread on all pages until bread was purchased?
 ➡ If you display product with highest lift, would you still display it if the probability was 0.01% (up from 0.00001%)?
➲ Are there algorithms that could take a star-schema and mine it without flattening it (e.g., Query flocks)?
➲ Bots/Crawlers tend to skew statistics dramatically.
➲ How can marketing campaigns be taken into account?

Business Challenges

➲ Most companies do not have the expertise to build data mining transformations. Can we automate them?
The more vertical, the easier this gets.
➲ How can we generate comprehensible models? Actionable models?

Summary

➲ E-commerce is the killer-domain for data mining
➲ Automatic generation of data warehouse and closing the loop back to store is key to making data mining usable and actionable
➲ Clickstreams need to be collected at the app-server level where meta information exists
➲ Challenges: Date handling, unknown vs. N/A, hierarchy support, constantly changing sites, scalability, and more