Outline

♦ Introduction to voting methods.

♦ Experimental design and the Bias–Variance decomposition.

♦ Bagging: pruning, using prob estimates, wagging, backfitting.

♦ Open questions.
Introduction to Voting Methods

Main idea: build multiple models and combine them.

Variants differ in:
- How models are built (e.g., change data or change algorithm).
- How predictions are combined (e.g., uniform vs. non-uniform weighting, multiple levels—stacking).
Key Ingredients

1. Low error rate for models.

2. Diversity, i.e., non-correlated (or anti-correlated) models.

3. Many models.

♦ It is easy to satisfy #2 and #3 by sacrificing #1: build bad models.

♦ It is easy to satisfy #1 and #3 by sacrificing #2: build small tweaks to a good model.
Examples of Voting Algorithms

♦ Bagging:
 – Use bootstrap samples (sample with replacement) to create different datasets.
 – Combiner uses uniform weighting.

♦ Wagging: similar to bagging, but
 – Reweigh instances instead of sample.

♦ Randomized splits in trees:
 – Modify split selection: randomly select (e.g., uniformly) from k best splits.

♦ Option trees:
 – Select top k splits and combine them (at multiple levels of the tree).
Examples of Voting Algorithms (II)

♦ **Arc–x4:**
 - Increase weight of misclassified instances

♦ **Boosting:**
 - Increase weight of misclassified instances
 - Combine classifiers, giving low error classifiers higher weight.

Disadvantage of above Adapting resample and combine algorithms: hard to parallelize. Each classifier is created based on the previous ones.
(Dis)advantages of Voting Methods

Advantages
♦ Lower error rate.
♦ Multiple models can give more insight (probably only for uniform combinations).

Disadvantages:
♦ Loss of comprehensibility:
 – Less structure (except for option trees).
 – Huge models.
♦ Slower induction.
 May exhaust hardware memory.
♦ Slower classification time.
Introduction to the Bias–Variance Decomposition

The B+V decomposition is a powerful tool for analyzing induction algorithms.

It holds for finite samples (not in asymptopia).

Given: Target concept, Training set size, Induction algorithm, it provides a decomposition of the error into
 – Intrinsic noise (Bayes Optimal)
 – Squared bias: how well do hypotheses match the target on average.
 – Variance: how much hypotheses vary for different training sets.
The Decomposition

\[E(C) = \sum_x P(x) \left(\text{bias}_x^2 + \text{variance}_x + \sigma_x^2 \right) \]

(1)

where

\[\text{bias}_x^2 \equiv \frac{1}{2} \sum_{y \in Y} \left[P(Y_F = y \mid x) - P(Y_H = y \mid x) \right]^2 \]

(2)

\[\text{variance}_x \equiv \frac{1}{2} \left(1 - \sum_{y \in Y} P(Y_H = y \mid x)^2 \right) \]

(3)

\[\sigma_x^2 \equiv \frac{1}{2} \left(1 - \sum_{y \in Y} P(Y_F = y \mid x)^2 \right). \]

(4)

\(f \) and \(m \) in the conditioning events are implicit.
Example

Assume that the Boolean label is independent of the attributes (random concept). The label is 1 with probability \((1-p)\) for \(p<0.5\)

Constant classifier: predict 1.
- \(\text{Bias}^2: p^2\) (the average guess is off by \(p\)).
- \(\text{Variance}: 0\) (rock stable guess).

Single rule: predict 1 if \(A_i=1\) (\(A_i\) is an attribute that leads to a pure split by chance)
- \(\text{Bias}^2: 0\) (on average you predict well).
- \(\text{Var}: p(1-p)\) (unstable predictions because \(A_i\) is a "random" split).
Tree Pruning / Overfitting

The previous example shows why pruning is useful.

The node is not pure yet we stop and predict majority

Predict 1

Predict 0

Predict 1

Test

p

1−p

Bias^2 = p^2
Var = 0
Error = Bias + Var = p^2

Bias^2 = 0
Var = p(1−p)
Error = Bias + Var = p(1−p)

p^2 < p(1−p) if p< 0.5, which we assumed.
In this case, it is better not to split. The variance hurts us because we built a structure that is too complex.
Curse of Dimensionality

20 dimensional unit hyper-cube.
100,000 instances uniformly distributed.
What is the expected distance of an instance to its closest neighbor?

0.1 0.5 0.7 0.9 0.99 0.999 1.5 20.0
Experimental Design

Details of large experiment by Bauer and Kohavi (to appear in Machine Learning journal).

Desiderata for data sets and sampling sizes:
- Small confidence interval on estimated error. We chose files with >1000 instances.
- There should be room for improvement. Sample sizes chosen based on learning curves so that we know error is not optimal.
Induction Algorithms

- **MC4**: similar to C4.5, implemented in MLC++
 - No pruning: deactivate pruning.
 - Probabilistic estimates: leaves predict distribution (frequency counts).
 - (Actual paper has two versions of decision stumps.)

- **NB**: Naive–Bayes with discretized data.
Bagging

Input: training set S, Inducer I, integer T (number of bootstrap samples).

1. for $i = 1$ to T {
2. $S' = \text{bootstrap sample from } S$ (i.i.d. sample with replacement).
3. $C_i = I(S')$
4. }
5. $C^*(x) = \arg\max_{y \in Y} \sum_{i: C_i(x) = y} 1$ (the most often predicted label y)

Output: classifier C^*.

In the experiments, T was set to 25.
Bagging was *uniformly* better on all 14 datasets!

Error reduction due to variance reduction. Average relative reduction in err was 29%.

Trees were larger. Hypothesis: replicated instances seem like strong patterns and pruning is incorrect.
If tree pruning is disabled, then
- Bagged trees are smaller (training set size is effectively smaller—63.2% unique instances).
- Average bias was reduced by 14% (relative).
- Average variance grew by 11% (relative).

"No pruning" did not make an overall difference, but we suspect that with more replicates, it is better not to prune.
Bagging Variants

♦ Wagging *(Weight Aggregation)* perturbs the training set weights instead of sampling.

Results were similar to bagging.

♦ Backfitting takes the unused data from each bagging replicate (~36.8% unique instances) and updates the counts at the leaves.

Average relative error decreased 3%, which was all due to variance reduction. Variances for *all* files improved!
Boosting

Input: training set S of size m, Inducer I, integer T (number of trials).

1. $S' = S$ with instance weights assigned to be 1.
2. For $i = 1$ to T {
 3. $C_i = I(S')$
 4. $\epsilon_i = \frac{1}{m} \sum_{x_j \in S': C_i(x_j) \neq y_j} \text{weight}(x_j)$ (weighted error on training set).
 5. If $\epsilon_i > 1/2$, set S' to a bootstrap sample from S with weight 1 for every instance and goto step 3 (this step is limited to 25 times after which we exit the loop).
 6. $\beta_i = \epsilon_i/(1 - \epsilon_i)$
 7. For-each x_j, divide weight(x_j) by $2\epsilon_i$ if $C_i(x_j) \neq y_j$ and $2(1 - \epsilon_i)$ otherwise
 8. }
9. $C^*(x) = \arg\max_{y \in Y} \sum_{i: C_i(x) = y} \log \frac{1}{\beta_i}$

Output: classifier C^*.
Observations on Boosting

♦ Incorrect instances are weighted by a factor inversely proportional to the training set error \((1/2e)\).

A training set error of 0.1% will cause weights to grow by a factor of 500.

Without careful attention, numerical precision problems occur.

♦ The total weight of the misclassified instances is half the original training set weight. The correctly classified instances get the other half of the total weight.
Running Example – Shuttle (I)

Test–set error: 0.38%

Five misclassified examples on training set of size 5,000 (0.1%) causes their weight to be 500.
One misclassified example (0.01%) that was not previously misclassified is reweighted from 0.5 to 2500.
Running Example – Shuttle (III)

Test-set error: 0.21%

Five mistakes again, all on instances previously correctly classified.
Running Example – Shuttle (IV)

Test-set error: 0.45%

12 mistakes are made.
Running Example – Shuttle (V)

If original AdaBoost is used, beta is 0.0000125, which causes weights to go below 10^{-6} prior to normalization. Underflow problems start...

One misclassified example with weight 0.063. Training set error is 0.0012%.
Running Example – Shuttle (VI)

Classifier makes no mistakes. Note that this is a single classifier, which is significantly better than the original one!

Test–set error: 0.08%
AdaBoost Observations

- AdaBoost slightly outperformed Bagging.
- Unlike Bagging, boosting did not uniformly reduce the error. Hypothyroid, sick– euthyroid, adult, and LED–24 had higher errors.
- Average tree size was larger for most files. It was especially larger for files on which performance degraded.
- Problems with robustness to noise.
Boosting reduced both bias and variance: Average bias reduced 32% (relative). Average variance reduced 16% (relative).
Open Questions

- Can AdaBoost be made more robust to noise?
- Arc–X4 did not work with reweighting. Why?
- Can we learn a single model that is better (as happened with shuttle)?
- Bagging and Boosting build huge structures. What happened to Occam’s razor? Is there a compact representation?
- Bagging worked better without pruning. AdaBoost did not. Why?
- Boosting is sequential. Can parallelism be used?
Summary

- AdaBoost reduced the error by 27% with MC4 and 24% with Naive–Bayes (relative). Note however that we knew improvement was possible on our datasets.

- Bagging reduces variance. AdaBoost reduces both bias and variance.

- Bagging benefits from no pruning, probabilistic variants, and backfitting.

- Be careful with numerical instabilities when implementing AdaBoost.
CPU #55 on Flurry

- We used about 4,000 CPU hours. Many runs were done on Flurry, a 128 CPU Origin 2000 with 30GB of RAM.

- We spent a lot of time trying to track an assertion failure, where sometimes normalizing an array did not add up to 1.0.

After many experiments, we found that CPU#55 on Flurry was making arithmetic errors sometimes...

- Today the OS runs a program called paranoia on large machines to track such problems.