
Shape-based Illustration Indexing and Retrieval

Some First Steps

Scott D. Cohen Leonidas J. Guibas

Computer Science Department

Stanford University

Stanford, CA 94305

Abstract

We propose a general set of ideas for indexing technical illustrations based on the
shapes present in them, so that they can be e�ciently retrieved later using as the key other
`similar-looking' illustrations (either pre-existing, or interactively drawn by the user). A
very simple prototype system demonstrating these ideas was implemented and is described
in this note. The general scheme is to select a class of basic shapes and record in the
index where (more precisely, via what homothetic map) these basic shapes match well
into the illustration. The current implementation indexes using line segments as the only
basic shape. A Hausdor� matcher is then used to compute the best alignment of the
basic shape matches between a query and an illustration, thus giving us a measure of
the distance between the two. Currently every illustration in the data-base is matched
individually against the query, though sublinear algorithms are under investigation. A
library of approximately two-hundred illustrations from a geometry textbook was indexed
using this scheme and then used for retrieval experiments. An interactive interface was
provided for specifying the data-base to be searched and the query illustration, for setting
various parameters regarding the match, and for displaying the best matches found in the
data-base.

1 Background

As the amount of pictorial information available digitally increases, it becomes ever more
important to develop techniques for allowing users to index and browse through such data.
The pictorial information can be images or video sequences acquired through cameras, as
well as synthetic illustrations, diagrams, charts, or graphics created with the aid of the
computer. Pictorial data in all these forms can appear in documents and it is clearly
important to develop methods for navigating, searching, and browsing through images
and illustrations as e�ectively as one can now do with text.

There are numerous modalities of pictorial data that can help in this task of indexing
and retrieval. Such are, for example, color, shape, and texture. Depending on the type
of data, the signi�cance of these modalities can vary, as well as the ease of extracting
the parameters of the various indices we may select. In general this task will be easier
for synthetic images where we have a model of the objects being represented and of the
imaging process that was used. But even for synthetic images the selection of suitable
indices can be a challenging problem, as most of the time we are trying to search for and
retrieve pictorial data that is `visually similar' to other pictorial data we may have. Our
measure of similarity may have to allow for changes in object pose and illumination, in
location and scale, still work despite partial occlusions and missing data, etc.

In the work reported here we have chosen to focus on the use of shape information

for the tasks of indexing and retrieval. Clearly shape is a universally useful modality

1



for describing, and therefore indexing, pictorial data. We have restricted out attention
to the domain of computer-generated technical illustrations, where shape information is
both precisely available and the main way in which pictorial meaning is conveyed. We
are con�dent that after we have techniques that can operate successfully in this domain,
we will be able to port them to other kinds of pictorial data as well by applying shape
extraction techniques from computer vision.

2 Shape Indexing for Illustrations

There is a vast literature in computer vision on measures of shape similarity and algorithms
for computing the distance between shapes under various transformation groups. We will
not attempt to survey this literature here, in part because our requirements are somewhat
di�erent. Our goal is, given an illustration P , to compute a compact index �(P ) which
records the shapes present in P and their location. Given a collection of illustrations
P1; P2; : : : ; Pn, we wish to compute a data-structure D for recording �(P1); �(P2); : : : ; �(Pn)
so that retrieval queries can be answered e�ciently. At retrieval time we assume that we
will be given another illustration Q, either preexisting or interactively drawn by the user.
In our scheme we do retrieval by computing �(Q) and then searching D for the illustrations
Pi whose index �(Pi) is `similar' to �(Q).

An illustration P for us is a collection on instanced graphics primitives (lines or poly-
lines, circular arcs, B�ezier cubic or B-spline arcs, marks, etc.), as is almost universally the
case with the illustrators in common use today (e.g., Adobe Illustrator, Aldus Freehand,
X�g, etc.). Usually these graphics primitives are grouped together into `objects' which
can then be manipulated by the illustrator as a single graphical unit. We assume that we
have access to all this information for computing our index �(P ), though at the present
time we do not make any use of the grouping or hierarchical information present. We also
assume that the query illustration Q is given to us in the same format as the data-base
illustrations.

Our key notion for indexing an illustration P is to say `which shape appears where'
in P . We start with a a collection of basic shapes S1; S2; : : : ; Sk { these may be built-in,
or user-de�nable. Our index �(P ) records the signi�cant matches of shapes Si in P . In
matching we allow each shape Si to translate, rotate, and scale, though more general a�ne
or projective mappings may also make sense in certain contexts. Because we regard basic
shapes as simple, in our current design we match each basic shape Si separately against
each high-level graphics primitive present in P (e.g, each polyline or each B-spline). This
might miss, for example, a match of a `letter S'-like basic shape against a `letter-S' �gure
formed by the juxtaposition of two separately instanced circular arcs. We have chosen
to ignore such matches both because they would make our matching algorithms much
more complex, but also because the high-level graphics primitives present in illustrators
today makes it unlikely that such `accidental' shapes in an illustration carry a lot of the
user-intended meaning.

We will say that a basic shape Si matches well into the graphic primitive element Gj

of P if Si can be translated, rotated, and scaled (above a certain minimum size �) so
that a large fraction � of it �ts within Gj `fattened' by a disk of radius �, for some small
� > 0 { this corresponds to a good one-directional Hausdor� match [1]. We are currently
investigating algorithms for �nding such good matches e�ciently for di�erent basic shapes
Si (line segments, circular arcs, corners, etc.).

Note that there still several unresolved issues:

1. The above discussion applies primarily to `line-like' graphics primitives and basic
shapes. Illustrators also provide �lled areas, however, which have to be treated
somewhat di�erently.

2. There is the issue of whether the shape library S1; S2; : : : ; Sk tries to capture global
(e.g., a large circular arc) or local (.e.g, a small cusp) features of P . Clearly matching

2



large features of P can be done more reliably. However, small features may be more
useful in the index, as their presence can be detected even though the overall shape
they come from is partially occluded, etc. A related issue is how to compare a match
of basic shape Si of large scale but possibly worse quality (larger �) to one of small
scale but better quality.

3. In general there will be many good matches of a given basic shape Si into an illus-
tration P and our goal is to choose a small representative subset. For example, near
any very good match there will be other (less) good matches that are dominated
by it. Clearly we do not want to record the latter in the index. There can also be
situations, as when matching a circular arc onto a circle, where there is a continuum
of equally good matches.

To summarize the key point of this section: for every illustration P we compute an
index �(P ). This index is a list of the basic shapes | a subsequence of fS1; S2; : : : ; Skg
| which match well into P . For each such matching basic shape Si we record a list of

transformations T
(i)
1 ; T

(i)
2 ; : : : ; T

(i)
it

that correspond to the signi�cant matches of Si into P .
Each transformation is encoded by four parameters: two for a translation and one each
for rotation and scaling. We typically expect that it will be a very small integer.

3 Shape Retrieval

Although a key goal of our work is to allow comparison of a query illustration Q against
a data-base of illustrations P1; P2; : : : ; Pn, without explicitly comparing �(Q) to each of
�(P1); �(P2); : : : ; �(Pn) separately, we have not achieved this yet. We are optimistic that we
will be able to attain sublinear query-time algorithms by using computational geometric
techniques on the set of indices | essentially by clustering illustrations whose indices have
a small `distance' from each other. But even the problem of comparing �(Q) to �(P ) for a
single P is su�ciently interesting that it has taken the bulk of our attention so far.

Recall that when the user speci�es the query illustration Q, �(Q) is computed by the
same algorithm as �(P ). Nevertheless, we cannot expect in general that �(Q) and �(P )
will be identical. For one, the user may draw in Q only certain key or dominant shapes
he/she knows to be present in P , so �(Q) will fequently contain less information than
�(P ). In addition, we must allow for certain variability in the location, orientation, and
scale of shapes between Q and P , and this will a�ect the way the corresponding matching
transformations T for the same basic shape Si are recorded in �(Q) and �(P ). If TQ and
TP denote two corresponding match transformation in �(Q) and �(P ), then TQ and TP
may themselves di�er by a certain translation, rotation, and scaling, re
ecting the above
mentioned variability.

It is part of our design to provide an interface in which the user can indicate acceptable
bounds on this translation, rotation, and scale variability between Q and P . When we
start exploiting the hierarchical structure of illustrations, it will also be our goal to allow
the user to specify di�erent variability bounds at di�erent levels of the hierarchy so that,
for example, matches generated from graphic elements of the same object must all be
variable by nearly the same amount, while only looser correspondences are required across
objects. As an example, the illustration P may contain two objects, say, a house and a
car. Each of those may consist of several graphic elements which are reproduced fairly
accurately in the query for each object, but the relative position of the house and the car
might be o� by a fair amount.

To match �(Q) and �(P ) we regard each transformation T in each of them as a `colored'
point in R4. The four dimensions correspond to x and y (the translation amount), � (the
rotation), and log s (logarithm of the scale). The `color' is just the index i of the basic
shape Si for which T records a good match. The reason for recording the logarithm of
the scale is that in this way a change of scale corresponds to a translation along the
fourth coordinate, in a way exactly analogous to the other three. We can then de�ne the

3



`distance' from �(Q) to �(P ) in R4 to be the colored one-way Hausdor� distance under
translation between the two sets, where the translation may be restricted to be inside the
parameter ranges speci�ed by the user (by `colored distance' we mean that in the match
only points of the same color can be matched). Note that in order to de�ne the magnitude
of a translation in R4 we will need to select some coe�cients for the relative importance
of translation, rotation, and scale variability.

4 The Implementation

We have implemented the simplest possible version of such an indexing scheme for illus-
trations { in fact the bulk of our programming e�ort was expended in developing Tcl/Tk
widgets for the required user interface, and for adapting the illustrator we chose to use
to our needs. We chose Ipe (Interactive Picture Environment), an illustrator developed
by Otfried Schwarzkopf and others at the Informatics Department of the University of
Utrecht in the Netherlands [4]. The reasons for selecting Ipe were that (1) the entire code
for Ipe is publicly available, (2) Ipe has a nice extension mechanism built in, (3) the format
in which Ipe �les are stored is very close to Postscript, and in fact Ipe can read arbitrary
Postscript �les (thus in principle we have a path to try our techniques on arbitrary collec-
tions of Postscript illustrations), and (4) we had available a corpus of approximately two
hundred illustrations from a new textbook in computational geometry authored by Mark
de Berg, Mark Overmars, Otfried Schwarzkopf, and Marc van Kreveld in Utrecht.

Figure 1 below shows some typical illustrations from this textbook.

x

y
z

s

C(xyz)

t
C(xyt)

e

pi

vj

popped

pushed

popped and
pushed

e

p

q

Figure 1: Example illustrations from the textbook

As these examples make clear, polygonal lines predominate in this corpus. We chose to
do a very simple implementation, indexing illustrations using only a single basic shape, a
line segment. Even the line segment matching algorithmwe have used against the polyline
graphics primitive in the Ipe �les is rather unsophisticated, but due to lack of space we
omit details. We did not have at our disposal a four-dimensional Hausdor� matcher, but
we did have a two-dimensional matcher developed by William Rucklidge of PARC [2]. So
when we match indices, we give the user the option of using scale and orientation only, or
translation only.

4



An example of a very simple query is shown in Figure 2. Figure 3 shows the interactive
widgets for the match parameter settings while Figure 4 shows the window where the best
matching illustrations are returned.

Figure 2: An example query drawn using Ipe

Figure 3: Example of the graphical display for setting match parameters

Note that the user can set the `threshold' for the match (the � of the previous discussion)
and match `fraction' (the �). Not surprisingly, matching with scale and orientation proved
to be much more useful than with translation | we can think of our index as recording
the size and orientation of the su�ciently long line segments we �nd in the illustrations.
We use these 2-d distance estimates between the query and each of the data base images
to select and order the set of candidate matches for display to the user.

5 Conclusions

Though the present software is only a rudimentary demonstration of the capabilities which
a shape-based indexing system might provide, we feel that there is potential for some useful
technology to be developed along the lines of this approach and we intend to pursue it
further.
Acknowledgements: The original framework for the ideas presented below was developed
at Stanford University under an ARPA-funded project titled `Image Browsing and Re-
trieval' with Professors Leonidas Guibas and Carlo Tomasi as PIs. The implementation
described above was carried out during the summer of 1995 at PARC by Scott Cohen, a
graduate student working under the supervision of Leonidas Guibas. The authors grate-

5



Figure 4: Example of the graphical display for returned matches

fully acknowledge the support provided by ARPA grant DAAH01-95-C-R009 and by Xerox
PARC.

References

[1] L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, and
D. Kravets. Geometric Pattern Matching under Euclidean Motion. In Proceedings of

the Fifth Canadian Conference on Computational Geometry, pages 151{156, 1993.

[2] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing Im-
ages Using the Hausdor� Distance. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 15(9):850{863, September 1993. Code available from
ftp://cs.cornell.edu/pub/wjr/Hausdor�.tar.gz.

[3] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and

Computational Geometry. Springer-Verlag, 1984.

[4] O. Schwarzkopf. A Manual of Ipe. The Ipe package is available from
ftp://ftp.cs.ruu.nl/pub/X11/Ipe/.

6


