
September 2007 85

W E B T E C H N O L O G I E S

W hile at Amazon.com
from 1997 to 2002, Greg
Linden created a proto-
type system that made
personalized recommen-

dations to customers when they placed
items in their shopping cart (http://
glinden.blogspot.com/2006/04/early-
amazon-shopping-cart.html). The pro-
totype looked promising, but “a market-
ing senior vice-president was dead set
against it,” claiming it would distract
people from checking out, and Linden
was forbidden to work on it further.

Nonetheless, Linden ran an online
controlled experiment, and the “fea-
ture won by such a wide margin that
not having it live was costing Amazon
a noticeable chunk of change. With
new urgency, shopping cart recom-
mendations launched.” Since then,
multiple commercial Web sites have
imitated Amazon.com’s feature.

The Web provides an unprecedented
opportunity to evaluate proposed
changes or new features quickly using
controlled experiments. The simplest
experiments randomly assign live users
to one of two variants: the control,
which is commonly the existing ver-
sion, and the treatment, which is usu-
ally a new version being evaluated.

Experimenters first collect metrics
of interest, from runtime performance
to implicit and explicit user behaviors

and survey data. They then conduct
statistical tests on this data to deter-
mine whether a significant difference
exists between the two variants,
which in turn leads them to retain or
reject the null hypothesis that there’s
no difference between the versions.

Online experiments offer substantial
benefits, but many pitfalls can trip
up practitioners. Our work at Micro-
soft and other companies including
Amazon.com, Blue Martini Software,
Capital One, and Xerox has led to
some important lessons in properly
conducting such experiments. A prac-
tical guide is available at http://
exp-platform.com/hippo.aspx.

OVERALL EVALUATION
CRITERION

A common pitfall in Web experi-
ments is the use of multiple metrics.
For an organization that seeks to run
many experiments in a given domain,
it’s strongly desirable to select a single
quantitative measure, or overall eval-
uation criterion (OEC), to help deter-
mine whether a particular treatment
is successful or not.

Consider an experiment with 25 dif-
ferent metrics in which three organi-
zational teams have a stake in the
outcome. How do the teams decide
whether to launch the treatment if
some of the metrics are positive and

some are negative? Worse, if the met-
rics are favorable for one team and
negative for another, deciding what to
do could be contentious.

Also, with 25 metrics, even if the
experiment has no effect, we should
expect one or more metrics to appear
statistically significantly different
when using the common 95 percent
confidence intervals. Having a single
metric for decision making simplifies
the process, clarifies the interpreta-
tions, and aligns the organization
behind a clear objective.

The OEC can be a simple metric
that summarizes important business
goals or a weighted combination of
metrics, as is often used in credit
scores. It should reflect long-term
objectives such as higher revenue,
more users, or greater user engage-
ment. In many cases, the OEC is an
estimate of users’ lifetime value.

Factors that might positively impact
the OEC include higher visit frequency,
longer sessions, and disclosure of per-
sonal information such as zip codes
and hobbies that can be used to
improve the user experience. For retail
sites, adding to a cart or wish list
increases the probability of a future
purchase, even if the transaction didn’t
occur in the current session. Users who
have a large social network, sometimes
called “connectors” or “sneezers,” can
have a much larger influence and thus
a higher value in the OEC.

RANDOMIZATION
Good experimental design calls for

blocking or randomizing over nui-
sance factors that impact the OEC but
aren’t of interest, such as the time of
day, the day of the week, and the server
that handles the request. Because time
is a critical factor, running the control
and treatment concurrently is essential
for online experiments and far supe-
rior to interrupted time series.

Server fleets
Using different server fleets for the

control and treatment can skew exper-
imental results. Suppose, for example,
server fleet F1 runs the control, and a
newer server fleet F2, which handles

Online Experiments:
Lessons Learned
Ron Kohavi and Roger Longbotham
Microsoft

Web experiments

generate insights and

promote innovation.

86 Computer

W E B T E C H N O L O G I E S

requests faster, runs the new treat-
ment. This discrepancy introduces an
unintentional bias. One way to iden-
tify such biases and other problems
with user assignment is to run an A/A,
or null, test in which the control and
treatment are the same.

Representative environment
The experimental environment

should represent the eventual envi-
ronment as closely as possible. For
example, if a Web site runs an exper-
iment for three weekdays but has a
different set of users during weekends,
the results might not generalize. The
experiment should run for multiple
weeks to determine whether signifi-
cant differences exist between week-
days and weekends. Partial days
shouldn’t be included for the same
reason: Morning users might react dif-
ferently to the treatment than after-
noon, evening, or overnight users.
Likewise, running an experiment dur-
ing the Christmas season might not
generalize to the rest of the year.

Hashing function
Randomization is too important to be

left to chance. A common way to main-
tain user experience consistency is to
employ a hashing function on a user
ID stored in a cookie. Picking a good
hashing function is critical—some aren’t
random enough. Cryptographic hashes
such as MD5 are generally the best.

Failure to randomize properly can
confound results when running mul-
tiple tests simultaneously. For exam-
ple, computing separate hashes of
both the experiment name and user
ID, and then executing the final XOR
at assignment time, produces severe
correlations between experiments.

Assuming two experiments with
two variants each running at 50/50, if
the most significant bit of the hashes
of the experiment names matched,
users would always get the same
assignment across both experiments;
if they didn’t match, users would
get exactly the opposite assignment.
Automated checks can ensure that user
assignment is random and matches the
design proportions.

Opt in/opt out
Letting users opt in or out of an

experiment invalidates the random-
ness. Opt in especially is usually a bad
idea. Clickthroughs for users that opt
in are significantly higher, but these
often don’t materialize when all users
switch to the new format. One reason
for this is that people who opt in are
likely to be heavy users whose click-
through rate is already higher.

A significant portion of traffic to
most Web sites consists of one-click
sessions—users who enter the site and
never click again. Some of these users
are nonhuman bots and crawlers, and
some are people who go to the site by
mistake. Whatever the reason, this
“bad” traffic never opts in, thus opt-
in treatments have a selection bias.

MINIMUM DURATION
An important but often overlooked

step in a controlled experiment is
planning for sufficient sample size,
that is, statistical power. For most
online experiments, this translates to
how long to run the experiment.

Power calculation
It’s not uncommon to run a test on

a small population—say, one percent
of users—and discover four weeks
later that the test must continue for 10
more weeks to detect the expected size
change. Power calculations help plan
how long an experiment should run
and what percentage of the popula-
tion to expose.

To accomplish this, first determine
the sensitivity, or how large a change
in the OEC you want to be able to
detect. For example, if your OEC is
revenue per user and the mean is $7 on
your site, you might want a sensitivity
of 1 percent, or the ability to detect a

change to the mean of $0.07. Then,
estimate your OEC’s standard devia-
tion from historical data or an A/A test.

Assuming that you will do t-tests
against the control, apply the formula
n = (16 � �2)/�2, where n is the num-
ber of users in each variant (assumed
to be of equal size), �2 is your OEC’s
variance, and � is the sensitivity. The
coefficient of 16 provides 80 percent
power—the sample size provided by
the formula gives an 80 percent prob-
ability of rejecting the null hypothesis
that there’s no difference between the
treatment and control if the true mean
differs from the true control by �.
Replacing the 16 with 21 will increase
the power to 90 percent.

Once you have your sample size,
calculate how long you’ll need to run
the test based on normal traffic to the
Web site and preferably round up to
whole weeks.

Overlapping experiments
Novice experimenters overly con-

cerned about interactions tend to run
experiments sequentially or on small
disjointed subsets of users. However,
unless there’s a good reason to believe
that experiments interact strongly, sec-
ond-order effects are usually weaker
than main effects.

Determining whether significant
interactions occurred post hoc through,
say, pairwise testing, is relatively easy.
It’s more important to run experiments
on a large percentage of users to have
sufficient power to detect small effects.
Four independently randomized ex-
periments that are concurrent and
overlapping, each splitting users
equally into control and treatment
groups, are generally preferable to
splitting the population into a 20 per-
cent control group and four 20 percent
treatment groups.

Concurrent univariate
experiments

Commercial marketing literature
suggests that univariate experiments
that test one factor at a time are infe-
rior to multivariate experiments,
which vary many variables simulta-
neously according to a specialized

Failure to randomize
properly can confound
results when running

multiple tests
simultaneously.

design such as fractional factorials.
However, this is akin to substituting
polynomial for linear models: It
sounds good in theory, but the com-
plexity leads to linear models being
used more often in practice.

Running multiple univariate exper-
iments concurrently offers several
advantages: Univariate analysis is
much easier for end users to under-
stand, experiments can be turned on
and off when bugs are found without
shutting down other experiments, and
any interactions among the factors
can still be estimated as if using a full-
factorial design.

ANALYSIS
Because they contain new code for

the treatments, online experiments
have a higher failure rate and more
bugs. On the other hand, unlike off-
line experiments, analysis of online
experiments should begin as soon as
possible, that is, in near real time.

Bugs
Suppose you’re looking for a 1 per-

cent improvement in the treatment,
but it has some bugs and key metrics
are degrading by 10 percent. Because
the power formula is quadratic in the
effect size (�), you can detect a 10 per-
cent degradation 100 times faster than
a 1 percent change—thus, an experi-
ment planned to run for two weeks to
detect a 1 percent delta will have
enough power to detect a 10 percent
drop in less than 4 hours.

Consider defining bounding boxes
for some metrics. For example, if the
time to generate a page increases
above a preset threshold too often, it’s
likely there’s a bug, and you should
abort the experiment.

Ramping up the percentage assigned
to treatment over time is also recom-
mended. Start with a small percentage,
check that the metrics are within rea-
sonable bounds, and only then increase
the percentage assigned to the treat-
ment. Ramping up over a day or two
makes it possible to catch egregious
errors while the experiment is exposed
to a small population. More sophisti-
cated analysis must be done if you

combine time periods in which the
treatment percentage changes.

Primacy and newness effects
Users accustomed to a particular

feature might reject a new one, even
if it’s better. Conversely, a flashy new
widget might initially attract users. In
these cases, it’s important to run the
experiment longer and evaluate users’
behavior after multiple exposures to
the feature. Analysis of trends in the
OEC is also helpful.

Secondary metrics
Experimenters often ignore sec-

ondary metrics that impact the
user experience such as JavaScript
errors, customer-service calls, and
Web-page loading time. Experiments

at Amazon.com showed that every
100-ms increase in the page load time
decreased sales by 1 percent, while
similar work at Google revealed that
a 500-ms increase in the search-
results display time reduced revenue
by 20 percent.

Data cleansing
Bots and crawlers can account for

5 to 40 percent of a Web site’s page
views. Because many robots are from
search engines, you want them to
crawl the site. In most cases, robots
don’t send cookies, and they tend to
distribute across the control and
treatments, simply adding noise.
However, some do send cookies and
can significantly impact statistics and
the OEC.

Looking for outliers and investigat-
ing them is important to detect and
remove possible instances of fraud.
For example, sellers on online retail
sites might buy their own products to
make a top-sellers list. The orders,
usually of large quantities, are either

cancelled later, returned, or, in cases
where the seller is also the shipper, not
actually shipped.

Finally, in our experience, data from
Web sites is fragile, especially that
from the online logs. Always check for
metrics that get contaminated in some
way. Automatic data validation checks
are very helpful.

Falling for features
Two other common mistakes in on-

line experiments are launching a fea-
ture that is statistically significantly
different but has little business value
and launching a feature because it
doesn’t negatively impact users.

Consider, for example, a feature
that improves on some key metric and
the difference is statistically signifi-
cant, but the delta is 0.01 percent. The
business impact is negligible, but the
cost of maintaining the feature is high,
outweighing any benefit of the feature.

As another example, suppose the
CEO’s favorite new feature isn’t sig-
nificantly different but there’s a strong
push to deploy it because the project
development team worked hard. Not
only are there maintenance costs
involved, but the experiment could be
underpowered and might not detect
that the feature has a lower OEC.

O nline experiments, whether they
fail or succeed, generate insights
that can bring a quick return

on investment and promote innova-
tion. We reserve the most important
lesson for the end, and it’s called
Twyman’s law: Any statistic that
appears interesting is almost certainly
a mistake. Make sure to double-check
your data and computations. ■

Ron Kohavi is the general manager of
Microsoft’s Experimentation Platform,
and Roger Longbotham is the team’s
lead statistician. Contact them at http://
exp-platform.com.

September 2007 87

Analysis of online
experiments should begin
as soon as possible, that is,

in near real time.

Editor: Simon S.Y. Shim, Director of
Development, SAP Labs, Palo Alto, CA;
simon.shim@sap.com.

