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Abstract

Irrelevant features and weakly relevant features may

reduce the comprehensibility and accuracy of concepts

induced by supervised learning algorithms. We for-

mulate the search for a feature subset as an abstract

search problem with probabilistic estimates. Search-

ing a space using an evaluation function that is a

random variable requires trading o� accuracy of es-

timates for increased state exploration. We show how

recent feature subset selection algorithms in the ma-

chine learning literature �t into this search problem as

simple hill climbing approaches, and conduct a small

experiment using a best-�rst search technique.

1 Introduction

Practical algorithms in supervised machine learning

degrade in performance (prediction accuracy) when

faced with many features that are not necessary for

predicting the desired output. An important question

in the �eld of machine learning, statistics, and pat-

tern recognition, is how to select a good subset set of

features.

From a theoretical standpoint, the question is not

of much interest. A Bayes classi�er is monotonic,

i.e., adding features cannot decrease performance, and

hence restricting the induction algorithm to a sub-

set of features is never advised. Practical algorithms,

however, are not ideal, and the monotonicity assump-

tion rarely holds. Notable exceptions that do satisfy

monotonicity assumption are discriminant functions

and distance measures such as the Bhattacharyya dis-

tance and divergence. For these functions branch and

bound techniques can be used to prune the search space

(Narendra & Fukunaga 1977).

Common machine learning algorithms, including

top-down of decision tree algorithm, such as ID3 and

C4.5 (Quinlan 1993), and instance based algorithms,

such as IB3 (Aha, Kibler, & Albert 1991), are known

to su�er from irrelevant features. For example, run-

ning C4.5 without special 
ags on the Monk 1 prob-

lem (Thrun etal. 1991), which has three irrelevant fea-

tures, generates a tree with 15 interior nodes, �ve of

which test irrelevant features. The generated tree has

an error rate of 24.3%, which is reduced to 11.1% if

only the three relevant features are given. Aha (1992)

noted that \IB3's storage requirement increases expo-

nentially with the number of irrelevant attributes."

Following the de�nitions in John, Kohavi, & P
eger

(1994), features can be divided into relevant and irrele-

vant. The relevant features can be further divided into

strong and weak relevances (see Section 2 for the for-

mal de�nitions). Irrelevant features are features that

have no relation to the target concept; weakly relevant

features have some bearing to the target concept, but

are not essential; and strongly relevant features are in-

dispensable. A good subset of features that would be

used by an ideal classi�er includes all the strongly rel-

evant features, none of the irrelevant features, and a

subset of the weakly relevant features.

In the next section we give the basic de�nitions for

the rest of the paper. In Section 3, we describe the

wrapper model. In Section 4, we abstract the subset

selection into a search problem in which the evaluation

function is probabilistic. In Section 5, we show how

some recent suggestions for feature selection �t into the

search framework. Section 6 describes a small exper-

iment using best-�rst search instead of hill-climbing,

and Section 7 concludes with a summary and future

work.

2 De�nitions

The following de�nitions closely follow those de�ned

in John, Kohavi, & P
eger (1994). The input to a

supervised learning algorithm is a set of n training

instances. Each instance X is an element of the set

F
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, where F

i

is the domain of the ith

feature. Training instances are tuples hX; Y i where Y

is the label, or output. Given an instance, we denote

the value of feature X

i

by x

i

.

The task of the induction algorithm is to induce a

structure (e.g., a decision tree, a neural net, or simply

a list of instances), such that given a new instance, it is

possible to accurately predict the label Y . We assume

a probability measure p on the space F
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Let S
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be the set of all features except X
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i

a value-

assignment to all features in S

i

.

De�nition 1 (Strong relevance)
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De�nition 2 (Weak relevance)

A feature X

i

is weakly relevant i� it is not strongly

relevant, and there exists a subset of features S
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A feature is relevant if it is either weakly relevant

or strongly relevant. A feature is irrelevant if it is not

relevant.

3 The Wrapper Model

A good subset of features for an inductive learning al-

gorithm should include a subset of the relevant features

that optimizes some performance function, usually pre-

diction accuracy.

The pattern recognition literature (Devijver & Kit-

tler 1982), statistics literature (Miller 1990; Neter,

Wasserman, & Kutner 1990), and recent machine

learning papers (Almuallim & Dietterich 1991; Kira &

Rendell 1992; Kononenko 1994) consist of many such

measures that are all based on the data alone. Most

measures in the pattern recognition and statistics lit-

erature are monotonic, i.e., for a sequence of nested

feature subsets F
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, the measure f

obeys f(F
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) � f(F
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) � � � � � f(F

k

). Monotonic mea-

sures allow pruning the search space using a branch

and bound algorithm, but most machine learning in-

duction algorithms do not obey the monotonic restric-

tion. Even when branch and bound can be used, the

space is usually too big when there are more than 20

features, and suboptimal methods are used in practice.

All of the above measures and algorithms, however,

ignore the fact that induction algorithms are not op-

timal, and that most induction algorithms conduct a

very limited search in the space of possible structures.

Ignoring these limitations can lead to feature subsets

which are inappropriate for the induction algorithm

used. As was shown in by John, Kohavi, & P
eger

(1994), even features with high predictive power may

impair the overall accuracy in some cases. Selecting a

subset of features must, therefore, not be based solely

on the intrinsic discriminant properties of the data, but

should be made relative to a given algorithm.

In the wrapper model, shown in Figure 1, the feature

subset selection is done using the induction algorithm

as a black box. The feature subset selection algorithm

conducts a search for a good subset using the induc-

tion algorithm itself as part of the evaluation function.

In order to evaluate the prediction accuracy of the in-

duced structure, k-fold cross validation (Breiman et

al. 1984) can be used. The training data is split into k

approximately equally sized partitions. The induction

algorithm is then run k times, each time using k � 1

partitions as the training set and the other partition

as the test set. The accuracy results from each of the

k runs are then averaged to produce the estimated ac-

curacy.

4 Feature Subset Selection as Search

The problem of feature subset selection is basically a

problem of state space search. Each state represents

a subset of features, and the goal is to �nd the state

with the best performance measure.

The wrapper model, which uses cross validation to

estimate accuracy, complicates the search problem fur-

ther. The fact that k-fold cross validation returns an

estimate that is a random variable for k < n, implies

that there is uncertainty in the returned value.

One way to decrease the variance is to run k-fold

cross validation more than once and average the re-

sults, shu�ing the data before each k-fold cross valida-

tion run. Averaging the results will yield a mean, such

that the variance of the mean depends on the number

of iterations conducted. Increasing the number of it-

erations shrinks the con�dence interval for the mean,

but requires more time. The tradeo� between more

accurate estimates and more extensive exploration of

the search space leads to the following abstract search

problem.

Search with Probabilistic Estimates Let S be a

state space with operators between states. Let f : S 7!

Rbe an unbiased probabilistic evaluation function that

maps a state to a real number, indicating how good the

state is. The number returned by f(s) comes from a

distribution D(s) with mean f

�

(s), which is the actual

(unknown) value of the state. The goal is to �nd the

state s with the maximal value of f

�

(s).

The mapping to the feature subset selection prob-

lem is as follows. The states are the subsets, and

the operators are \add one feature," \delete one fea-

ture," etc. The evaluation function is the cross valida-

tion accuracy.

1

Searching in the space of feature subsets has been

studied for many years. Sequential backward elim-

ination, sometimes called sequential backward selec-

tion, was introduced by Marill & Green in 1963. Kit-

tler generalized the di�erent variants including forward

methods, stepwise methods, and \plus `{take away

1

Evaluation using cross validation is pessimistically bi-

ased due to the fact that only part of the data is used for

training. The estimate from each fold is an unbiased esti-

mator for that fold, which contains only n � (k� 1)=k of the

instances. For model selection, this pessimism is of minor

importance.
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Figure 1: The wrapper model. The induction algorithm is used as a \black box" by the subset selection algorithm.

r." Branch and bound algorithms were introduced by

Narendra & Fukunaga (1977). Finally, more recent

papers attempt to use AI techniques, such as beam

search and bidirectional search (Siedlecki & Sklansky

1988), best �rst search (Xu, Yan, & Chang 1989), and

genetic algorithms (Vafai & De Jong 1992). All the

algorithms described above assume that the evaluation

function is deterministic. When the evaluation func-

tion is a random variable, the search becomes more

complicated.

Greiner (1992) describes how to conduct a hill-

climbing search when the evaluation function is prob-

abilistic. The algorithm stops at a node that is a

local optimum with high probability. Yan & Mukai

(1992) analyze an algorithm based on simulated an-

nealing and show that it will �nd the global optimum

if given enough time.

5 Instantiations of the Abstract

Search Problem

In this section we look at three instantiations of the

abstract search problem.

5.1 Hill climbing using the mean value

One simple approach used by John, Kohavi, & P
eger

(1994) is to do a k-fold cross validation and use the

mean value as the estimate. This approach was used

with forward stepwise selection and backward stepwise

elimination.

Backward stepwise elimination is a hill-climbing ap-

proach that starts with the full set of features and

greedily removes or adds one feature that improves per-

formance, or degrades performance slightly. Forward

stepwise selection is a similar algorithm that starts

from the empty set of features.

The main disadvantage of this algorithm is that it

does not take into account the uncertainty in the esti-

mated accuracy. In the empirical observations it was

noted that the values returned from the cross vali-

dation estimates had a large variance. This variance

causes the algorithm to stop prematurely both during

forward stepwise selection and during backward step-

wise elimination.

5.2 Hoe�ding races

Maron & Moore (1994) in an approach very similar to

Greiner (1992), attempt to shrink the con�dence in-

terval of the accuracy for a given set models, until one

model can be proven to be optimal with high probabil-

ity. The evaluation function is a single step in leave-

one-out cross validation, i.e., the algorithm is trained

on randomly chosen n� 1 instances and tested on the

one that is left.

The idea in the above paper is to race competing

models, until one is a clear winner. Models drop out of

the race when the con�dence interval of the accuracy

does not overlap with the con�dence interval of the ac-

curacy of the best model (this is analogous to imposing

a higher and lower bound on the estimation function

in the B

�

algorithm). The race ends when there is a

winner, or when all n steps in the leave-one-out cross

validation have been executed. The con�dence interval

is de�ned according to Hoe�ding's formula (Hoe�ding

1963):
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where

b

f (s) is the average of m evaluations and B

bounds the possible spread of point values. Given a

con�dence level, one can determine �, and hence a con-

�dence interval for f

�

(s), from the above formula.

The paper, however, does not discuss any search

heuristic, and assumes that a �xed set of models is

given by some external source.

5.3 Hill climbing utilizing races

Moore & Lee (1994) describe an algorithm for feature

subset selection that has both ingredients of the ab-

stract problem|it has a search heuristic, and it uses

the probabilistic estimates in a non-trivial manner.

The algorithm does a forward selection and back-

ward elimination (see Section 5.1), but instead of esti-

mating the accuracy of each added (deleted) feature us-

ing leave-one-out cross validation, all the features that

can be added (deleted) are raced in parallel. Assum-

ing that the distribution of f(s) is normal, con�dence

intervals are used to eliminate some features from the

race.



Dataset Baseline C4.5 C4.5-HCS C4.5-BFS BFS Cpu Subset

Acc. Acc. Acc. Acc. time (sec)

Breast-cancer 73.7% 74.7% 73.7% 74.7% 873 1, 4, 6, 8

Chess 53.2% 99.5% 93.9% 97.4% 27289 0,5,9, 13,14,

20, 31, 32, 34

Glass 30.6% 63.9% 61.1% 62.5% 937 0, 1, 2, 3

Glass2 58.2% 72.7% 80.0% 80.0% 515 0, 1, 3, 7

Heart-disease 62.4% 74.3% 79.2% 79.2% 787 8, 11, 12

Hepatitis 86.5% 80.8% 82.7% 84.6% 2100 4, 6, 16, 17

Horse-colic 60.3% 80.9% 85.3% 85.3% 2073 0, 2, 9, 21

Hypothyroid 94.8% 99.2% 99.2% 99.2% 10826 13, 14, 22

Iris 30.0% 94.0% 92.0% 92.0% 68 3

Labor 64.7% 82.4% 82.4% 82.4% 401 1, 10

Lymphography 60.0% 76.0% 78.0% 78.0% 923 0, 8, 12, 16

Mushroom 31.1% 100.0% 100.0% 100.0% 19937 4,7,11,14,19

Sick-euthyroid 90.4% 97.7% 97.8% 97.8% 13125 9,14,16,22

Soybean-small 31.1% 100.0% 100.0% 100.0% 937 20, 21

Vote 64.8% 95.2% 95.2% 95.2% 534 3

Vote1 64.8% 88.3% 89.7% 89.7% 751 2, 3, 5

Average 59.78% 86.2% 86.9% 87.4%

Table 1: Comparison of C4.5 and C4.5 with best-FS feature subset selection.

Schemata search is another search variant that al-

lows taking into account interactions between features.

Instead of starting with the empty or full set of fea-

tures, the search begins with the unknown set of fea-

tures. Each time a feature is chosen and raced between

being \in" or \out." All combinations of unknown fea-

tures are used in equal probability, thus a feature that

should be \in" will win the race, even if correlated with

another feature.

Although this method uses the probabilistic esti-

mates in a Bayesian setting, the basic search strategy

is simple hill-climbing.

6 Experimental Results

In order to estimate the utility of broadening the

search, we used a best-�rst search in the space of fea-

ture subsets. The initial node was the empty set of fea-

tures and the evaluation function was a single 10-fold

CV.

2

At each expansion step, best-�rst search chooses

to expand an unexpanded node with the highest esti-

mated accuracy. The search stops when �ve node ex-

pansions do not yield improved performance of more

than 0.1%.

The datasets shown in Table 1 are the same ones

used in Holte's paper (Holte 1993) from the UC Irvine

repository (Murphy & Aha 1994). For all datasets

that did not have a test set, we generated an indepen-

dent sample of one third of the instances for testing.

3

The table shows the baseline accuracy, i.e., a major-

ity predictor; C4.5's accuracy; C4.5's accuracy for the

2

The same 10-way split was done for all subsets.

3

Note that the accuracies are from a single randomly

selected test set, not averaging over multiple runs as was

done by Holte.

subset selected by a hill-climbing search (C4.5-HCS);

C4.5's accuracy for the subset selected by a best-�rst

search (C4.5-BFS); the CPU time for C4.5-BFS on a

Sparc 10 512; and the subset selected by the best-�rst

search (feature numbers starting from zero).

The results show that the hill-climbing search for a

good subset improve C4.5's average accuracy by 0.7%,

and that the best-�rst search strategy improves it by

1.2%. By themselves, these improvements may not

seem signi�cant, but it is well known that it is very

hard to improve on C4.5's performance, and in some

cases (e.g., glass2, heart-disease, horse-colic), the im-

provements are substantial.

On some arti�cial datasets, we have seen more dra-

matic examples of the improvement of a good search

strategy. For example, on the monk1 dataset (Thrun

etal. 1991), C4.5's accuracy is 75.7%, C4.5-HCS's ac-

curacy is 75.0%, and C4.5-BFS's accuracy is 88.9%.

On the Corral dataset (John, Kohavi, & P
eger 1994),

C4.5's accuracy is 81.2%, C4.5-HCS's accuracy is 75%,

and C4.5-BFS's accuracy is 100.0%.

7 Summary and Future Work

We have abstracted the feature subset selection using

cross validation into a search problem with a proba-

bilistic evaluation function. We have shown (Section 5)

how three di�erent instantiations of the abstract algo-

rithm di�er in their treatment of the evaluation func-

tion and search. While one algorithm ignores the fact

that the evaluation is probabilistic and uses the mean

value of a series of evaluations (k-fold cross validation),

the other two use con�dence intervals to aid in �nding

the best state (subset) fast. The two search algorithms

examined are basic hill-climbing algorithms.

Preliminary experiments using best-�rst search and



simple 10-fold cross validation for evaluation, show

that broadening the search may indeed help. A more

extensive experiment utilizing the fact that the evalu-

ation function is probabilistic is now being conducted.

The algorithms discussed attempted to improve pre-

diction accuracy. In many cases comprehensibility is

very important, even when resulting in a small loss of

accuracy. Biasing the algorithms towards smaller sub-

sets may be important in such cases.

The search for a good subset is conducted in a very

large space. All algorithms mentioned in this paper

start the search either from the empty set of features,

or from the full set of features. Since an optimal

classi�er should include all strongly relevant features,

it might be bene�cial to estimate which features are

strongly relevant, and start the search from this sub-

set.
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