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Motivation & Summary of Results

You have ten induction algorithms. Which one is the best for a

given dataset?

Answer: run them all and pick the one with the highest estimated

accuracy.

1. Which accuracy estimation?

Resubstitution? Holdout? Cross-validation? Bootstrap?

2. How sure would you be of your choice?

3. If you had spare CPU cycles, would you alway choose leave-

one-out?

For accuracy estimation: strati�ed 10 to 20-fold CV.

For model selection: multiple runs of 3-5 CV.
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Talk Outline

➀☞ Accuracy estimation: the problem.

➁ Accuracy estimation methods:

F

Holdout & random subsampling.

F

Cross-validation.

F

Bootstrap.

➂ Experiments, recent experiments.

➃ Summary.
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Basic De�nitions

1. Let D be a dataset of n labelled instances.

2. Assume D is an i.i.d. sample from some underlying distribu-

tion on the set of labelled instances.

3. Let I be an induction algorithm that produces a classi�er

from data D.
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The Problem

Estimate the accuracy of the classi�er induced from the dataset.

The accuracy of a classi�er is the probability of correctly clas-

sifying a randomly selected instance from the distribution.

All resampling methods (holdout, cross-validation, bootstrap)

will use a uniform distribution on the given dataset as a distri-

bution from which they sample.

Real world

Distribution F

Dataset

Distribution F’
Sample 2

Sample k

Sample 1
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Holdout

Holdout partition the data into two mutually exclusive subsets

called a training set and a test set. The training set is given to

the inducer, and the induced classi�er is tested on the test set.

Training Set
1 2 3

2/3

1/3

Inducer
Eval

Classifier

Pessimistic estimator because only a portion of the data is given

to the inducer for training.
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Con�dence Bounds

The classi�cation of each test instance can be viewed as a

Bernoulli trial: correct or incorrect prediction.

Let S be the number of correct classi�cations on the test set of

size h, then S is distributed binomially and S=h is approximately

normal with mean acc and variance of acc � (1� acc)=h.
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Random Subsampling

Repeating the holdout many times is called random subsampling.

Common mistake:

One cannot compute the standard deviation of the sam-

ples' mean accuracy in random subsampling because the

test instances are not independent.

The t-tests you commonly see with signi�cance levels are

usually wrong.

Example: random concept (50% for each class). One induc-

tion algorithm predicts 0, the other 1. Given a sample of 100

instances, chances are it won't be 50/50, but something like

53/47. Leaving 1/3 out gives s.d.=8.7%.
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Audience comments?

Pedro Domingos et al., please keep the comments to the end.

Accuracy as de�ned here is the prediction accuracy on instances

sampled from the parent population, not from the small dataset

we have at hand.

t-tests with random subsampling tests the hypothesis that one

algorithm is better than another, assuming the distribution is

uniform and each instance in the dataset has 1=n probability.

This is not an interesting hypothesis, except that we know how

to compute it.
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Cross Validation

In k-fold cross-validation, the dataset D is randomly split into k

mutually exclusive subsets (the folds) D

1

;D
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; : : : ;D

k

of approxi-

mately equal size.

The inducer is trained and tested k times; each time t 2

f1;2; : : : ; kg it is trained on D n D

t

and tested on D

t
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Standard Deviation

Two ways to look at cross-validation:

1. A method that works for stable inducers, i.e., inducers that

do not change their predictions much when given similar

datasets (see paper).

2. A method of computing the expected accuracy for a dataset

of size n� k=n, where k is the number of folds.

Since each instance is used only once as a test instance, the

standard deviation can be estimated as acc

cv

� (1 � acc

cv

)=n,

where n is the number of instances in the dataset.
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Failure of cross-validation/leave-one-out

Leave-one-out is n-fold cross-validation.

Fisher's iris dataset contains 50 instances of each class (three

classes), leading one to expect that a majority inducer should

have accuracy about 33%.

When an instance is deleted from the dataset, its label is a

minority in the training set; thus the majority inducer predicts

one of the other two classes and always errs in classifying the

test instance.

The leave-one-out estimated accuracy for a majority in-

ducer on the iris dataset is therefore 0%�0%
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.632 Bootstrap

A bootstrap sample is created by sampling n instances uni-

formly from the data (with replacement).

Given a number b, the number of bootstrap samples, let �0

i

be

the accuracy estimate for bootstrap sample i on the instances

not included in the sample. The .632 bootstrap estimate is

de�ned as

acc

boot

=

1

b

b

X

i=1

(0:632 � �0

i

+ :368 � acc

s

)

where acc

s

is the resubstitution accuracy estimate on the full

dataset.
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Bootstrap failure

The .632 bootstrap fails to give the expected result when the

classi�er can perfectly �t the data (e.g., an unpruned decision

tree or a one nearest neighbor classi�er) and the dataset is com-

pletely random, say with two classes.

The apparent accuracy is 100%, and the �0 accuracy is about

50%. Plugging these into the bootstrap formula, one gets an

estimated accuracy of about 68.4%, far from the real accuracy

of 50%.

(ronnyk@CS.Stanford.EDU)

14



Experimental design: Q & A

1. Which induction algorithm to use? C4.5 and Naive Bayes.

Reason: FAST inducers.

2. Which datasets to use? Seven datasets were chosen.

Reasons:

(a) Wide variety of domains.

(b) At least 500 instances.

(c) Learning curve that did not 
atten too early.
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Learning Curves

50 100 150 200 250
TS size

Breast cancer

82
84
86
88
90
92
94
96

% Accuracy

C4.5
NB

500 1000 2000 3000
TS size

Chess endgames

82.5
85

87.5
90

92.5
95

97.5
100

% Accuracy

C4.5

NB

500 1500 2500
TS size

Hypothyroid

97

97.5

98

98.5

99

% Accuracy

C4.5

NB

2000 4000 6000 8000
TS size

Mushroom

94

95

96

97

98

99

100

% Accuracy

C4.5

NB

50 100 150 200
TS size

Soybean (large)

20

30

40

50

60

70

80

% Accuracy

C4.5
NB

100 200 300 400
TS size

Vehicle

35

40

45

50

55

60

65

70

% Accuracy

C4.5

NB

Arrow indicate sampling points.
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The bias (CV)

The bias of a method that estimates a parameter � is de�ned as

the expected estimated value minus the value of �. An unbiased

estimation method is a method that has zero bias.
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C4.5: The bias of cross-validation with varying folds. A negative k folds

stands for leave-k-out. Error bars are 95% con�dence intervals for the mean.

The gray regions indicate 95% con�dence intervals for the true accuracies.
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Bootstrap Bias

Bootstrap is right on the mark for three out of six, but biased

for soybean and extremely biased for vehicle and rand.
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C4.5: The bias of bootstrap.
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The Variance of CV

The variance is high at the ends: two fold and leave-f1,2g-out
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Regular (left), Strati�ed (right).

Strati�cation slightly reduces both bias and variance.
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The Variance of Bootstrap
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Multiple Times

To stabilize the cross-validation, we can execute CV multiple

times, shu�ing the instances each time.
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The graphs show the e�ect on C4.5 and NB when CV was run

�ve times. The variance for lower folds was due to the variance

because of smaller dataset size.
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Summary

1. Reviewed accuracy estimation: holdout, cross-validation,

strati�ed CV, bootstrap. All methods fail in some cases.

2. Bootstrap has low variance, but is extremely biased.

3. With cross-validation, you can determine the bias/variance

tradeo� that is appropriate, and run multiple times to reduce

variance.

4. Standard deviations can be computed for cross-validation,

but are incorrect for random subsampling (holdout).

Recommendation

For accuracy estimation: strati�ed 10 to 20-fold CV.

For model selection: multiple runs of 3-5 folds (dynamic).

(ronnyk@CS.Stanford.EDU)

22



What is the \true" accuracy

To estimate the true accuracy at the sampling points, we sam-

pled 500 times and estimated the accuracy using the unseen

instances (holdout).

Dataset no. of sample-size no. of C4.5 Naive-Bayes

attr. / total size categories

Breast cancer 10 50/699 2 91.37�0.10 94.22�0.10

Chess 36 900/3196 2 98.19�0.03 86.80�0.07

Hypothyroid 25 400/3163 2 98.52�0.03 97.63�0.02

Mushroom 22 800/8124 2 99.36�0.02 94.54�0.03

Soybean large 35 100/683 19 70.49�0.22 79.76�0.14

Vehicle 18 100/846 4 60.11�0.16 46.80�0.16

Rand 20 100/3000 2 49.96�0.04 49.90�0.04
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How Many Times Should We Repeat?
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Multiple runs with two-fold CV. The more, the better.
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