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Abstract

We present a bias�variance decomposition
of expected misclassi�cation rate� the most
commonly used loss function in supervised
classi�cation learning� The bias�variance
decomposition for quadratic loss functions
is well known and serves as an important
tool for analyzing learning algorithms� yet
no decomposition was o
ered for the more
commonly used zero�one �misclassi�cation�
loss functions until the recent work of Kong
� Dietterich ������ and Breiman �������
Their decomposition su
ers from some ma�
jor shortcomings though �e�g�� potentially
negative variance�� which our decomposition
avoids� We show that� in practice� the naive
frequency�based estimation of the decompo�
sition terms is by itself biased and show
how to correct for this bias� We illustrate
the decomposition on various algorithms and
datasets from the UCI repository�

� Introduction

The bias plus variance decomposition �Geman� Bi�
enenstock � Doursat ����� is a powerful tool from
sampling theory statistics for analyzing supervised
learning scenarios that have quadratic loss functions�
As conventionally formulated� it breaks the expected
cost given a �xed target and training set size into the
sum of three non�negative quantities�

Intrinsic �target noise� This quantity is a lower
bound on the expected cost of any learning algo�
rithm� It is the expected cost of the Bayes�optimal
classi�er�

Squared �bias� This quantity measures how closely
the learning algorithm�s average guess �over all
possible training sets of the given training set size�
matches the target�

�Variance� This quantity measures how much the
learning algorithm�s guess �bounces around� for
the di
erent training sets of the given size�

In addition to the intuitive insight the bias and vari�
ance decomposition provides� it has several other use�
ful attributes� Chief among these is the fact that there
is often a �bias�variance tradeo
�� Often as one modi�
�es some aspect of the learning algorithm� it will have
opposite e
ects on the bias and the variance� For ex�
ample� usually as one increases the number of degrees
of freedom in the algorithm� the bias shrinks but the
variance increases� The optimal number of degrees
of freedom �as far as expected loss is concerned� is
the number of degrees of freedom that optimizes this
trade�o
 between bias and variance�

For classi�cation� the quadratic loss function is often
inappropriate because the class labels are not numeric�
In practice� an overwhelmingmajority of researchers in
the Machine Learning community instead use expected
misclassi�cation rate� which is equivalent to the zero�
one loss� Kong � Dietterich ������ and Dietterich �
Kong ������ recently proposed a bias�variance decom�
position for zero�one loss functions� but their proposal
su
ers from some major problems� such as the possibil�
ity of negative variance� and only allowing the values
zero or one as the bias for a given test point�

In this paper� we provide an alternative zero�one loss
decomposition that does not su
er from these prob�
lems and that obeys the desiderata that bias and vari�
ance should obey� as discussed in Wolpert �submit�
ted�� This paper is expository� being primarily con�
cerned with bringing the zero�one loss bias�variance



decomposition to the attention of the Machine Learn�
ing community�

After presenting our decomposition� we describe a set
of experiments that illustrate the e
ects of bias and
variance for some common induction algorithms� We
also discuss a practical problem with estimating the
quantities in the decomposition using the naive ap�
proach of frequency counts� the frequency�count esti�
mators are biased in a way that depends on the train�
ing set size� We show how to correct the estimators so
that they are unbiased�

� De�nitions

We use the following notation�

��� The underlying spaces

Let X and Y be the input and output spaces respec�
tively� with cardinalities jXj and jY j and elements x
and y� respectively� To maintain consistency with
planned extensions of this paper� we assume that both
X and Y are countable� However this assumption is
not needed for this paper� provided all sums are re�
placed by integrals� In classi�cation problems� Y is
usually a small �nite set�

The �target� f is a conditional probability distribution
P �YF � yF j x�� where YF is a Y �valued random
variable� Unless explicitly stated otherwise� we assume
that the target is �xed� As an example� if the target
is a noise�free function from X to Y � for any �xed x
we have P �YF � yF j x� � � for one value of yF � and
� for all others�

The �hypothesis� h generated by a learning algorithm
is a similar distribution P �YH � yH j x�� where YH

is a Y �valued random variable� As an example� if the
hypothesis is a single�valued function from X to Y � as
it is for many classi�ers �e�g�� decision trees� nearest�
neighbors�� then P �YH � yH j x� � � for one value of
yH � and � for all others�

We will drop the explicitly delineated random variables
from the probabilities when the context is clear� For
example� P �yH � will be used instead of P �YH � yH ��

Proposition � YF and YH are conditionally indepen�

dent given f and a test point x�

Proof � P �yF � yH j f� x� � P �yF j yH � f�x�P �yH j f�x� �

P �yF j f� x�P �yH j f� x��

The last equality is true because �by de�nition� yF
depends only on the target f and the test point x�

The training set d is a set of m pairs of x�y values�
We do not make any assumptions about the distribu�
tion of pairs� In particular� our mathematical results
do not require them to be generated in an i�i�d� �in�
dependently and identically distributed� manner� as
commonly assumed�

To assign a penalty to a pair of values yF and yH � we
use the loss function � � Y �Y � R� In this paper we
consider the zero�one loss function de�ned as

��yF � yH� � �� ��yF � yH��

where ��yF � yH� � � if yF � yH and � otherwise�

The cost� C� is a real�valued random variable de�ned
as the loss over the random variables YF and YH � So
the expected cost is

E�C� �
X
yH�yF

��yH � yF �P �yH � yF � �

For zero�one loss� the cost is usually referred to as
misclassi�cation rate and is derived as follows�

E�C� �
X
yH �yF

��� ��yH � yF ��P �yH � yF �

� ��
X
y�Y

P �YH � YF � y� � ���

The notation used here is a simpli�ed version of
the extended Bayesian formalism �EBF� described in
Wolpert ������� In particular� the results of this pa�
per do not depend on how the X�values in the test set
are determined� so there is no need to de�ne a random
variable for those X�values as is done in the full EBF�

� Bias Plus Variance for Zero�One

Loss

We now show how to decompose the expected cost
into its components and then provide geometric views
of this decomposition� in particular relating it to
quadratic loss in Euclidean spaces�

��� The Decomposition

We present the general result involving the expected
zero�one loss� E�C�� where the �implicit� conditioning
event is arbitrary� Then we specialize to the stan�
dard conditioning used in conventional sampling the�
ory statistics� a single test point� target� and training



set size�
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X
y�Y
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�
X
y�Y

�P �YH � YF � y� �
X
y�Y

P �YH � y�P �YF � y��

X
y�Y

h
�P �YH � y�P �YF � y� �

�

�
P �YF � y���

�

�
P �YH � y��

i
��

�

�
�

�

�

X
y�Y

P �YH � y��

�
�

�
�

�
�

�

�

X
y�Y

P �YF � y��

�
�

Rearranging the terms� we have E�C� �X
y�Y

�P �YH � y�P �YF � y�

�P �YF � YH � y�� � �	covariance
�

�

�

X
y�Y
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In this paper we are interested in E�C j f�m�� the
expected cost where the target is �xed and one aver�
ages over training sets of size m� One way to evaluate
this quantity is to write it as

P
x P �x�E�C j f�m� x�

and then use Equation � to get E�C j f�m� x�� By
Proposition �� yH and yF are independent when one
conditions on f and x� hence the �covariance� term
vanishes� So

E�C� �
X
x

P �x�
�
��x � bias�x � variancex

�
���

where

bias�x �
�

�

X
y�Y

�P �YF � y j x�� P �YH � y j x���

variancex �
�

�

�
��

X
y�Y

P �YH � y j x��

�

��x �
�

�

�
��

X
y�Y

P �YF � y j x��

�
�

�To simplify the exposition� the f and m in the con�
ditioning events are still implicit even though x needs

to be explicit�� To better understand these formulas�
note that P �YF � y j x� is the probability �after any
noise is taken into account� that the �xed target takes
on the value y at point x� To understand the quantity
P �YH � y j x�� one must write it in full as

P �YH � y j f�m� x� �

�
X
d

P �d j f�m� x�P �YH � y j d� f�m� x�

�
X
d

P �d j f�m�P �YH � y j d� x� � ���

In this expression� P �d j f�m� is the probability
of generating training set d from the target f � and
P �YH � y j d� x� is the probability that the learning
algorithmmakes guess y for point x in response to the
training set d� So P �YH � y j x� is the average �over
training sets generated from f� Y value guessed by the
learning algorithm for point x�

Note that while the quadratic loss decomposition in�
volves quadratic terms� and the log loss decompo�
sition involves logarithmic terms �Wolpert submit�
ted�� our zero�one loss decomposition does not involve
Kronecker delta terms� but rather involves quadratic
terms�

Our de�nitions of �bias��� �variance�� and �noise�
obey some appropriate desiderata� including�

�� The �bias�� term measures the squared di
erence
between the target�s average output and the al�
gorithm�s average output� It is a real�valued non�
negative quantity and equals zero only if P �YF �
y j x� � P �YH � y j x� for all x and y� These
properties are shared by bias� for quadratic loss�

�� The variance term measures the �variability�
�over YH � of P �YH j x�� It is a real�valued non�
negative quantity and equals zero for an algorithm
that always makes the same guess regardless of
the training set �e�g�� the Bayes optimal classi�
�er�� As the algorithm becomes more sensitive to
changes in the training set� the variance increases�
Moreover� given a distribution over training sets�
the variance only measures the sensitivity of the
learning algorithm to changes in the training set
and is independent of the underlying target� This
property is shared by variance for quadratic loss�

�� The noise measures the �variance� of the target in
that the de�nitions of variance and noise are iden�
tical except for the interchange of YF and YH � In
addition� the noise is independent of the learning
algorithm� This property is shared by noise for
quadratic loss�



In contrast to our de�nition of bias�� the de�nitions
of bias �for a �xed target and a given instance� sug�
gested in Kong � Dietterich ������� Dietterich � Kong
������� and Breiman ������ are only two�valued for
binary classi�cation� they cannot quantify subtler lev�
els of mismatch between a learning algorithm and a
target� However� their decompositions have the ad�
vantage that their bias is zero for the Bayes optimal
classi�er� while ours may not be�

The major distinction between the decompositions
arises in the variance term� All of the desiderata for
variance listed above are violated by the decomposi�
tions proposed by Kong � Dietterich ������� Diet�
terich � Kong ������� and Breiman ������� Speci��
cally� in their de�nitions the variance can be negative
and is not minimized by a classi�er that ignores the
training set� Kong � Dietterich ������ note this short�
coming explicitly� The following examples illustrates
the phenomenon for the decomposition suggested by
Breiman ������� Assume a noise free target with ���
heads and ��� tails� Consider an x for which the tar�
get has the value tails� the average error of a majority
classi�er will be slightly above ���� yet the probabil�
ity of error for the �aggregate� majority classi�er will
be one� This causes the variance to be negative�

Another advantage of our decomposition is that its
terms are a continuous function of the target� An
in�nitesimal change in the target� which changes the
class most commonly predicted by the learning algo�
rithm for a given x� will not cause a large change in
our bias� variance� or noise terms� In contrast� the
other de�nitions of bias and variance do not share this
property�

��� The Bias�Variance Decomposition in

Vector Form

We can rewrite Equation � in vector notation that
may give a better geometrical interpretation to the
decomposition� De�ne �F � P �yF �� �H � P �yH �� and
�FH � P �yF � yH �� �F and �H are vectors in RjY j with

their components indexed by Y values� �FH is a matrix
in RjY j � RjY j� If we denote dot�products by ��� and
the dot�product of a vector with itself by squaring it�
then

covariance � Tr� �FH�� �F � �H �Tr is the trace��

bias� � �

�

�
�F � �H

��
� variance � �

�

�
�� �H�

�
� and

�� � �

�

�
�� �F �

�
�

��� Relation to the Quadratic Decomposition

To relate the zero�one loss decomposition to the more
familiar quadratic loss decomposition let �YF be an
R

jY j�valued random variable restricted so that exactly
one of its components equals � and all others equal ��
that single ��valued component is the one with index
yF � So �YF is YF re�expressed as a vector on the unit
hypercube� De�ne �YH similarly in terms of YH �

Since �YF and �YH are real�valued� we can de�ne
quadratic loss over them� In particular� recalling that
squaring a vector is taking its dot product with itself�
we have

� �yF � �yH �
� �

�
� if yF �� yH
� if yF � yH

Accordingly�

E
h�

�YF � �YH
��
j f�m� x

i
� �P �yH �� yF j f�m� x�

� �E�C
�� loss j f�m� x� �

So by transforming the Y to a vector of indicator
variables� we see that the expected cost for zero�one
loss is one half the associated quadratic loss�

� Experimental Methodology

We begin with a description of our experimental
methodology� and then discuss a problem with the
naive estimation of the terms in our decomposition by
using frequency counts�

��� Our frequency counts experiments

To investigate the behavior of the terms in our decom�
position� we ran a set of experiments on UCI repository
�Murphy � Aha ������ In each of those experiments�
for a given dataset and a given learning algorithm� we
estimated �the x�average of� bias�� variance� intrinsic
noise� and overall error as follows�

�� We randomly divided each dataset into two parts�
D and E� D was used as if it were the �world�
from which we sample training sets� while E was
used to evaluate the terms in the decomposition�
This idea is similar to the �bootstrap world� idea
in Efron � Tibshirani ������ Chapter 	��

�� We generate N training sets from D� each gen�
erated using uniform random sampling without
replacement� �Note that our decomposition does



not require the training sets to be sampled in any
speci�c manner �Section ���� To get training sets
of sizem� we chose D to be of size �m� This allows
for

�
�m

m

�
di
erent possible training sets� enough

to guarantee that we will not get many duplicate
training sets in our set of N training sets� even for
small values of m�

�� We ran the learning algorithm on each of the
training sets and estimated the terms in Equa�
tion � and � using the generated classi�er for each
point x in the evaluation set E� �Equation � was
used to estimate p�yH jf�m� x��� At �rst� all these
terms were estimated using frequency counts�

Figure � �left� shows the estimate for bias� for di
erent
values of N when ID� �Quinlan ��	�� was executed on
three datasets from the UCI repository� It is clear that
our estimate of bias� using frequency counts shrinks as
we increase N � Since in�nite N gives the correct value
of bias�� this means that for any �nite N the bias�

estimate is always itself biased upwards� The variance
term exhibits the opposite behavior� it is always biased
low� The right hand side of Figure � shows the behav�
ior with the corrected estimators we propose below in
subsection ����

To see why this biasing behavior arises� �x y � Y
and x � X� We will demonstrate that the bias of our
frequency�based estimator of bias� holds for any such
y and x� which immediately implies that it holds when
one averages over y and x� Assume N is even and de�
�ne n � N��� Given a set of N training sets� one
option is to estimate bias� using two distinct sets of
n training sets� and to then average their estimates to
get an average n�training�set�based estimate� Another
option is to average over all N training sets directly to
get an N �training�set�based estimate� What we will
show is that averaged over sets of N � �n training
sets� the former strategy results in a higher estimate
of bias� than the latter� the expected value of the es�
timate of bias� using n training sets is larger than the
expected value using �n training sets� Since the esti�
mate using in�nite sets is exactly correct� this means
that our estimate of bias� is biased upwards more as
fewer training sets are used�

Let i � f�� �g specify one of the two sets of n training
sets we�re examining� De�ne wi to be the average over
the training sets in set i of P �YH � y j x�� i�e�� wi �P

j P �YH � y j x� dij��n� where dij is the j�th training
set in set i� Let T be P �YF � y j x� �see Equation ���
We can now compute the expected di
erence between
the two ways of estimating the bias �estimating for

each set of n training sets and then averaging� minus
estimating based on the full set of N � �n training
sets��

E
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By Jensen�s inequality �Cover � Thomas ������ the
�rst term on the right hand side is larger or equal to
the second term� This shows that when we average
once �over �n instances� rather than twice �over n in�
stances� we get a smaller estimate for the bias�� which
establishes the proposition� A similar argument holds
for variance� which gets larger as N grows�

��� Unbiased estimators of bias� and variance

One way to correct these biases in our frequency counts
estimators is to use a very large number of training
sets� Although such an approach would have been
feasible for our experiments� it is not in general� for
many combinations of learning problem and learning
algorithm� the associated computational requirements
are prohibitive�

Fortunately� there is a straight�forward correction we
can apply to our estimators to make them unbiased��

De�ne wN as the frequency count estimate for P �YH �
yhjf�m� x� based on the N training sets� De�ne UN �
wN � T � where T was de�ned above as P �YF � y j x��
The frequency counts estimate of bias� we used before
was U�

N � our proposed estimator is VN � U�

N �wN ���
wN ���N � ���

Proposition � Under the assumption that we know

T �s value� VN is an unbiased estimator for bias��

Proof � Since bias� � �E �UN j n� T ��
�
� we have to show

that

E
�
U�

N �wN��� wN���N � �� j N�T
�
� �E �UN j n� T ���

�

�It is not obvious that one would want an unbiased es�
timator for the estimated quantities� since that does not
necessarily minimize expected error� �That is what the
bias�variance tradeo� is all about�� However� we felt that
getting an unbiased estimator would help understand the
problem better and experiments we did indicated that the
expected squared�error loss for our proposed unbiased es�
timator is smaller than that of the estimator based on the
naive use of frequency counts�
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Figure �� The uncorrected bias �left� and corrected �right�

An unbiased estimator for the variance of the probabil�
ity in an N �sample Bernoulli process is the empirical
variance multiplied by N��N � ��� Furthermore� be�
cause T is �xed� the variance of UN is equal to the
variance of wN � Thus we have

var�UN jT� n� � var�wN jn� � wN���wN ���N � �� ���

But by de�nition of variance� we have

var�UN jT� n� � E�U�

N jT� n�� �E�UN jT� n��
� ���

Equating the right sides of Equations � and �� we have
the desired result�

The correction to the variance estimator is simply
given by negative the correction to the bias� estimator�
This can be shown using reasoning similar to the proof
just above� but it also follows from the bias�variance
decomposition itself and the fact that the frequency
counts estimator of error gives an unbiased estimate
of the zero�one loss�

It is important to realize that Proposition � implicitly
assumes that training sets are formed by i�i�d� sam�
pling a training�set�generating process� This is true for
our experimental methodology even though each run�
ning of our training�set�generating process is required
to produce training sets that contain no duplicate x�y
pairs� for the Proposition to apply it su�ces to allow
duplicate training sets�

We conclude this section with a few comments�

�� The assumption underlying Proposition � that we
know T exactly is false� since we can only estimate
it from the data� However� our estimate of T is a
constant� independent of the number of training
sets or the details of the learning algorithm� So
errors in our estimate of T are not important�

�� A related point is that �� is very di�cult to es�
timate in practice� Using a frequency count es�
timator the estimate of �� would be zero if all
instances are unique �regardless of the true ����
Since in the UCI datasets� almost all instances
are unique� we elected to de�ne �� to be zero by
considering all instances to be unique� This can
be viewed as a calculational convenience� since we
are only concerned with the variation in expected
cost as we vary the learning algorithm� and the
estimate of �� is algorithm�independent

�� There is a possibility that VN will give a negative
estimate of bias�� This is to be expected� given
that VN is unbiased� If the true bias� equals zero�
for an estimator with variance greater than zero
to produce zero as its average estimate �as it must
if it is an unbiased estimator�� it must sometimes
produce negative numbers�

This potentially negative estimate should be con�
trasted with the negative variances accompany�
ing the bias�variance decomposition in Kong �
Dietterich ������ and Breiman ������� Unlike
in their decomposition� in our decomposition the
true bias� and variance are always non�negative�
the potential for a negative value is a re�ection
of the more problematic aspects of unbiased es�
timators� rather than of the underlying quantity
being estimated� In practice though� we always
had enough data so that negative bias� estimates
never occurred�

��� The Experiments

We now present experiments demonstrating the bias
and variance of induction algorithms for datasets from
the UCI repository �Murphy � Aha ������ The
datasets were chosen so that they contain at least ���
instances �to ensure accurate estimates of error� and
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Figure �� The bias plus variance decomposition for nearest�neighbor with varying number of neighbors� The
notation NN�k indicates vote among the k closest neighbors�

Table �� The Datasets and their characteristics

Dataset No� Dataset Train�set
features Size size

Anneal �� ��� �


Chess �� ���� ��

DNA ��
 ���� �


LED��� �� ��

 ��

Hypothyroid �� ���� ��

Segment �� ���
 ��

Satimage �� ���� ��

Soybean�large �� ��� �


Tic�tac�toe � ��� �



to demonstrate the range of potential bias�variance be�
haviors� Table � shows a summary of the datasets we
use� We use small training sets to make sure the eval�
uation set is large� In general� we chose size ��� for
datasets with less than ����� instances and ��� for
those with over ����� instances �except DNA which
has �	� features�� We generated �� training sets for
each learning algorithm �i�e�� N � ��� and use the
unbiased estimators discussed above�

��� Varying the Number of Neighbors in

Nearest�Neighbor

Figure � shows the bias�variance decomposition of the
error for the nearest�neighbor algorithmwith a varying
number of neighbors used�

In Anneal� Chess� and Tic�tac�toe� increasing the num�
ber of neighbors increases the bias and decreases the
variance� however� the bias increases much more than
the decrease in variance and the overall error increases�
In Anneal� the bias more than doubles when going
from one neighbor to three neighbors� In Tic�tac�toe�
the variance drastically decreases �it is ������ for �ve
neighbors�� The reason for this decrease in variance
is that instances in Tic�tac�toe vary on one to nine
squares� allowing neighbors with up to �ve di
ering
squares causes NN�� to let a large portion of the space
vote� in e
ect predicting the majority class �a constant
win for X� all the time�

In DNA and Led��� both bias� and variance decrease
as the number of neighbors increases� For DNA� bias�

shrinks by ���
 and the variance by ����� for led���
bias� shrinks by ���� and the variance by �����

In Segment and Soybean� both the bias� and variance
increase as the number of neighbors is increased� We
have observed a general increase in variance when the
number of classes is large� Segment has seven classes
and Soybean has �� classes� Increasing the number of
neighbors causes many ties which are broken arbitrar�
ily� thus increasing the variance�

In Hypothyroid and Satimage� the changes in bias�

and variance as the number of neighbors is changed
are small and almost cancel� For Hypothyroid� increas�
ing from one to three neighbors increases bias� from
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Figure �� The bias and variance of ID� and �� aggregated ID�� with ��� and ��
 of the training set� Aggregation
increases the bias slightly but stabilizes ID� thus reducing the variance more�

����� to ����� and decreases the variance from �����
to ������ For Satimage� bias� increases from ����� to
����	 and the variance decreases from ����� to ����
�

Although most datasets exhibit a bias�variance trade�
o
 where one quantity goes up and the other goes down
as a parameter of the induction algorithm is varied� we
can see examples where both change in the same di�
rection�

��	 Combining Classi�ers

There has been a lot of work recently on combin�
ing classi�ers� with the terms aggregation� averages�
ensembles� classi�er combinations� voting� and stack�
ing commonly used �Wolpert ����� Breiman ����a�
Perrone ����� Ali ������ In the simplest scheme� mul�
tiple classi�ers are generated and then vote for each
test instance� with the majority prediction used as the
�nal prediction�

Figure � shows ID� versus a combination of �� ag�
gregated trees� The �� trees are generated by repeat�
edly sampling a subset of the training set and running
ID�� In contrast to bagging as de�ned in Breiman
�����a�� the samples used here were generated by uni�
form sampling without replacement� Two sample sizes
are shown� training sets with ��
 of the training set
and with ���� Minor variations in the training set
may cause a di
erent split� which might change the
whole subtree� As a consequence� decision trees are
very unstable� and therefore they usually gain by ag�

gregation techniques �Breiman ����b�� Note also that
the smaller the internal sample� the more bias we po�
tentially add �Gordon � Olshen ��	�� but the more
di
erent the classi�ers will be� leading to a more sta�
ble average�

Our results show that in this voting scheme� the reduc�
tion in error is almost solely due to the reduction in
variance� While the bias goes up slightly� especially as
smaller training sets are used �samples of size ��
�� the
reduction in variance is signi�cant and the total error
usually decreases� For our datasets� voting samples of
size ��� always reduced the error� Voting samples of
size ��
 reduced the error even more in all datasets but
one �anneal��

� Summary and Future Work

We presented a bias and variance decomposition for
misclassi�cation error� which is equivalent to zero�one
loss� and showed that it obeys some desired criteria�
This decomposition does not su
er from the short�
comings of the decompositions suggested by Kong �
Dietterich ������ and Breiman �����b�� We showed
how estimating the terms in the decomposition us�
ing frequency counts leads to biased estimates and ex�
plained how to get unbiased estimators� which we later
used� We then gave some examples of the bias�variance
tradeo
 using two machine learning algorithms and
several UCI datasets�

In the future we plan to investigate many extensions



of this work� In particular� we plan to investigate the
following topics�

�� The decomposition in Equation � holds for essen�
tially any conditioning event� It even holds if the
conditioning event is �d� x�� as in Bayesian point
estimation� we have a bias�variance decomposi�
tion for a Bayesian quantity� The decomposition
also holds if x is not in the conditioning event�
so that no external average over x is required� as
it is in this paper� We intend to explore these
alternative conditioning events�

�� Since variance can be directly estimated using
the unlabelled instances of the test set� estimat�
ing overall error of a learning algorithm hinges
on estimating its bias�� We would like to test
whether better error estimates can be obtained by
using cross�validation�style partitions of the train�
ing set to estimate that bias and using unlabelled
instances from the test set to estimate the vari�
ance�

The bias and variance decomposition is an extremely
useful tool in Statistics that has rarely been utilized
before in Machine Learning because no decomposition
existed for misclassi�cation rate� We hope that the
proposed decomposition will overcome this problem�
and thereby help us improve our understanding of su�
pervised learning�
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