To appear in Machine Learning: Proceedings of the Thirteenth International Conference, 1996

Bias Plus Variance Decomposition for
Zero-One Loss Functions

Ron Kohavi
Data Mining and Visualization
Silicon Graphics, Inc.
2011 N. Shoreline Blvd
Mountain View, CA 94043-1389

ronnyk@sgi.com
Abstract

We present a bias-variance decomposition
of expected misclassification rate, the most
commonly used loss function in supervised
classification learning. The bias-variance
decomposition for quadratic loss functions
is well known and serves as an important
tool for analyzing learning algorithms, yet
no decomposition was offered for the more
commonly used zero-one (misclassification)
loss functions until the recent work of Kong
& Dietterich (1995) and Breiman (1996).
Their decomposition suffers from some ma-
jor shortcomings though (e.g., potentially
negative variance), which our decomposition
avoids. We show that, in practice, the naive
frequency-based estimation of the decompo-
sition terms is by itself biased and show
how to correct for this bias. We illustrate
the decomposition on various algorithms and
datasets from the UCI repository.

1 Introduction

The bias plus variance decomposition (Geman, Bi-
enenstock & Doursat 1992) is a powerful tool from
sampling theory statistics for analyzing supervised
learning scenarios that have quadratic loss functions.
As conventionally formulated, 1t breaks the expected
cost given a fixed target and training set size into the
sum of three non-negative quantities:

Intrinsic “target noise” This quantity is a lower
bound on the expected cost of any learning algo-
rithm. It 1s the expected cost of the Bayes-optimal
classifier.
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Squared “bias” This quantity measures how closely
the learning algorithm’s average guess (over all
possible training sets of the given training set size)
matches the target.

“Variance” This quantity measures how much the
learning algorithm’s guess “bounces around” for
the different training sets of the given size.

In addition to the intuitive insight the bias and vari-
ance decomposition provides, 1t has several other use-
ful attributes. Chief among these is the fact that there
is often a “bias-variance tradeoff.” Often as one modi-
fies some aspect of the learning algorithm, it will have
opposite effects on the bias and the variance. For ex-
ample, usually as one increases the number of degrees
of freedom in the algorithm, the bias shrinks but the
variance increases. The optimal number of degrees
of freedom (as far as expected loss is concerned) is
the number of degrees of freedom that optimizes this
trade-off between bias and variance.

For classification, the quadratic loss function is often
inappropriate because the class labels are not numeric.
In practice, an overwhelming majority of researchers in
the Machine Learning community instead use expected
misclassification rate, which is equivalent to the zero-
one loss. Kong & Dietterich (1995) and Dietterich &
Kong (1995) recently proposed a bias-variance decom-
position for zero-one loss functions, but their proposal
suffers from some major problems, such as the possibil-
ity of negative variance, and only allowing the values
zero or one as the bias for a given test point.

In this paper, we provide an alternative zero-one loss
decomposition that does not suffer from these prob-
lems and that obeys the desiderata that bias and vari-
ance should obey, as discussed in Wolpert (submit-
ted). This paper is expository, being primarily con-
cerned with bringing the zero-one loss bias-variance



decomposition to the attention of the Machine Learn-
ing community.

After presenting our decomposition, we describe a set
of experiments that illustrate the effects of bias and
variance for some common induction algorithms. We
also discuss a practical problem with estimating the
quantities in the decomposition using the naive ap-
proach of frequency counts; the frequency-count esti-
mators are biased in a way that depends on the train-
ing set size. We show how to correct the estimators so
that they are unbiased.

2 Definitions
We use the following notation.

2.1 The underlying spaces

Let X and Y be the input and output spaces respec-
tively, with cardinalities |X| and |Y| and elements x
and y, respectively. To maintain consistency with
planned extensions of this paper, we assume that both
X and Y are countable. However this assumption is
not needed for this paper, provided all sums are re-
placed by integrals. In classification problems, YV is
usually a small finite set.

The “target” f is a conditional probability distribution
P(Yr = yr | x), where Yg is a Y-valued random
variable. Unless explicitly stated otherwise, we assume
that the target is fixed. As an example, if the target
is a noise-free function from X to Y, for any fixed x
we have P(Yp = yp | ©) = 1 for one value of yp, and
0 for all others.

The “hypothesis” h generated by a learning algorithm
is a similar distribution P(Yg = yg | @), where Yy
is a Y-valued random variable. As an example, if the
hypothesis is a single-valued function from X to Y, as
it is for many classifiers (e.g., decision trees, nearest-
neighbors), then P(Yy = yg | ) = 1 for one value of
ym, and 0 for all others.

We will drop the explicitly delineated random variables
from the probabilities when the context is clear. For
example, P(yz) will be used instead of P(Yg = ymr).

Proposition 1 Yr and Yy are conditionally indepen-
dent given f and a test point .

Proof: P(yr,yu | f,x) = P(yr | yu, f,2)P(yua | f,x) =
The last equality is true because (by definition) yp
depends only on the target f and the test point . |

The training set d 1s a set of m pairs of z—y values.
We do not make any assumptions about the distribu-
tion of pairs. In particular, our mathematical results
do not require them to be generated in an i.i.d. (in-
dependently and identically distributed) manner, as
commonly assumed.

To assign a penalty to a pair of values yp and yg, we
use the loss function £ : Y x Y — R. In this paper we
consider the zero-one loss function defined as

Lyp,yu) =1—-0(yr,ym),

where §(yr,ym) = 1 if yp = yg and 0 otherwise.

The cost, (', is a real-valued random variable defined
as the loss over the random variables Yy and Yg. So
the expected cost is

E(C) = Z Uy, yr)P(ym, yr) -

YH,YF

For zero-one loss, the cost is usually referred to as
misclassification rate and is derived as follows:

E(C) = Z (1 —0(ym,yr)] Py, yr)
= 1-> PYu=Yr=y). (1)

The notation used here is a simplified version of
the extended Bayesian formalism (EBF) described in
Wolpert (1994). In particular, the results of this pa-
per do not depend on how the X-values in the test set
are determined, so there is no need to define a random
variable for those X-values as is done in the full EBF.

3 Bias Plus Variance for Zero-One
Loss

We now show how to decompose the expected cost
into 1ts components and then provide geometric views
of this decomposition, in particular relating it to
quadratic loss in Euclidean spaces.

3.1 The Decomposition

We present the general result involving the expected
zero-one loss, F(C'), where the (implicit) conditioning
event i1s arbitrary. Then we specialize to the stan-
dard conditioning used in conventional sampling the-
ory statistics: a single test point, target, and training



set size.

E(Cy=1- Z P(Yu =Yr =y) (From equation 1)

= Z —PYa=Yr=uy)+ Z P(Yu = y)P(Yr = y)+
> [P0 =) PO =) + 3P(Vr =y +

—P(Yy = y)ﬂ +

l%_ %ZP(Ysz)2 + %— %ZP(YF =y)2] .

Rearranging the terms, we have F(C) =
> [PV = y)P(Yr =)

YyeEY
—P(Yr =Yg =y)]+ (“covariance”)
1 .
LS (P =) - PO =+ (ias®)
YyeEY
= (1 — Z P(Yy = y)2) + (“variance”)
YyeEY
1 _ 2 W 29
5(1—219(Yp—y)) (“o®7)  (2)
YyeEY

In this paper we are interested in E(C' | f,m), the
expected cost where the target is fixed and one aver-
ages over training sets of size m. One way to evaluate
this quantity is to write it as )~ P(z)E(C | f,m,x)
and then use Equation 2 to get E(C | f,m,z). By
Proposition 1, yg and yp are independent when one
conditions on f and x, hence the “covariance” term
vanishes. So

B(C) = Z P(z) (cri + bias> + Variancem) (3)
where
R 1
blasi = 5Z[P(YF =y|z)—P(Yn :y|x)]2
yeY
. _ 1 _ 2
varlance, = 3 (1— ZP(YH =y|x) )
yeY
2 _ 1 _ 2
o= 3 (I—ZP(Yp_y|x)) .
yeY

(To simplify the exposition, the f and m in the con-
ditioning events are still implicit even though x needs

to be explicit.) To better understand these formulas,
note that P(Yrp = y | ) is the probability (after any
noise is taken into account) that the fixed target takes
on the value y at point x. To understand the quantity
P(Yig =y | ), one must write it in full as

P(Yu =y| fym,z) =
ST P fym,e)P(Ya =y | d, f,m,0)
d

Y Pl fm)P(Ye =yl|dx). (4)

In this expression, P(d | f,m) is the probability
of generating training set d from the target f, and
P(Yy = y | d,z) is the probability that the learning
algorithm makes guess y for point  in response to the
training set d. So P(Yy = y | ) is the average (over
training sets generated from f) Y value guessed by the
learning algorithm for point .

Note that while the quadratic loss decomposition in-
volves quadratic terms, and the log loss decompo-
sition involves logarithmic terms (Wolpert submit-
ted), our zero-one loss decomposition does not involve
Kronecker delta terms, but rather involves quadratic
terms.

49

Our definitions of “bias?,” “variance,” and “noise”

obey some appropriate desiderata, including;:

1. The “bias?” term measures the squared difference
between the target’s average output and the al-
gorithm’s average output. It is a real-valued non-
negative quantity and equals zero only if P(Yr =
y|x) =Py =y |x) for all x and y. These
properties are shared by bias? for quadratic loss.

2. The variance term measures the “variability”
(over Yg) of P(Yy | «). Tt is a real-valued non-
negative quantity and equals zero for an algorithm
that always makes the same guess regardless of
the training set (e.g., the Bayes optimal classi-
fier). As the algorithm becomes more sensitive to
changes in the training set, the variance increases.
Moreover, given a distribution over training sets,
the variance only measures the sensitivity of the
learning algorithm to changes in the training set
and 1is independent of the underlying target. This
property is shared by variance for quadratic loss.

3. The noise measures the “variance” of the target in
that the definitions of variance and noise are iden-
tical except for the interchange of Yy and Yg. In
addition, the noise is independent of the learning
algorithm. This property is shared by noise for
quadratic loss.



In contrast to our definition of bias?, the definitions
of bias (for a fixed target and a given instance) sug-
gested in Kong & Dietterich (1995), Dietterich & Kong
(1995), and Breiman (1996) are only two-valued for
binary classification; they cannot quantify subtler lev-
els of mismatch between a learning algorithm and a
target. However, their decompositions have the ad-
vantage that their bias is zero for the Bayes optimal
classifier, while ours may not be.

The major distinction between the decompositions
arises in the variance term. All of the desiderata for
variance listed above are violated by the decomposi-
tions proposed by Kong & Dietterich (1995), Diet-
terich & Kong (1995), and Breiman (1996). Specifi-
cally, in their definitions the variance can be negative
and 1s not minimized by a classifier that ignores the
training set. Kong & Dietterich (1995) note this short-
coming explicitly. The following examples illustrates
the phenomenon for the decomposition suggested by
Breiman (1996). Assume a noise free target with 51%
heads and 49% tails. Consider an x for which the tar-
get has the value tails; the average error of a majority
classifier will be slightly above 50%, yet the probabil-
ity of error for the “aggregate” majority classifier will
be one. This causes the variance to be negative.

Another advantage of our decomposition is that its
terms are a continuous function of the target. An
infinitesimal change in the target, which changes the
class most commonly predicted by the learning algo-
rithm for a given z, will not cause a large change in
our bias, variance, or noise terms. In contrast, the
other definitions of bias and variance do not share this

property.

3.2 The Bias-Variance Decomposition in
Vector Form

We can rewrite Equation 2 in vector notation that
may give a better geometrical interpretation to the
decomposition. Define F = P(yr), H = P(ym), and
FH = P(yr, ym). F and H are vectors in RIY! with
their components indexed by Y values; FH is a matrix
in RYl « BT If we denote dot-products by “” and
the dot-product of a vector with itself by squaring it,
then

covariance = Tr(F_H) —F. i (Tr is the trace),

- S\ 2 -
(F—H) , variance — % (1—H2), and

3.3 Relation to the Quadratic Decomposition

To relate the zero-one loss decomposition to the more
familiar quadratic loss decomposition let Y} be an
B I_valued random variable restricted so that exactly
one of its components equals 1 and all others equal 0;
that single 1-valued component is the one with index
yr. So Y;w 18 Yp re-expressed as a vector on the unit
hypercube. Define Y;I similarly in terms of Y.

Since Y;w and Y;q are real-valued, we can define
quadratic loss over them. In particular, recalling that
squaring a vector is taking its dot product with itself,
we have

L oL |2 fyrFuym
i’ ={ e

Accordingly,

-

E {(Y} —YH)2 | f,m,x} = 2P(yn #yr | fim,z)
= 2E(CO_1 loss | fim,z) .

So by transforming the Y to a vector of indicator
variables, we see that the expected cost for zero-one
loss 1s one half the associated quadratic loss.

4 Experimental Methodology

We begin with a description of our experimental
methodology, and then discuss a problem with the
naive estimation of the terms in our decomposition by
using frequency counts.

4.1 Owur frequency counts experiments

To investigate the behavior of the terms in our decom-
position, we ran a set of experiments on UCI repository
(Murphy & Aha 1996). In each of those experiments,
for a given dataset and a given learning algorithm, we
estimated (the xz-average of) bias?, variance, intrinsic
noise, and overall error as follows.

1. We randomly divided each dataset into two parts,
D and E. D was used as if it were the “world”
from which we sample training sets, while £ was
used to evaluate the terms in the decomposition.
This idea is similar to the “bootstrap world” idea

in Efron & Tibshirani (1993, Chapter 8).

2. We generate N training sets from D, each gen-
erated using uniform random sampling without
replacement. (Note that our decomposition does



not require the training sets to be sampled in any
specific manner (Section 2).) To get training sets
of size m, we chose D to be of size 2m. This allows
for (Zm) different possible training sets, enough
m . .
to guarantee that we will not get many duplicate
training sets in our set of N training sets, even for
small values of m.

3. We ran the learning algorithm on each of the
training sets and estimated the terms in Equa-
tion 3 and 4 using the generated classifier for each
point x in the evaluation set E. (Equation 4 was
used to estimate p(ym|f, m,x).) At first, all these
terms were estimated using frequency counts.

Figure 1 (left) shows the estimate for bias? for different
values of N when ID3 (Quinlan 1986) was executed on
three datasets from the UCI repository. It is clear that
our estimate of bias? using frequency counts shrinks as
we increase N. Since infinite N gives the correct value
of bias?, this means that for any finite N the bias?
estimate is always itself biased upwards. The variance
term exhibits the opposite behavior: it 1s always biased
low. The right hand side of Figure 1 shows the behav-
ior with the corrected estimators we propose below in
subsection 4.2.

To see why this biasing behavior arises, fix y € Y
and z € X. We will demonstrate that the bias of our
frequency-based estimator of bias? holds for any such
y and x, which immediately implies that 1t holds when
one averages over y and z. Assume N 1s even and de-
fine n = N/2. Given a set of N training sets, one
option is to estimate bias? using two distinct sets of
n training sets, and to then average their estimates to
get an average n-training-set-based estimate. Another
option is to average over all N training sets directly to
get an N-training-set-based estimate. What we will
show is that averaged over sets of N = 2n training
sets, the former strategy results in a higher estimate
of bias® than the latter; the expected value of the es-
timate of bias? using n training sets is larger than the
expected value using 2n training sets. Since the esti-
mate using infinite sets is exactly correct, this means
that our estimate of bias? is biased upwards more as
fewer training sets are used.

Let i € {1,2} specify one of the two sets of n training
sets we’re examining. Define w; to be the average over
the training sets in set ¢ of P(Yg = y | x), i.e., w; =
Zj P(Yg =y | «,dij)/n, where d;; is the j’th training
set in set ¢. Let T be P(Yr = y | #) (see Equation 3).
We can now compute the expected difference between
the two ways of estimating the bias (estimating for

each set of n training sets and then averaging, minus
estimating based on the full set of N = 2n training
sets):

L %Zi=1,2 (T —wi)* — (T - %Zi:lQ w,)2:| =
%Zi=1,2 B [(T - w,)2] -E [(T - %Zi:lg wz)2:| .

By Jensen’s inequality (Cover & Thomas 1991), the
first term on the right hand side is larger or equal to
the second term. This shows that when we average
once (over 2n instances) rather than twice (over n in-
stances) we get a smaller estimate for the bias?, which
establishes the proposition. A similar argument holds
for variance, which gets larger as N grows.

4.2 Unbiased estimators of bias? and variance

One way to correct these biases in our frequency counts
estimators is to use a very large number of training
sets. Although such an approach would have been
feasible for our experiments, it is not in general; for
many combinations of learning problem and learning
algorithm, the associated computational requirements
are prohibitive.

Fortunately, there is a straight-forward correction we
can apply to our estimators to make them unbiased.!
Define wy as the frequency count estimate for P(Yy =
yn|f, m, x) based on the N training sets. Define Uy =
wy — T, where T' was defined above as P(Yr = y | 2).
The frequency counts estimate of bias? we used before
was UZ; our proposed estimator is Vy = UZ —wn (1 —
wn) /(N = 1).

Proposition 2 Under the assumption that we know
T'’s value, Vi is an unbiased estimator for bias’.

Proof: Since bias? = (E[Uy | n,T])*, we have to show
that

E[UX —wy(l—wn)/(N=1)| N T| = (E[Uy | n,T])

't is not obvious that one would want an unbiased es-
timator for the estimated quantities, since that does not
necessarily minimize expected error. (That is what the
bias-variance tradeoff is all about.) However, we felt that
getting an unbiased estimator would help understand the
problem better and experiments we did indicated that the
expected squared-error loss for our proposed unbiased es-
timator is smaller than that of the estimator based on the
naive use of frequency counts.
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Figure 1: The uncorrected bias (left) and corrected (right)

An unbiased estimator for the variance of the probabil-
ity in an N-sample Bernoulli process is the empirical
variance multiplied by N/(N — 1). Furthermore, be-
cause T' is fixed, the variance of Uy is equal to the
variance of wy. Thus we have

var(Uy|T,n) = var(wy|n) = wy(l —wn) /(N —=1) (5)
But by definition of variance, we have
var(Un|T,n) = E[Ux|T,n] — (E[U~|T,n])*>  (6)

Equating the right sides of Equations 5 and 6, we have
the desired result. |

The correction to the variance estimator is simply
given by negative the correction to the bias? estimator.
This can be shown using reasoning similar to the proof
just above, but it also follows from the bias-variance
decomposition itself and the fact that the frequency
counts estimator of error gives an unbiased estimate
of the zero-one loss.

It is important to realize that Proposition 2 implicitly
assumes that training sets are formed by i.1.d. sam-
pling a training-set-generating process. This is true for
our experimental methodology even though each run-
ning of our training-set-generating process is required
to produce training sets that contain no duplicate z —y
pairs; for the Proposition to apply it suffices to allow
duplicate training sets.

We conclude this section with a few comments.

1. The assumption underlying Proposition 2 that we
know T exactly is false, since we can only estimate
it from the data. However, our estimate of T is a
constant, independent of the number of training
sets or the details of the learning algorithm. So
errors in our estimate of 7' are not important.

2. A related point is that ¢? is very difficult to es-
timate in practice. Using a frequency count es-
timator the estimate of 02 would be zero if all
instances are unique (regardless of the true o?).
Since in the UCI datasets, almost all instances
are unique, we elected to define ¢? to be zero by
considering all instances to be unique. This can
be viewed as a calculational convenience, since we
are only concerned with the variation in expected
cost as we vary the learning algorithm, and the
estimate of ¢? is algorithm-independent

3. There is a possibility that Vy will give a negative
estimate of bias?. This is to be expected, given
that Vv is unbiased. If the true bias? equals zero,
for an estimator with variance greater than zero
to produce zero as its average estimate (as it must
if it is an unbiased estimator), it must sometimes
produce negative numbers.

This potentially negative estimate should be con-
trasted with the negative variances accompany-
ing the bias-variance decomposition in Kong &
Dietterich (1995) and Breiman (1996). Unlike
in their decomposition, in our decomposition the
true bias? and variance are always non-negative;
the potential for a negative value is a reflection
of the more problematic aspects of unbiased es-
timators, rather than of the underlying quantity
being estimated. In practice though, we always
had enough data so that negative bias? estimates
never occurred.

4.3 The Experiments

We now present experiments demonstrating the bias
and variance of induction algorithms for datasets from
the UCT repository (Murphy & Aha 1996). The
datasets were chosen so that they contain at least 500
instances (to ensure accurate estimates of error) and
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Figure 2: The bias plus variance decomposition for nearest-neighbor with varying number of neighbors. The
notation NN-£ indicates vote among the &k closest neighbors.

Table 1: The Datasets and their characteristics

Dataset No. Dataset  Train-set
features Size size
Anneal 38 898 100
Chess 36 3196 250
DNA 180 3186 100
LED-24 24 3200 250
Hypothyroid 25 3163 250
Segment 19 2310 250
Satimage 36 6435 250
Soybean-large 35 683 100
Tic-tac-toe 9 958 100

to demonstrate the range of potential bias-variance be-
haviors. Table 1 shows a summary of the datasets we
use. We use small training sets to make sure the eval-
uation set is large. In general, we chose size 100 for
datasets with less than 1,000 instances and 250 for
those with over 1,000 instances (except DNA which
has 180 features). We generated 50 training sets for
each learning algorithm (i.e., N = 50) and use the
unbiased estimators discussed above.

4.4 Varying the Number of Neighbors in
Nearest-Neighbor

Figure 2 shows the bias-variance decomposition of the
error for the nearest-neighbor algorithm with a varying
number of neighbors used.

In Anneal, Chess, and Tic-tac-toe, increasing the num-
ber of neighbors increases the bias and decreases the
variance; however, the bias increases much more than
the decrease in variance and the overall error increases.
In Anneal, the bias more than doubles when going
from one neighbor to three neighbors. In Tic-tac-toe,
the variance drastically decreases (it is 0.0001 for five
neighbors). The reason for this decrease in variance
is that instances in Tic-tac-toe vary on one to nine
squares; allowing neighbors with up to five differing
squares causes NN-H to let a large portion of the space
vote, in effect predicting the majority class (a constant
win for X) all the time.

In DNA and Led24, both bias? and variance decrease
as the number of neighbors increases. For DNA, bias?
shrinks by 0.07 and the variance by 0.05; for led24,
bias? shrinks by 0.09 and the variance by 0.05.

In Segment and Soybean, both the bias? and variance
increase as the number of neighbors is increased. We
have observed a general increase in variance when the
number of classes is large. Segment has seven classes
and Soybean has 19 classes. Increasing the number of
neighbors causes many ties which are broken arbitrar-
ily, thus increasing the variance.

In Hypothyroid and Satimage, the changes in bias?
and variance as the number of neighbors is changed
are small and almost cancel. For Hypothyroid, increas-
ing from one to three neighbors increases bias? from
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Figure 3: The bias and variance of ID3 and 50 aggregated ID3, with 0.9 and 0.7 of the training set. Aggregation
increases the bias slightly but stabilizes ID3 thus reducing the variance more.

0.029 to 0.035 and decreases the variance from 0.011
to 0.004. For Satimage, bias? increases from 0.103 to
0.118 and the variance decreases from 0.055 to 0.037.

Although most datasets exhibit a bias-variance trade-
off where one quantity goes up and the other goes down
as a parameter of the induction algorithm is varied, we
can see examples where both change in the same di-
rection.

4.5 Combining Classifiers

There has been a lot of work recently on combin-
ing classifiers, with the terms aggregation, averages,
ensembles, classifier combinations, voting, and stack-
ing commonly used (Wolpert 1992, Breiman 1994a,
Perrone 1993, Ali 1996). In the simplest scheme, mul-
tiple classifiers are generated and then vote for each
test instance, with the majority prediction used as the
final prediction.

Figure 3 shows ID3 versus a combination of 50 ag-
gregated trees. The 50 trees are generated by repeat-
edly sampling a subset of the training set and running
ID3. In contrast to bagging as defined in Breiman
(19944a), the samples used here were generated by uni-
form sampling without replacement. Two sample sizes
are shown: training sets with 0.7 of the training set
and with 0.9. Minor variations in the training set
may cause a different split, which might change the
whole subtree. As a consequence, decision trees are
very unstable, and therefore they usually gain by ag-

gregation techniques (Breiman 1994b). Note also that
the smaller the internal sample, the more bias we po-
tentially add (Gordon & Olshen 1984) but the more
different the classifiers will be, leading to a more sta-
ble average.

Our results show that in this voting scheme, the reduc-
tion in error is almost solely due to the reduction in
variance. While the bias goes up slightly, especially as
smaller training sets are used (samples of size 0.7), the
reduction in variance is significant and the total error
usually decreases. For our datasets, voting samples of
size 0.9 always reduced the error. Voting samples of
size 0.7 reduced the error even more in all datasets but
one (anneal).

5 Summary and Future Work

We presented a bias and variance decomposition for
misclassification error, which is equivalent to zero-one
loss, and showed that it obeys some desired criteria.
This decomposition does not suffer from the short-
comings of the decompositions suggested by Kong &
Dietterich (1995) and Breiman (19945). We showed
how estimating the terms in the decomposition us-
ing frequency counts leads to biased estimates and ex-
plained how to get unbiased estimators, which we later
used. We then gave some examples of the bias-variance
tradeoff using two machine learning algorithms and
several UCI datasets.

In the future we plan to investigate many extensions



of this work. In particular, we plan to investigate the
following topics:

1. The decomposition in Equation 2 holds for essen-
tially any conditioning event. It even holds if the
conditioning event is (d, z), as in Bayesian point
estimation; we have a bias-variance decomposi-
tion for a Bayesian quantity. The decomposition
also holds if z 1s not in the conditioning event,
so that no external average over x is required, as
it is in this paper. We intend to explore these
alternative conditioning events.

2. Since variance can be directly estimated using
the unlabelled instances of the test set, estimat-
ing overall error of a learning algorithm hinges
on estimating its bias?. We would like to test
whether better error estimates can be obtained by
using cross-validation-style partitions of the train-
ing set to estimate that bias and using unlabelled
instances from the test set to estimate the vari-
ance.

The bias and variance decomposition is an extremely
useful tool in Statistics that has rarely been utilized
before in Machine Learning because no decomposition
existed for misclassification rate. We hope that the
proposed decomposition will overcome this problem,
and thereby help us improve our understanding of su-
pervised learning.
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