
Updated September 25, 1998

D2.1.2 MLC++

Ron Kohavi Dan Sommerfield

ronnyk@engr.sgi.com sommda@engr.sgi.com

Data Mining and Visualization

Silicon Graphics, Inc.

2011 N. Shoreline Blvd, M/S 8U-850

Mountain View, CA, 94043

Abstract

MLC++, the Machine Learning library in C++ is a set of libraries and

utilities that can aid developers in interfacing machine learning technology, aid

users in selecting an appropriate algorithm for a given task, and aid researchers

in developing new algorithms, especially hybrid algorithms and multi-strategy

algorithms.

D2.1.2.1 Motivation for MLC++

A learning algorithm cannot outperform any other learning algorithm when the per-

formance measure is the expected generalization accuracy, assuming all possible tar-

get concepts are equally likely. This theoretical result, sometimes called the No Free

Lunch Theorem or Conservation Law (Mitchell 1982, Wolpert 1994, Schaffer 1994),

implies that it is impossible for any algorithm to have the highest generalization

accuracy in all domains.

The theorem has few interesting consequences in practice because users are interested

in performance on a specific domain or a set of domains, and not all concepts are

equally probable. For a given domain, comparisons certainly make sense and some

algorithms will perform better than others.

1



The ability to easily test and compare the performance of algorithms on given prob-

lems was one of the factors that motivated the development of MLC++. In many

cases, accuracy is not the sole measure of performance. Some domains may require

comprehensibility, compactness, fast deployment, incremental learning, etc. What-

ever the performance measure (Fayyad, Piatetsky-Shapiro & Smyth 1996), the ability

to try different algorithms and see their result is extremely useful.

Although there are many rules of thumb for choosing learning algorithms, we believe

the best method is to try several of them and see the results (Kohavi, Sommerfield

& Dougherty 1997).

MLC++ can serve three types of users:

1. System integrators, developers of tools, and developers of vertical applications

can use the libraries to integrate machine learning technology into products

and solutions. MineSetTM is the best example of this use. MLC++ is inte-

grated into a commercial data mining product sold by Silicon Graphics [link

to section D2.2.5] (Silicon Graphics 1998, Brunk, Kelly & Kohavi 1997), which

provides access to some of the algorithms inMLC++ through a graphical user

interface (GUI). In addition, it provides database access, transformations, and

visualizations.

2. Machine learning researchers developing learning algorithms can use the library

itself, modify it, add routines, and build hybrid algorithms.

3. Machine learning researchers and power users comparing learning algorithms

can use theMLC++ utilities to compare performance of different algorithms.

Users of type one and two use the library itself. Users of type three use the utili-

ties built on top of MLC++, which give a command-line interface to the underlying

functions.

D2.1.2.2 Short History of MLC++

The development of MLC++ started at Stanford University in the summer of 1993

and continued there for two years. The original library was public domain. Since

2



late 1995 the distribution and support have moved to Silicon Graphics (Kohavi &

Sommerfield 1995). Development ofMLC++ continues in the analytical data mining

group at Silicon Graphics. The original sources are still available as public domain;

the enhanced sources are also available off the web, although their use is restricted

to research use only.

Over 15 students worked on the project at Stanford, several over multiple quarters.

Today several people at Silicon Graphics work onMLC++ development and mainte-

nance as part of the MineSet product.

The MLC++ mailing list has over 800 subscribers. Over 1600 unique sites have

downloaded MLC++ source code.

D2.1.2.X MLC++ Algorithms

WhileMLC++ is useful for writing new algorithms, most users simply use it to test

different learning algorithms. Pressure from reviewers to compare new algorithms

with others led us to also interface induction algorithms written by other people.

MLC++ provides a uniform interface for these algorithms, termed external inducers.

The following induction algorithms were implemented inMLC++:

A constant predictor based on majority, a decision table (Kohavi & Sommerfield

1998), ID3 [link to section C5.1.3] (Quinlan 1986), Lazy decision trees (Friedman,

Kohavi & Yun 1996), nearest-neighbor [link to section C5.1.6] (Dasarathy 1990),

Naive-Bayes [link to section C5.1.5] (Domingos & Pazzani 1997), 1R (Holte 1993),

OODG (Kohavi 1995b), Option Decision Trees (Kohavi & Kunz 1997), Perceptron

[link to section C5.1.8] (Hertz, Krogh & Palmer 1991), and Winnow (Littlestone 1988).

The following external inducers are interfaced byMLC++:

C4.5 and C4.5-rules [link to section C5.1.3] Quinlan (1993), C5.0, CART (Breiman,

Friedman, Olshen & Stone 1984), CN2 [link to section C5.2] (Clark & Boswell 1991),

IB (Aha 1992), Neural Network: Aspirin/MIGRAINES [link to section C5.1.8] (Hertz

et al. 1991), OC1 (Murthy, Kasif & Salzberg 1994), PEBLS (Cost & Salzberg 1993),

Ripper (Cohen 1995), and T2 (Auer, Holte & Maass 1995).

3



Because algorithms are encapsulated as C++ objects inMLC++, we were able to build

useful wrappers. A wrapper is an algorithm that treats another algorithm as a black

box and acts on its output. Once an algorithm is written inMLC++, a wrapper may

be applied to it with no extra work.

The most important wrappers in MLC++ are performance estimators, feature selec-

tors, and ensemble creators. Performance estimators apply any of a range of methods,

including holdout, cross-validation, bootstrap (Kohavi 1995a), learning curves, and

ROC Curves (Provost & Fawcett 1997) to evaluate the performance of an inducer.

Feature selection methods run a search based on performance estimation using the

inducer itself to determine which attributes in the database are useful for learning.

The wrapper approach to feature selection automatically tailors the feature set to the

inducer being run (Kohavi & John 1997). Ensemble methods create different mod-

els and then combine their votes. MLC++ includes bagging, boosting, and several

variants (Bauer & Kohavi n.d., Breiman 1996, Freund & Schapire 1996).

In addition to the above, MLC++ supports a discretization wrapper/filter, which

pre-discretizes the data, allowing algorithms that do not support continuous features

(or those that do not handle them well) to work properly. A parameter optimization

wrapper allows tuning the parameters of an algorithm automatically based on a search

in the parameter space that optimizes the performance estimate of an inducer using

different parameters.

MLC++ Software Architecture

MLC++ is a class library for development of machine learning algorithms. Its software

architecture is particularly important as it is the foundation of the entire project.

Coding standards and safety MLC++ defines a set of coding standards and con-

ventions. Because MLC++ is a common framework for machine learning and

data mining research and because research results can easily be ruined by soft-

ware bugs, the MLC++ coding standards promote safety over efficiency. All

major classes in the library contain intensive integrity checks andMLC++ pro-

grams always abort at the first sign of an error. While this method may be

inappropriate for real-time systems, it helps guarantee the correctness of the

4



algorithms. MLC++ also incorporates an optional fast mode which deactivates

many of the checks.

Platforms MLC++ is a cross-platform library. Version 2.01 has been released for

SGI IRIX, Windows NT (using the Microsoft Visual C++ compiler), and gnu

g++. The g++ version may be used on most UNIX platforms including Solaris

and Linux. All compilation is handled by a cross-platform compilation wrapper

which selects the options most appropriate for the target platform. This wrap-

per script is designed to be extensible so that new platforms may be added with

ease.

MCore The MLC++ library is built around a set of foundation classes known as

MCore. MCore provides common classes such as Arrays, Hash Tables, and

Link Lists which are used heavily withinMLC++. It is a template-based library

similar in spirit to the Standard Template Library yet focusing more on code

safety.

Central learning classes The library contains an extensive set of machine learn-

ing support classes. These classes come in two varieties. The first set forms

an API for incorporating algorithms into MLC++. Algorithms writing to this

API gain the full benefits of MLC++: for example, an algorithm written as

an MLC++ classifier can immediately be run through the cross validation and

feature selection wrappers. The API covers classification, regression, cluster-

ing, automatic binning, and search algorithms. Algorithms written outside of

the library may be wrapped by external inducers which use the API. Once en-

closed in an MLC++ wrapper, the external inducer gains most of the benefits

of MLC++. For example, we can use our own bootstrap accuracy estimation

to compare results from C5.0 and our internal decision trees. The second set

of classes form the building blocks for data mining and machine learning al-

gorithms. Code for computing statistics, information theoretic measures (such

as entropy), and basic numerics is included in this set. We also provide a set

of data handling and simple transformation classes. Simple operations such as

removing attributes and discretization and all handled withinMLC++.

Wrappers The class-based architecture of MLC++ facilitates rapid development of

hybrid classification algorithms. Wrapper algorithms are particularly easy to

develop in MLC++. MLC++ wrappers use the concept of an Inducer, which

is a generic model-building class. To build a wrapper, one creates a subclass

5



of Inducer which incorporates another Inducer class within it. This method

allows the wrapper to use any algorithm implemented within the library’s API.

The library also provides a generic Categorizer class which represents a model.

Hybrid models may be constructed by embedding Categorizer classes within

each other. For example, the NBTree model (Kohavi 1996) embeds a Naive

Bayes models within a decision tree.

Persistent Models All models (classifiers, regressors, and clustering models) writ-

ten in MLC++ may be saved to disk in a common persistent format. These

models may be read back from disk for deployment or further modification.

The MLC++ library provides support tools and APIs for reading and writ-

ing these files. New models may be made persistent by following the library

guidelines. Hybrid models are automatically supported by the mechanism once

all internal parts are supported. The persistent model files are stored in an

extensible ASCII format.

Evaluation A main feature of MLC++ is providing an extensible framework for

data mining research. A large portion of this framework is a common set of

evaluation classes. These classes support evaluation methods like holdout, cross

validation, bootstrap, and learning curves, and may be applied to any algorithm

written as a subclass of the MLC++ Inducer. External inducers such as C5.0

may be evaluated with no extra work once they are plugged into MLC++.

The evaluation framework is also used as the basis for evaluating nodes in the

search space for search algorithms like feature subset search. The framework is

designed to be extensible so that new evaluation methods may be added and

immediately applied to the full range of algorithms.

Testing architecture To guarantee correctness of the code base, MLC++ includes

approximately 40,000 lines of automated testing code. Each module in the code

is fully tested under a range of conditions. The tests are calibrated so that they

produce identical output on different platforms as much as possible. Tests are

run in both fast mode (where most integrity checks are disabled for speed), and

two different levels of debugging.

Utilities MLC++ contains a set of machine learning utilities, written using the li-

brary. These utilities perform tasks such as induction of models, scoring of

records, and evaluation of the model building process. We also provide utilities

for association rule generation, discretization, and clustering. Aside from be-

ing useful in themselves, these applications provide good examples on the use

6



of MLC++. The majority of users interested in MLC++ have downloaded the

MLC++ utilities, which are available off the web as a standalone package for

several platforms.

Integration with MineSet

MLC++ integrates with MineSet(Silicon Graphics 1998, Brunk et al. 1997) to provide

the following features:

Database access MLC++ itself can only read data from flat files in the C4.5/UCI

format (C. Blake & Merz 1998). However, when coupled with MineSet,MLC++

is capable of taking input directly from Oracle, Informix, and Sybase databases.

Apply model/model deployment MineSet provides a scoring module usingMLC++

to apply classifiers stored in theMLC++ Persistent Classifier format. Any stored

classifier supported by MineSet may be applied using this method. Furthermore,

while MLC++ algorithms operate only on data loaded into memory, MineSet

provides a model deployment capability which runs directly from disk.

Transformations WhileMLC++ itself provides only limited data transformations,

a much more extensive set is available through MineSet. MLC++ itself handles

attribute removal (projection), binning, and simple feature construction. Mi-

neSet adds aggregation, more binning options, filtering, more advanced feature

construction, and an integrated ability to apply saved models to the data. If

it is connected to a database, MineSet can also read its data through an SQL

query, allowing more complex operations such as joins.

Mining tool options MLC++ contains an extensible system for handling the large

number of options needed to run a data mining algorithm. Options are passed

toMLC++ from MineSet through option files. While the contents of these files

are mostly determined by the MineSet user interface, the user may add addi-

tional options using a special file called .mineset-classopt. Using this file gives

advanced MineSet users access to the full range of MLC++ options, producing

greater flexibility in using MineSet.

7



MLC++ Visualization

MLC++ interfaces with two visualization packages: MineSet and GraphViz.

MLC++ generates MineSet visualizations for its decision tree, naive bayes, decision

table, clustering, and association rule algorithms. The visualizations are generated

in an ASCII format which may be read directly by MineSet. Visualizers may be

launched automatically if they are installed on theMLC++ target platform.

MLC++ also generates graph visualizations of all graph-based algorithms using Graphviz

(Dot/Dotty) from AT&T (Ellson, Gansner, Koutsofios & North 1998). These visu-

alizations include decision trees, decision graphs, and visual representations of the

search spaces used by the search engine.

D2.1.2.X Acknowledgment

The MLC++ project could not have started without the support of Nils Nilsson

and Yoav Shoham at Stanford University. MLC++ was partly funded by ONR grants

N00014-94-1-0448, N00014-95-1-0669, and NSF grant IRI-9116399. After the summer

of 1995, Silicon Graphics Inc. provided continued support forMLC++ as part of the

MineSet project.

References

Aha, D. W. (1992), ‘Tolerating noisy, irrelevant and novel attributes in instance-based

learning algorithms’, International Journal of Man-Machine Studies 36(1), 267–

287.

Auer, P., Holte, R. & Maass, W. (1995), Theory and applications of agnostic PAC-

learning with small decision trees, in A. Prieditis & S. Russell, eds, ‘Machine

Learning: Proceedings of the Twelfth International Conference’, Morgan Kauf-

mann.

Bauer, E. & Kohavi, R. (n.d.), ‘An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants’, Machine Learning p. To appear.

8



Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 24, 123–140.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984), Classification and

Regression Trees, Wadsworth International Group.

Brunk, C., Kelly, J. & Kohavi, R. (1997), MineSet: an integrated system for data

mining, in D. Heckerman, H. Mannila, D. Pregibon & R. Uthurusamy, eds,

‘Proceedings of the third international conference on Knowledge Discovery and

Data Mining’, AAAI Press, pp. 135–138.

http://mineset.sgi.com.

C. Blake, E. K. & Merz, C. (1998), ‘UCI repository of machine learning databases’.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Clark, P. & Boswell, R. (1991), Rule induction with CN2: Some re-

cent improvements, in Y. Kodratoff, ed., ‘Proceedings of the fifth

European conference (EWSL-91)’, Springer Verlag, pp. 151–163.

http://www.cs.utexas.edu/users/pclark/papers/newcn.ps.

Cohen, W. W. (1995), Fast effective rule induction, in A. Prieditis & S. Russell,

eds, ‘Machine Learning: Proceedings of the Twelfth International Conference’,

Morgan Kaufmann.

Cost, S. & Salzberg, S. (1993), ‘A weighted nearest neighbor algorithm for learning

with symbolic features’, Machine Learning 10(1), 57–78.

Dasarathy, B. V. (1990), Nearest Neighbor (NN) Norms: NN Pattern Classification

Techniques, IEEE Computer Society Press, Los Alamitos, California.

Domingos, P. & Pazzani, M. (1997), ‘Beyond independence: Conditions for the opti-

mality of the simple Bayesian classifier’, Machine Learning 29(2/3), 103–130.

Ellson, J., Gansner, E., Koutsofios, E. & North, S. (1998), Graphviz.

http://www.research.att.com/sw/tools/graphviz.

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996), From data mining to

knowledge discovery: An overview, in ‘Advances in Knowledge Discovery and

Data Mining’, AAAI Press and the MIT Press, chapter 1, pp. 1–34.

Freund, Y. & Schapire, R. E. (1996), Experiments with a new boosting algorithm,

in L. Saitta, ed., ‘Machine Learning: Proceedings of the Thirteenth National

Conference’, Morgan Kaufmann, pp. 148–156.

9



Friedman, J., Kohavi, R. & Yun, Y. (1996), Lazy decision trees, in ‘Proceedings of

the Thirteenth National Conference on Artificial Intelligence’, AAAI Press and

the MIT Press, pp. 717–724.

Hertz, J., Krogh, A. & Palmer, R. G. (1991), Introduction to the Theory of Neural

Computation, Addison Wesley.

Holte, R. C. (1993), ‘Very simple classification rules perform well on most commonly

used datasets’, Machine Learning 11, 63–90.

Kohavi, R. (1995a), A study of cross-validation and bootstrap for accuracy estimation

and model selection, in C. S. Mellish, ed., ‘Proceedings of the 14th International

Joint Conference on Artificial Intelligence’, Morgan Kaufmann, pp. 1137–1143.

http://robotics.stanford.edu/~ronnyk.

Kohavi, R. (1995b), Wrappers for Performance Enhancement and Oblivious Decision

Graphs, PhD thesis, Stanford University, Computer Science department. STAN-

CS-TR-95-1560,

http://robotics.Stanford.EDU/˜ronnyk/teza.ps.Z.

Kohavi, R. (1996), Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree

hybrid, in ‘Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining’, pp. 202–207. Available at

http://robotics.stanford.edu/users/ronnyk.

Kohavi, R. & John, G. H. (1997), ‘Wrappers for feature subset selection’, Artificial

Intelligence 97(1-2), 273–324.

http://robotics.stanford.edu/users/ronnyk.

Kohavi, R. & Kunz, C. (1997), Option decision trees with majority votes, in D. Fisher,

ed., ‘Machine Learning: Proceedings of the Fourteenth International Conference’,

Morgan Kaufmann Publishers, Inc., pp. 161–169. Available at

http://robotics.stanford.edu/users/ronnyk.

Kohavi, R. & Sommerfield, D. (1995), MLC++ utilities.

www.sgi.com/Technology/mlc.

Kohavi, R. & Sommerfield, D. (1998), Targeting business users with decision table

classifiers, in R. Agrawal, P. Stolorz & G. Piatetsky-Shapiro, eds, ‘Proceedings of

the Fourth International Conference on Knowledge Discovery and Data Mining’,

AAAI Press, pp. 249–253.

10



Kohavi, R., Sommerfield, D. & Dougherty, J. (1997), ‘Data mining usingMLC++: A

machine learning library in C++’, International Journal on Artificial Intelligence

Tools 6(4), 537–566.

http://www.sgi.com/Technology/mlc.

Littlestone, N. (1988), ‘Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm’, Machine Learning 2, 285–318.

Mitchell, T. M. (1982), ‘Generalization as search’, Artificial Intelligence 18, 203–226.

Reprinted in Shavlik and Dietterich (eds.) Readings in Machine Learning.

Murthy, S. K., Kasif, S. & Salzberg, S. (1994), ‘A system for the induction of oblique

decision trees’, Journal of Artificial Intelligence Research 2, 1–33.

Provost, F. & Fawcett, T. (1997), Analysis and visualization of classifier perfor-

mance: Comparison under imprecise class and cost distributions, in D. Heck-

erman, H. Mannila, D. Pregibon & R. Uthurusamy, eds, ‘Proceedings of the

third international conference on Knowledge Discovery and Data Mining’, AAAI

Press.

Quinlan, J. R. (1986), ‘Induction of decision trees’, Machine Learning 1, 81–106.

Reprinted in Shavlik and Dietterich (eds.) Readings in Machine Learning.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, California.

Schaffer, C. (1994), A conservation law for generalization performance, in ‘Machine

Learning: Proceedings of the Eleventh International Conference’, Morgan Kauf-

mann, pp. 259–265.

Silicon Graphics (1998), MineSet User’s Guide, Silicon Graphics, Inc.

http://mineset.sgi.com.

Wolpert, D. H. (1994), The relationship between PAC, the statistical physics frame-

work, the Bayesian framework, and the VC framework, in D. H. Wolpert, ed.,

‘The Mathematics of Generalization’, Addison Wesley.

11


