
Page 1 of 14

A short poster version to appear in KDD-2001

Real World Performance of Association Rule Algorithms

Zijian Zheng
Blue Martini Software
2600 Campus Drive

San Mateo, CA 94403, USA
+1 650 356 4223

zijian@bluemartini.com

Ron Kohavi
Blue Martini Software
2600 Campus Drive

San Mateo, CA 94403, USA
+1 650 356 4113

ronnyk@bluemartini.com

Llew Mason
Blue Martini Software
2600 Campus Drive

San Mateo, CA 94403, USA
+1 650 356 4136

lmason@bluemartini.com

ABSTRACT
Association rule discovery has been an active research area over
the past few years with several new proposals for algorithms that
improve the running time for generating association rules or
frequent itemsets. Several new algorithms were shown by their
authors to run faster then previously existing algorithms, although
benchmarks were typically done on artificial datasets. Unlike
classification algorithms, for which several large evaluations were
done by third parties, there have been no such evaluations for the
correctness and runtime performance of association algorithms.
This study compares five well-known association rule algorithms
using three real-world datasets and an artificial dataset from IBM
Almaden. The experimental results confirm the performance
improvements previously claimed by the authors on the artificial
data, but some of these gains do not carry over to the real datasets,
indicating overfitting of the algorithms to the IBM artificial
dataset. More importantly, we found that the choice of algorithm
only matters at support levels that generate more rules than would
be useful in practice. For support levels that generate less than
1,000,000 rules, which is much more than humans can handle and
is sufficient for prediction purposes where data is loaded into
RAM, Apriori finishes processing in less than 10 minutes. On
our datasets, we observed super-exponential growth in the number
of rules. On one of our datasets, a 0.02% change in the support
increased the number of rules from less than a million to over a
billion, implying that outside a very narrow range of support
values, the choice of algorithm is irrelevant.

Categories and Subject Descriptors
H.2.8 [Database Management]: Applications – Data Mining.
I.2.6 [Artificial Intelligence]: Learning.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Data Mining, Association Rules, Benchmark, Comparisons,
Frequent Itemsets, Market Basket Analysis, Affinity Analysis.

1. INTRODUCTION
Practically anyone wishing to do affinity analysis on products,
whether at a physical store or at an online store, will evaluate the
use of association algorithms. In addition, online sites want to use
such algorithms to evaluate page views that are associated in a
session in order to improve the layout of the site or recommend
related products to visitors. Because association algorithms are
sound and complete algorithms, they should, at least in theory,
generate the same output for the same parameters (e.g., support
and confidence) on the same data. Whether you build your own
association algorithm, whether you wish to license one, or you
wish to research and develop a new algorithm, it is important to
know how existing algorithms perform.

Over the last several years, the problem of efficiently generating
large numbers of association rules has been an active research
topic in the data mining community. Several different algorithms
have been developed with promising results. However, the
authors typically only show the performance advantages of their
new algorithms using artificial datasets provided by IBM
Almaden. To the authors’ best knowledge, there has been no
large third-party benchmark in the area of association rule
discovery, while several such comparisons have been performed
in other related areas of machine learning and data mining. For
example, the Statlog project compared 22 different classification
algorithms (including decision tree algorithms, rule algorithms,
and neural networks) on 23 datasets [9]. MLC++ has several
algorithms and a large comparison was done with 22 algorithms
on eight datasets [5]. Lim et. al. compared 33 classification
algorithms in terms of prediction accuracy, complexity, and
training time on 32 datasets [7].

This paper has three main contributions. Firstly, we provide the
first objective evaluation and comparison of several well-known
association rule algorithms on real-world e-commerce and retail
datasets. We are also donating one of these e-commerce datasets
for use in the research community. Secondly, we show that the
artificial datasets from IBM Almaden have very different
characteristics from our real-world datasets. Optimizing
algorithms for these artificial datasets can mislead research effort
if algorithms will be applied to real-world datasets similar to ours.
We are not against benchmark datasets; in fact we encourage more
benchmarks and hope to see more comparisons with our donated
dataset. However, the community has worked for several years
optimizing association algorithms against variants of one artificial
dataset and, as we show in the rest of the paper, recent
comparisons that show improvement against these artificial data

A short version of this paper is published in Proceedings of the Seventh
ACM-SIGKDD International Conference on Knowledge Discovery and
Data Mining, New York, NY: ACM,2001.

Page 2 of 14

do not show similar improvements on our real-world datasets.
Thirdly, and perhaps most interestingly, we show that the
association rule algorithms exhibit similar and surprising
performance characteristics on our datasets. We demonstrate that
for association rule generation, the choice of algorithm is
irrelevant for a large range of choices of the minimum support
parameter. For support levels that generate less than 100,000
rules, which is a very conservative upper bound for humans to sift
through even considering pruning un-interesting rules, Apriori
finishes on all datasets in less than 1 minute.1 For support levels
that generate less than 1,000,000 rules, which is sufficient for
prediction purposes where data is loaded into RAM, Apriori
finishes processing in less than 10 minutes. When the minimum
support is smaller, and hence the number of frequent itemsets and
association rules is very large, most algorithms either run out of
memory or run over our 150GB of allowed disk space due to the
huge number of frequent itemsets.

We first give a brief description of association rule discovery and
related concepts in Section 2. Then, in Sections 3, 4 and 5, we
describe the association rule algorithms and the datasets used in
the benchmarks, respectively. Section 6 reports our experimental
results and findings, followed by a discussion of the correctness of
the algorithms in Section 7. We give conclusions in Section 8.
The appendices contain tables giving detailed information about
the datasets and benchmark results.

2. ASSOCIATION RULE GENERATION
An association is a rule of the format: LHS � RHS, where LHS
and RHS stand for Left Hand Side and Right Hand Side
respectively. These are two sets of items (or equivalently
conjunctions of conditions) and do not share common items. The
rule can be read as “IF LHS THEN RHS”. A set of items is called
an itemset.

The goal of association rule discovery is to find associations
among items from a set of transactions, each of which contains a
set of items. Not all of the association rules discovered within a
transaction set are interesting or useful. Generally the algorithm
finds a subset of association rules that satisfy certain constraints.
The most commonly used constraint is minimum support. The
support of a rule is defined as the support of the itemset consisting
of both the LHS and the RHS.2 The support of an itemset is the
percentage of transactions in the transaction set that contain the
itemset. An itemset with a support higher than a given minimum
support is called frequent itemset. Similarly, a rule is frequent if
its support is higher than the minimum support. Minimum
confidence is another commonly used constraint for association
rules. The confidence of a rule is defined as the ratio of the
support of the rule and the support of the LHS. It is equivalent to

1 Liu, Hsu, and Ma [8] report an average reduction of a factor 72

from all association rules to pruned positively correlated rules,
and a factor 386 from all association rules to direction setting
rules. Even with these pruning and summarization techniques,
we still expect about 1389 pruned positive correlated rules and
259 direction setting rules, which in our opinion represents the
maximum rule base size a business person will be willing to sift
through.

2 Sometimes this is defined using only the LHS.

the probability that a transaction contains the RHS if the
transaction contains the LHS. A rule is confident if its confidence
is higher than a given minimum confidence. Lift is another
important measure for association rules. It is defined as the
confidence of the rule divided by the probability that a transaction
contains the RHS, indicating how much more confident we can be
regarding that a transaction contains the RHS if we know the
transaction contains the LHS. Generally speaking, a rule with
high support, high confidence, and high lift is good. However,
there is a trade-off among these three measures in practice.

Most association rule algorithms generate association rules in two
steps:

1. Generate all frequent itemsets; and
2. Construct all rules using these itemsets.

The foundation of this type of algorithm is the fact that any subset
of a frequent itemset must also be frequent, and that both the LHS
and the RHS of a frequent rule must also be frequent. Therefore,
every frequent itemset of size n can result in n association rules
with a single item RHS. The first step, generating all frequent
itemsets, is expensive in terms of computation, memory usage and
I/O resources. Much of the research effort in association rule
discovery has been devoted to improving the efficiency of this
first step. The second step, generating rules from all of the
frequent itemsets, is relatively straightforward, but it can still be
very expensive when solving real-world problems.

We have only briefly described the most basic concepts of
association rule discovery. For more detailed information, see
related technical publications [1][2][4][12][13].

3. ALGORITHMS
In this section we describe the software implementations of the
association rule algorithms used in our experiments. The five
algorithms evaluated were Apriori, Charm, FP-growth, Closet
and MagnumOpus. We provide references to articles describing
the details of the algorithm when available and also specify the
algorithms’ parameter settings used in our experiments (if any).
We started the experiments several months ago and published
preliminary results to the authors of the algorithms. Several
authors provided us with an updated version of their code to fix
bugs and/or improve the performance. We reran our experiments
with the new versions and noted below when updated versions
were received.

Apriori: Apriori is Christian Borgelt’s implementation of the
well-known Apriori association rule algorithm [1][2]. The source
code in C for this implementation is available under the “GNU
Lesser General Public License” from http://fuzzy.cs.uni-
magdeburg.de/~borgelt/.

Apriori takes transactional data in the form of one row for each
pair of transaction and item identifiers. It first generates frequent
itemsets and then creates association rules from these itemsets. It
can generate both association rules and frequent itemsets. Apriori
supports many different configuration settings. In our
experiments, we used the percentage of transactions that satisfy
both the LHS and the RHS of a rule as the support. We also
specified that Apriori should load the entire dataset into memory

http://fuzzy.cs.uni-magdeburg.de/~borgelt/
http://fuzzy.cs.uni-magdeburg.de/~borgelt/

Page 3 of 14

rather than making multiple database scans.3 Running Apriori
using multiple database scans would be significantly slower.

Charm: Charm is an algorithm for generating closed frequent
itemsets for association rules from transactional data [13]. A
closed frequent itemset is a subset of the corresponding frequent
itemset. This subset is necessary and sufficient to capture all of
the information about the frequent itemset. The closed frequent
itemsets are the smallest representative subset of a frequent
itemset without loss of information (under the lattice definition in
Zaki’s paper). For the formal definition of a closed frequent
itemset, see [13]. All possible association rules can be generated
from the association rules created from only the closed frequent
itemsets.

Charm takes transactional data in the form of one row for each
single complete transaction, with a customer identifier, a
transaction identifier, the number of items in the transaction, and a
list of items. The Charm implementation used in our experiments
was obtained from Mohammed Zaki on February 25, 2001, which
was an improved version of an earlier version after our
preliminary experimental results were shared with the author.
This implementation of Charm only generates the closed frequent
itemsets, and not the association rules.

FP-growth: FP-growth is an algorithm for generating frequent
itemsets for association rules from Jiawei Han’s research group at
Simon Fraser University. It generates all frequent itemsets
satisfying a given minimum support by growing a frequent pattern
tree structure that stores compressed information about the
frequent patterns. In this way, FP-growth can avoid repeated
database scans and also avoid the generation of a large number of
candidate itemsets [4].

Jiawei Han and Jian Pei provided the FP-growth implementation
used in our experiments. We received the final version of this
implementation on February 5, 2001, which significantly
improved the earlier version we used after our preliminary
experimental results were shared with the authors.

Closet: Closet is another frequent itemset generator for
association rules from Jiawei Han’s research group. Like Charm,
it generates only the closed frequent itemsets using the minimum
support constraint. For the details of this algorithm, see [10].

Again, Jiawei Han and Jian Pei provided the Closet
implementation used in our experiments. We received this
implementation on September 21, 2000. Both FP-growth and
Closet take transactional data in the form of one row for each
single complete transaction, with the number of items in the
transaction followed by a list of items. These implementations of
FP-growth and Closet only generate the frequent itemsets, and not
the association rules.

MagnumOpus: MO [12] is the command line application
shipped with the beta release of MagnumOpus1.2, a
commercial system for association rule discovery. The main
unique technique used in MagnumOpus is the search algorithm
based on OPUS [11], a systematic search method with pruning. It
considers the whole search space, but during the search,

3 Changing the main memory setting will not help Apriori finish

the failed runs as the transactional dataset itself is not large.

effectively prunes a large area of search space without missing
search targets provided that the targets can be measured using
certain criteria. Based on this technique, MagnumOpus can
efficiently find top-N association rules with respect to a search
criterion such as support or lift, which can be very useful in some
applications.

Geoff Webb provided the most recent implementation of MO used
in our experiments on February 1, 2001. MO directly generates
association rules from a dataset based on a specified search
preference. In addition to transactional data, it can also process
the data format of the C5 rules induction engine, that is, MO can
efficiently generate association rules from non-transactional
datasets or transactional datasets augmented with other
information. MO generates the top-N association rules based on
sorting rules by the coverage, leverage, lift, strength, or support
(see http://www.rulequest.com/MagnumOpus-info.html for the
definitions of these measures). MO only generates rules where
the RHS is a single item, while the LHS can be any size. To
speed up rule generation, MO can take the following constraints
as parameters: maximum size of the LHS, minimum coverage,
minimum support, minimum leverage, minimum lift, and
minimum strength. To compare with other association rule
algorithms, we ran MO with the following settings: search based
on support, all-associations, the default value (1 case) for
minimum coverage, the default value (0 cases) for minimum
leverage, minimum lift, and minimum strength. The maximum
size of the LHS was set to 1000 to effectively remove this
constraint. The minimum support was varied throughout the
experiments. To evaluate whether MO is efficient when
generating the top-N association rules, we ran the same set of
experiments replacing “all-associations” with “max-
associations=1000” to generate only the top 1000 rules. This
configuration is indicated in the results section using MO-1000.
We did not test MO with other pruning constraints such as
strength, which is claimed to improve performance significantly,
but changes the resulting associations generated.

4. DATASETS
We now describe the four datasets, IBM-Artificial, BMS-POS,
BMS-WebView-1 and BMS-WebView-2, used in our experiments.
To make it easier to bridge our benchmarks with previously
published experimental results we included the IBM-Artificial
dataset, typically designated T10I4D100K, which is often used in
the association rule research community. This dataset was
generated using a transaction data generator obtained from IBM
Almaden.4
The BMS-POS dataset contains several years worth of point-of-
sale data from a large electronics retailer. Since this retailer has
so many different products, we used product categories as items.
Each item thus represents a category, rather than an individual
product. The transaction in this dataset is a customer’s purchase
transaction consisting of all the product categories purchased at
one time. The goal for this dataset is to find associations between
product categories purchased by customers in a single visit to the
retailer.

4 The data generator is available from

http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData.

http://www.rulequest.com/MagnumOpus-info.html

Page 4 o

The BMS-WebView-1 and BMS-WebView-2 datasets contain
several months worth of clickstream data from two e-commerce
web sites. Each transaction in these datasets is a web session
consisting of all the product detail pages viewed in that session.
That is, each product detail view is an item. The goal for both of
these datasets is to find associations between products viewed by
visitors in a single visit to the web site. We are making the BMS-
WebView-1 dataset available to the research community. This
dataset comes from a small dot-com company called Gazelle.com,
a legwear and legcare retailer, which no longer exists; a portion of
their data was used in the KDD-Cup 2000 competition [6].5

Table 1 Dataset characteristics

Transac-
tions

Distinct
Items

Maximum
Trans.

Size

Average
Trans. Size

IBM-Artificial 100,000 870 29 10.1

BMS-POS 515,597 1,657 164 6.5

BMS-WebView-1 59,602 497 267 2.5

BMS-WebView-2 77,512 3,340 161 5.0

Table 1 characterizes the four datasets in terms of the number of
transactions, the number of distinct items, the maximum
transaction size, and the average transaction size. Figure 1 shows
the distributions of transaction sizes in the four datasets. Part of
the detailed transaction size distribution data is available in Table
15 and Table 16 in Appendix D. It is very clear that the artificial
dataset has a very different transaction size distribution from the
three real-world datasets, while the distributions of the three real-
world datasets are similar.

It is worth mentioning that all four benchmark datasets contain
sparse data, since most association rules discovery algorithms
were designed for these types of problems [12]. On non-sparse
datasets, the number of frequent itemsets and the number of
association rules grow even faster than what we see in these

5 After receiving a username and password from the KDD-Cup

2000 home page at http://www.ecn.purdue.edu/KDDCUP, the
dataset can be downloaded from http://www.ecn.purdue.edu/
KDDCUP/data/BMS-WebView-1.dat.gz.

0

10

20

30

40

50

0 5 10 15 20 25 30

Transaction size

Fr
eq

ue
nc

y
(%

)

IBM-Artif icial

BMS-WebView -1

BMS-WebView -2

BMS-POS

Figure 1. Dataset transaction size distribution.
10,000

100,000

1,000,000

10,000,000

0.00 0.02 0.04 0.06 0.08 0.10

Minimum support (%)

C
ou

nt

#Frequent Itemsets
#Association Rules
#Closed Frequent Itemsets

Figure 2. The number of frequent itemsets and association

rules at different minimum support levels on IBM-Artificial.
The two lines for frequent itemsets and closed frequent items

overlap at many data points.
f 14

experiments. For example, Zaki [13] showed that the number of
rules with single RHS grows from 1,846 to 170,067 when the
minimum support reduces from 97% to 90% on the Connect
domain from UCI [3]. Such high minimum supports are
uninteresting for many real world applications.

5. SUPER EXPONENTIAL GROWTH
Figures 2 through 5 show how the number of frequent itemsets,
the number of association rules, and the number of closed
frequent itemsets increase as the minimum support is reduced on
each of the four datasets. The detailed numbers are available in
Tables 3 through 6 in Appendix A. In all of these figures the
number of closed frequent itemsets is the number produced by
Charm. We can see that the number of rules and frequent itemsets

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

0.00 0.02 0.04 0.06 0.08 0.10

Minimum support (%)

C
ou

nt
#Frequent Itemsets
#Association Rules
#Closed Frequent Itemsets

Figure 3. The number of frequent itemsets and association rules
at different minimum support levels on BMS-POS. The two

lines for frequent itemsets and closed frequent items overlap at
many data points.

Page 5 of 14

increases super-exponentially on the three real-world datasets, in
contrast to the IBM-Artificial dataset, where the number of rules
and frequent items only increases exponentially (probably because
of the significantly larger average transaction size for the artificial
dataset). This, in conjunction with the difference between the
transaction size distributions, shows that the real-world datasets
have fundamentally different characteristics to the artificial

datasets typically used to benchmark the performance of
association rule algorithms.
Figures 6 and 7 show the ratio of the number of frequent itemsets
over the number of closed frequent itemsets on BMS-POS and
BMS-WebView-2 as two examples. The exponential growth in
the ratio when the minimum support decreases indicates the big
potential advantage of creating closed frequent itemsets over
frequent itemsets in terms of execution time and memory needed.
In Tables 3 through 6 in Appendix A, “Failed” indicates that we
do not have that value for the cell as the corresponding algorithm

failed due to bugs, out of memory, or over our 150GB disk space
limit. The three numbers marked using “*” in Table 5 were
estimated to give a feeling of how the number of frequent itemsets
can grow on a domain like BMS-WebView-1. We could not get
the true numbers for them as the algorithms ran over the disk
space limit at these minimum support levels on this dataset. To
estimate these numbers, we ran FP-growth once more at the

min
freq
freq
a c
last
0.0
we
evi
line
The
1,0
file
gro

1,000

10,000

100,000

1,000,000

10,000,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

C
ou

nt

#Frequent Itemsets
#Association Rules
#Closed Frequent Itemsets

Figure 4. The number of frequent itemsets and association

rules at different minimum support levels on BMS-WebView-
1. The two lines for frequent itemsets and closed frequent

items overlap at many data points.

10,000

100,000

1,000,000

10,000,000

100,000,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

C
ou

nt

#Frequent Itemsets
#Association Rules
#Closed Frequent Itemsets

Figure 5. The number of frequent itemsets and association

rules at different minimum support levels on BMS-WebView-
2. The two lines for frequent itemsets and closed frequent

items overlap at many data points.
1

1.1

1.2

1.3

1.4

1.5

1.6

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

R
at

io

Figure 6. The ratio of the number frequent itemsets
over the number of closed frequent itemsets on

BMS-POS

1
2
3
4
5
6
7
8
9

10

0.00 0.02 0.04 0.06 0.08 0.10

Minimum support (%)

R
at

io

Figure 7. The ratio of the number of frequent
itemsets over the number of closed frequent

itemsets on BMS-WebView-2

imum support level of 0.058%, resulting in 1,177,607
uent itemsets. We applied Log10 three times on the number of
uent itemsets, resulting in a super-exponential curve. To make

onservative estimation, we created a linear function using the
 three points (corresponding to the support levels 0.07%,
6%, and 0.058%) on the curve. The three estimated numbers
re computed using this function. We have three pieces of
dence indicating that the estimations are conservative: 1. The
ar function is used to estimate the super-exponential curve. 2.
 estimated value from the function for the level 0.058% is

78,571, much smaller than the true value 1,177,607. 3. The
 containing the 1,177,607 frequent itemsets generated by FP-
wth was 57MB, so the file containing the 3,782,775 frequent

Page 6 of 14

itemsets estimated at the level of 0.055% should be 183MB.
However, when running FP-growth at this level, the frequent
itemsets file was over 150GB when it ran out of disk space,
indicating a much faster growth. All these results suggest that for
some real-world datasets, when the minimum support is low, there
are too many frequent itemsets to be useful.

6. EXPERIMENTS
Each of the five algorithms described in Section 3 was tested on
the four datasets described in Section 4. The performance
measure was the execution time (seconds) of the algorithms on the
datasets with the following minimum support settings 1.00%,
0.80%, 0.60%, 0.40%, 0.20%, 0.10%, 0.08%, 0.06%, 0.04%,
0.02%, and 0.01%. The minimum confidence was always set to
zero. That is, we required no minimum confidence for the
generated association rules. Since some of the algorithms could
only generate frequent itemsets, and some others could directly
generate association rules, we measured the execution time for
both creating the frequent itemsets and for creating the association
rules whenever possible. Note that time for generating the
association rules includes the computation for generating the
frequent itemsets.

The computer used to run the experiments had dual 550MHz
Pentium III Xeon processors and 1 GB of memory. The operating
system used was Windows NT 4.0. To make the time
measurements more reliable, no other application was running on
the machine while the experiments were running. Although none
of the algorithms supported parallel processing, the second
processor helped to stabilize the measured results since system
processes could run on the other processor. To verify the stability
of the timing, we ran Apriori five times to generate the frequent
itemsets for BMS-WebView-1 with a minimum support level of
0.06%. The average running time was 110.5 seconds, with a
standard deviation of only 0.1 seconds.

6.1 Generating Frequent Itemsets
Figures 8 though 11 show performance curves for the four
algorithms that generate frequent itemsets, namely Closet, FP-
growth, Charm, and Apriori, on IBM-Artificial, BMS-POS, BMS-
WebView-1, and BMS-WebView-2 respectively. The vertical
axis is on a logarithmic scale (base 10). For each figure, the
bottom chart shows performance curves for the full range of
minimum supports from 0.01% to 1.00%, while the top chart
highlights the sub-range of the minimum supports from 0.01% to
0.10%. The detailed values for these results are listed in Tables 7
through 10 in Appendix B. MagnumOpus is not included in these
results because it cannot generate frequent itemsets.

The first thing to notice about these results is that when the
minimum support is large,6 such as 0.10% for BMS-WebView-1
or 0.40% for BMS-POS, all algorithms finish within a minute,
and hence the choice of algorithm in these cases is irrelevant. In
the remaining analysis, we focus only on the results where the
minimum supports ranges from 0.01% to 0.10% (the top chart in
each figure).

6 The definition of large is obviously dependent on the dataset.
1

10

100

1,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Charm
FP-growth
Apriori
Closet

1

10

100

1,000

0.00 0.20 0.40 0.60 0.80 1.00

Minimum support (%)
Ti

m
e

(s
ec

on
ds

)

Closet
Charm
FP-growth
Apriori

Figure 8. Running time of the algorithms for generating
frequent itemsets for IBM-Artificial.

100

1,000

10,000

100,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Charm

FP-grow th

Apriori

10

100

1,000

10,000

100,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Closet
Charm
FP-grow th
Apriori

Figure 9. Running time of the algorithms for generating

frequent itemsets for BMS-POS.

Page 7 of 14

For the artificial dataset, every algorithm outperforms Apriori by a
significant margin for minimum support values less than 0.10%.
FP-growth and Closet are one order of magnitude faster than
Apriori when the minimum support reaches 0.02%, which is
consistent with the results reported for previous experiments
[4][10][13]. It is clear that the performance improvement of FP-
growth over Apriori increases as the minimum support decreases,
indicating that FP-growth scales better than Apriori. The results
also show that FP-growth is consistently and significantly faster
than Charm and Closet. Charm is faster than Closet at all
minimum support levels except 0.02% and 0.04%, which differs
from the results reported in [10] where Closet is faster than
Charm. One explanation for this is that we are using a new
version of Charm which has some newly developed techniques,
while Closet is the old version. Based on our experimental
results, the latest implementation is significantly faster than
previous versions. To summarize, these results on the artificial
dataset support the conclusion that the new algorithms have
significant performance improvements over Apriori.

From the results for the three real-world datasets (Figures 9, 10,
and 11) we make the following observations:

1. For BMS-WebView-1, Closet is much slower than
every other algorithm for minimum support ranging
from 0.10% to 0.06%. At minimum support levels
below 0.06%, Closet used more than the 1GB available
memory. The same trend exists on BMS-WebView-2.
For BMS-POS, Closet ran out of memory once the
minimum support level reached 0.10%. These results
suggest Closet does not scale well on the real-world

datasets, which is contrary to the results on the artificial
dataset.

2. For all of the real-world datasets, FP-growth is faster
than Apriori, but the differences are not as large as on
the artificial dataset.

3. For all of the real-world datasets, Charm is much faster
than Apriori. The improvement is one order of
magnitude on BMS-POS when the minimum support is
0.02% or 0.01%, and on BMS-WebView-2 when the
minimum support is 0.06%, 0.04%, or 0.02%. It is two
orders of magnitude faster on BMS-WebView-1 when
the minimum support is 0.06%. On these datasets,
Charm is also faster than FP-growth.

4. Table 2 summarizes the rankings of the four algorithms
for generating frequent itemsets on the four datasets for
both high minimum supports and low minimum
supports used in the experiments. It is clear that with
high minimum supports, Apriori is always faster than
the others, and Charm is always slower than Apriori and
FP-growth. The reason could be that the frequent
itemsets are very short (with 2 or 3 items) and the
numbers of frequent itemsets are small with these high
minimum supports (see Table 3 through Table 6), and
Apriori can handle this type of problem quickly with
very little overhead while others have some overhead. It
seems that Charm’s overhead is larger than FP-

1

10

100

1,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Charm
FP-grow th
Apriori
Closet

0

1

10

100

1,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e
(s

ec
on

ds
) Closet

Charm
FP-grow th
Apriori

Figure 10. Running time of the algorithms for
generating frequent itemsets for BMS-WebView-1.

1

10

100

1,000

10,000

100,000

1,000,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Charm
FP-grow th
Apriori
Closet

0
1

10
100

1,000
10,000

100,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Closet
Charm
FP-grow th
Apriori

Figure 11. Running time of the algorithms for
generating frequent itemsets for BMS-WebView-2.

Page 8 of 14

growth’s. On the three real-world datasets with low

minimum supports, the ranking is always Charm > FP-
growth > Apriori > Closet. This shows the advantages
of the techniques in Charm and FP-growth when there
are many long frequent itemsets. Generating
significantly smaller numbers of frequent itemsets (only
closed) may partially explain the fast execution of
Charm.

5. None of the algorithms can handle too many frequent
itemsets. On BMS-WebView-1, with a minimum
support of 0.04%, both Apriori and FP-growth ran out
of disk space after writing over 150GB of data to disk.
Since Charm generated significantly less closed
frequent itemsets than all frequent itemsets on this
dataset, it continued to work until the minimum support
reached 0.01% when it ran out of memory. Even if a
much larger disk was available, it is questionable as to
how one could make use of so many frequent itemsets.
Since most algorithms (MagnumOpus being a notable
exception) generate all frequent itemsets as the basis for
generating associations, all these algorithms will fail on
this initial step of the overall process. Our results
indicate that if we need association rules for low level of
support, we need better techniques to filter association
rules and avoid generating frequent itemsets in order to
output a manageable number of associations.

Table 2. Rankings (left is better) of the algorithms for
generating frequent itemsets on the four datasets with high

minimum supports and low minimum supports (Ap: Apriori,
FP: FP-growth, Ch: Charm, Cl: Closet)

 High Min-Support Low Min-Support

 IBM-Artificial Ap > FP > Ch > Cl FP > Ch > Cl > Ap

 BMS-POS Ap > Cl > FP > Ch Ch > FP > Ap > Cl

 BMS-WebView-1 Ap > FP > Cl > Ch Ch > FP > Ap > Cl

 BMS-WebView-2 Ap > FP > Ch > Cl Ch > FP > Ap > Cl

6.2 Generating Association Rules
Figures 12 through 15 show performance curves of the two
algorithms that can generate association rules, MagnumOpus and
Apriori, on the four datasets, IBM-Artificial, BMS-POS, BMS-
WebView-1, and BMS-WebView-2, respectively. Since
MagnumOpus has an option for generating the top-N association
rules, we include MO-1000 for generating the top-1000 rules
sorted by support. The vertical time axis is on a logarithmic scale
(base 10). The time includes the running time for both creating
the frequent itemsets and creating the association rules. In each
figure, the bottom chart shows performance curves for the full
range of the minimum support from 0.01% to 1.00%, while the
top chart highlights the sub-range of the minimum support from
0.01% to 0.10%. The detailed values of these results are listed in
Tables 11 through 14 in Appendix C. Charm, FP-growth, and
Closet are not included in these results because they do not
generate association rules. As mentioned in the previous section,
we focus on the results where the minimum support ranges from
0.01% to 0.10%.

10

100

1,000

10,000

0.00 0.02 0.04 0.06 0.08 0.10

Minimum support (%)

Ti
m

e
(s

ec
on

ds
) Apriori

MO
MO-1000

1

10

100

1,000

10,000

0.00 0.20 0.40 0.60 0.80 1.00

Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

Figure 12. Running time of the algorithms for generating

association rules for IBM-Artificial.

10

100

1,000

10,000

100,000

1,000,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

10

100

1,000

10,000

100,000

1,000,000

0.00 0.20 0.40 0.60 0.80 1.00

Minimum support (%)

Ti
m

e
(s

ec
on

ds
) Apriori

MO
MO-1000

Figure 13. Running time of the algorithms for generating

association rules for BMS-POS.

Page 9 of 14

We make the following observations from these results:

1. Unrestricted MagnumOpus (MO) is significantly slower
than Apriori on all of the datasets. This is not
surprising, because these datasets are sparse and
MagnumOpus was not designed for this type of data
[12].

2. Both Apriori and MagnumOpus ran out of disk space
while generating the rules for BMS-WebView-1 when
the minimum support level reached 0.04%. This was
due to the fact that the number of rules created exceeded
the available disk space of 150GB.

3. MO-1000’s running time grows very slowly as the
minimum support level decreases, indicating that it
provides a solution when the number of association
rules is very large and only the top-N rules are needed
(based on some criteria such as lift or confidence).

7. CORRECTNESS OF THE ALGORITHMS
Apriori and FP-growth generated the same frequent itemset in
every experiment where we verified the generated itemsets by
hand.

From Tables 4 and 5, we can see that Charm generates more
closed frequent itemsets than there are frequent itemsets. The
reason for this disparity seems to be that it rounds a real-valued
number down to an integer in evaluating the absolute minimum

support, while all of the other algorithms round up. For example,
on BMS-WebView-1 with a minimum support of 1.00%, Apriori
generates 77 frequent itemsets while Charm generates 78 closed
frequent itemsets. We compared these two sets by hand, and
found that the 77 itemsets created by Apriori are contained within
the 78 itemsets generated by Charm. The one extra itemset is
{32201} and has a support of 596. This BMS-WebView-1
dataset has 59,602 transactions and a minimum support of 1.00%
corresponds to 596.02. Apriori rounds this up to 597, while
Charm rounds it down to 596. Charm therefore generates a
frequent set that is sometimes slightly below the minimum
support.

Charm and Closet do not match in terms of the number of closed
frequent itemsets in some experiments, and the difference is large
in some cases. For example, for the IBM-Artificial dataset, with a
minimum support of 0.40%, Charm and Closet generated 1997
and 1992 closed frequent itemsets respectively. However, with a
minimum support of 0.01% they generated 303,610 and 283,397
closed frequent items respectively, a difference of 20,213. Note
that there can be no rounding problem for this dataset since it has
exactly 100,000 transactions. Therefore, one or both of these
implementations seems to generate incorrect closed frequent
itemsets in some cases.

For generating association rules, MagnumOpus and Apriori do
not match in terms of the number of rules. One explanation is that
Apriori generates association rules with an empty LHS while
MagnumOpus does not. However, even taking this into account,
the number of generated rules still doesn’t match. For example,
on the IBM-Artificial dataset, with a minimum support of 0.40%,

1

10

100

1,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

0

1

10

100

1,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

Figure 14. Running time of the algorithms for generating

association rules for BMS-WebView-1.

1

10

100

1,000

10,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

0

1

10

100

1,000

10,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e
(s

ec
on

ds
)

Apriori
MO
MO-1000

Figure 15. Running time of the algorithms for generating

association rules for BMS-WebView-2.

Page 10 of 14

MagnumOpus generated 3,649 rules, while Apriori generated
4,278 rules with 3,648 rules having a non-empty LHS. The two
numbers differ by one, suggesting that one or both of these
implementations seems to generate incorrect rules in some cases.

These differences should clearly raise concern since these
algorithms should all be sound and complete and generate exactly
the same associations for the same input parameters. Authors
consistently showed improvements in execution time but rarely
mentioned correctness.

8. CONCLUSIONS
To better understand the performance characteristics of
association rule algorithms in the e-commerce and retail domains,
we benchmarked five well-known association rule algorithms
(Apriori, FP-growth, Closet, Charm, and Magnum-Opus) using
three real-world datasets (two e-commerce and one retail) and an
IBM Almaden artificial dataset.

The results show that the association rule algorithms that we
evaluated perform differently on our real-world datasets than they
do on the artificial dataset. The performance improvements
reported by previous authors can be seen on the artificial dataset,
but some of these gains do not carry over to the real datasets,
indicating that these algorithms overfit the IBM artificial dataset.
The primary reason for this seems to be that the artificial dataset
has very different characteristics, suggesting the need for
researchers to improve the artificial datasets used for association
rule research or use more real-world datasets. We donated one
such dataset for research use.

We also found that the choice of algorithm only matters at support
levels that generate more rules than would be useful in practice.
For a support level that generates a small enough number of rules
that a human could understand, Apriori finishes on all datasets in
under a minute, so performance improvements are not very
interesting. Even for support levels that generate around
1,000,000 rules, which is far more than humans can handle and is
typically sufficient for prediction purposes, Apriori finishes
processing in less than 10 minutes. Beyond this level of support,
the number of frequent itemsets and association rules grows
extremely quickly on the real-world datasets, and most algorithms
quickly run out of either memory or reasonable disk space.

It would be interesting to see whether the artificial datasets have a
closer similarity to real-world supermarket datasets (the traditional
domain for market basket analysis using association rules). Also,
when generating association rules, we didn’t experiment with
many of the different parameter settings (e.g., the minimum
confidence level), and it would be interesting to see how these
parameters impact performance and the number of associations
generated.

9. ACKNOWLEDGMENTS
We would like to thank Mohammed Zaki for providing the Charm
algorithm, Jiawei Han and Jian Pei for providing the FP-growth
and Closet algorithms, and Geoff Webb for providing the
MagunmOpus algorithm.

10. APPENDICES
A. Frequent Itemset Size, Association Rule
Sizes, and Longest Frequent Itemset Length

Table 3. IBM-Artificial

Minimum
Support

(%)

Frequent
Itemsets

Length of
Longest

Frequent
Itemsets

Association
Rules

Closed
Frequent
Itemsets

1.00 385 3 396 385

0.80 494 3 552 494

0.60 772 5 1,110 772

0.40 2,001 6 4,278 1,997

0.20 13,255 9 44,315 13,151

0.10 27,532 10 91,147 26,962

0.08 35,019 10 118,254 32,676

0.06 44,583 10 148,255 41,215

0.04 62,864 11 204,439 56,962

0.02 129,875 12 413,478 110,824

0.01 411,365 13 1,376,684 303,610

Table 4. BMS-POS

Minimum
Support

(%)

Frequent
Itemsets

Length of
Longest

Frequent
Itemsets

Association
Rules

Closed
Frequent
Itemsets

1.00 1,099 2 2,793 1,099

0.80 1,695 2 4,543 1,695

0.60 2,915 3 8,421 2,915

0.40 6,646 3 21,234 6,656

0.20 27,641 4 103,449 27,703

0.10 122,449 9 530,353 122,369

0.08 200,595 9 989,411 201,098

0.06 382,663 10 1,837,824 380,911

0.04 973,385 11 5,061,105 938,534

0.02 5,174,660 12 30,702,323 4,348,009

0.01 31,669,064 14 214,300,568 20,888,059

Page 11 of 14

Table 5. BMS-WebView-1

Minimum
Support

(%)

Frequent
Itemsets

Length of
Longest

Frequent
Itemsets

Association
Rules

Closed
Frequent
Itemsets

1.00 77 2 87 78

0.80 105 2 122 105

0.60 162 3 195 162

0.40 286 3 404 288

0.20 798 4 1,516 808

0.10 3,991 6 10,360 3,977

0.08 10,286 9 33,514 9,522

0.07 27,403 11 110,925 21,142

0.06 461,521 15 3,011,836 86,506

0.04 * 6.82×1010 Failed Failed 567,905

0.02 * 1.08×1026 Failed Failed 1,038,951

0.01 * 1.78×1045 Failed Failed Failed

Table 6. BMS-WebView-2

Minimum
Support

(%)

Frequent
Itemsets

Length of
Longest

Frequent
Itemsets

Association
Rules

Closed
Frequent
Itemsets

1.00 81 3 108 82

0.80 138 3 203 138

0.60 257 4 452 257

0.40 676 5 1,504 679

0.20 3,683 7 12,665 3,743

0.10 23,294 10 119.335 22,256

0.08 40,855 11 230,996 37,285

0.06 80.925 13 510,233 59.209

0.04 168,375 15 1.096.720 118,434

0.02 1,316,614 17 10,448,483 351,722

0.01 7,313,361 20 Failed 799,764

B. Running Time for Generating Frequent
Itemsets

All tables contain the time in seconds spent creating frequent
itemsets.

Table 7. IBM-Artificial

Minimum
Support

(%)
Closet Charm FP-growth Apriori

1.00 7.2 5.1 3.7 2.2

0.80 7.4 5.3 3.8 2.3

0.60 7.9 5.5 4.0 3.7

0.40 8.6 6.2 4.3 5.7

0.20 10.9 8.6 5.8 19.5

0.10 13.8 12.2 7.1 33.5

0.08 15.3 14.1 7.6 37.9

0.06 17.9 17.4 8.2 43.9

0.04 23.2 24.8 9.2 61.3

0.02 40.8 47.4 11.9 109.5

0.01 131.1 89.0 20.2 244.9

Table 8. BMS-POS

Minimum
Support

(%)
Closet Charm FP-growth Apriori

1.00 20.7 30.8 24.5 11.0

0.80 22.5 32.2 29.0 12.2

0.60 25.3 36.8 35.4 17.3

0.40 30.9 45.5 50.3 22.4

0.20 62.0 66.0 94.5 73.6

0.10 Failed 101.3 192.1 237.5

0.08 Failed 117.7 256.9 311.5

0.06 Failed 146.8 367.2 516.6

0.04 Failed 211.2 641.3 969.2

0.02 Failed 540.6 1,916.7 2,684.5

0.01 Failed 3,134.1 7,191.5 11,150.2

Page 12 of 14

Table 9. BMS-WebView-1

Minimum
Support

(%)
Closet Charm FP-growth Apriori

1.00 1.4 1.6 0.7 0.4

0.80 1.7 1.7 0.7 0.4

0.60 2.2 1.8 0.7 0.4

0.40 3.2 1.8 0.7 0.4

0.20 7.4 2.1 0.8 0.6

0.10 33.1 2.5 1.2 1.2

0.08 77.8 3.0 1.8 3.7

0.07 180.9 4.0 3.8 9.2

0.06 Failed 8.8 52.1 110.4

0.04 Failed 144.1 Failed Failed

0.02 Failed 408.7 Failed Failed

0.01 Failed Failed Failed Failed

Table 10. BMS-WebView-2

Minimum
Support

(%)
Closet Charm FP-growth Apriori

1.00 6.9 2.5 1.5 1.0

0.80 10.6 2.5 1.5 0.9

0.60 18.5 2.7 1.5 0.9

0.40 45.9 2.9 1.7 1.1

0.20 241.9 3.5 2.3 2.4

0.10 1,458.3 5.2 5.9 9.1

0.08 2,380.8 6.6 8.8 14.4

0.06 3,950.8 8.5 15.7 27.8

0.04 7,529.8 13.4 29.0 58.2

0.02 26,662.8 33.5 136.5 423.8

0.01 Failed 78.5 792.5 Failed

C. Running Time for Creating Association
Rules

All tables contain the time in seconds spent creating association
rules.

Table 11. IBM-Artificial

Minimum
Support (%)

Apriori MO MO-1000

1.00 2.3 18.9 18.7

0.80 2.4 25.8 23.8

0.60 3.6 33.6 29.9

0.40 5.8 50.4 37.0

0.20 20.2 71.7 41.9

0.10 34.8 82.9 44.8

0.08 39.8 100.5 45.7

0.06 47.5 141.2 46.4

0.04 65.0 272.0 47.4

0.02 102.4 970.9 48.2

0.01 268.0 3,137.0 48.7

Table 12. BMS-POS

Minimum
Support (%)

Apriori MO MO-1000

1.00 11.1 25.5 21.8

0.80 12.3 30.6 22.3

0.60 17.4 40.3 23.6

0.40 22.7 65.2 25.5

0.20 75.4 179.1 28.7

0.10 246.6 643.8 32.4

0.08 327.6 1,015.0 34.1

0.06 550.0 1,864.5 35.9

0.04 1,064.8 4,576.8 39.0

0.02 3,300.5 23,559.7 44.7

0.01 16,084.3 143,701.8 49.5

Page 13 of 14

Table 13. BMS-WebView-1

Minimum
Support (%)

Apriori MO MO-1000

1.00 0.4 1.0 0.9

0.80 0.4 1.0 1.0

0.60 0.4 1.8 1.7

0.40 0.4 2.7 2.7

0.20 0.6 5.2 5.2

0.10 1.3 9.7 6.3

0.08 4.2 15.1 6.4

0.07 11.1 29.5 6.4

0.06 176.8 453.1 6.6

0.04 Failed Failed 6.8

0.02 Failed Failed 7.3

0.01 Failed Failed 7.7

Table 14. BMS-WebView-2

Minimum
Support (%)

Apriori MO MO-1000

1.00 0.8 2.4 2.3

0.80 0.9 2.4 2.4

0.60 0.9 3.1 3.2

0.40 1.1 5.9 5.8

0.20 2.6 27.0 10.1

0.10 11.4 127.2 17.1

0.08 19.3 205.6 19.9

0.06 40.2 377.7 23.8

0.04 84.7 712.8 28.7

0.02 695.5 4,860.6 35.4

0.01 Failed Failed 40.1

D. Distribution of Dataset Transaction Sizes

Table 15. Distribution of transaction sizes for each dataset (I)

 Number of Transactions by Transaction Size
 1 2 3 4 5
 IBM-Artificial 128 545 1,607 3,287 4,849
 BMS-POS 80,278 75,431 61,242 50,124 39,908
 BMS-WebView-1 32,935 10,861 5,378 3,591 1,972
 BMS-WebView-2 24,893 13,548 8,826 6,204 4,573

Table 16. Distribution of transaction sizes for each dataset (II)

 Number of Transactions by Transaction Size

 6 7 8 9 10 > 10
 IBM-Artificial 6,525 7,990 9,759 10,471 10,892 43,947

 BMS-POS 32,229 26,050 22,237 18,236 15,378 94,484

 BMS-WebView-1 1,220 908 639 420 315 1,363
 BMS-WebView-2 3,624 2,734 2,139 1,736 1,401 7,834

11. REFERENCES
[1] Agrawal, R., Imielinski, T., and Swami, A. Mining

associations between sets of items in massive
databases. In Proceedings of the ACM-SIGMOD
International Conference on Management of Data, 207-
216.

[2] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H.,
and Verkamo, A.I. Fast discovery of association rules.
In U. Fayyad et al. (eds), Advances in Knowledge
Discovery and Data Mining, Menlo Park, CA: AAAI
Press, 307-328.

[3] Blake, C.L., and Merz, C.J. UCI Repository of
machine learning databases [http://www.ics.uci.edu/
~mlearn/MLRepository.html]. Irvine, CA: University
of California, Dept of Information and Computer
Science, 1998.

[4] Han, J., Pei, J., and Yin, Y. Mining frequent patterns
without candidate generation. In Proceedings of ACM-
SIGMOD International Conference on Management of
Data.

[5] Kohavi, R., Sommerfield, D., and Dougherty, J. Data
mining using MLC++: A machine learning library in
C++, International Journal on Artificial Intelligence
Tools 6(4), 537-566. http://www.sgi.com/Technology/
mlc.

[6] Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., and
Zheng, Z. KDD-Cup 2000 Organizers’ Report: Peeling
the Onion, SIGKDD Exploration 2(2), 2000, 86-93.

http://www.sgi.com/Technology/

Page 14 of 14

[7] Lim, T., Loh, W., and Shih, Y. A comparison of
prediction accuracy, complexity, and training time of
thirty-three old and new classification algorithms, to
appear in Machine Learning (available from http://
www.recursive-partitioning.com/Bibliography/Journal_
Articles/Theory_and_Methodology/more2.html).

[8] Liu, B., Hsu, W., and Ma, Y. Pruning and summarizing
the discovered associations. In Proceedings of the Fifth
ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York,
NY: ACM, 125-134.

[9] Michie, D., Spiegelhalter, D.J., and Taylor, C.C. (eds.).
Machine Learning, Neural and Statistical Classification
(STATLOG Project), Herfordshire: Ellis Horwood.

[10] Pei, J., Han, J., and Mao, R. CLOSET: An efficient
algorithm for mining frequent closed itemsets. In

Proceedings of ACM_SIGMOD International
Workshop on Data Mining and Knowledge Discovery.

[11] Webb, G.I. OPUS: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence
Research, 3:431-465.

[12] Webb, G.I. Efficient search for association rules. In
Proceedings of the Sixth ACM-SIGKDD International
Conference on Knowledge Discovery and Data
Mining, New York, NY: ACM, 99-107.

[13] Zaki, M.J. Generating non-redundant association rules.
In Proceedings of the Sixth ACM-SIGKDD
International Conference on Knowledge Discovery and
Data Mining, New York, NY: ACM, 34-43.

http:// www.recursive-partitioning.com/Bibliography/
http:// www.recursive-partitioning.com/Bibliography/

	INTRODUCTION
	ASSOCIATION RULE GENERATION
	ALGORITHMS
	DATASETS
	SUPER EXPONENTIAL GROWTH
	EXPERIMENTS
	Generating Frequent Itemsets
	Generating Association Rules

	CORRECTNESS OF THE ALGORITHMS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	APPENDICES
	REFERENCES

