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ABSTRACT 
Association rule discovery has been an active research area over 
the past few years with several new proposals for algorithms that 
improve the running time for generating association rules or 
frequent itemsets.  Several new algorithms were shown by their 
authors to run faster then previously existing algorithms, although 
benchmarks were typically done on artificial datasets.  Unlike 
classification algorithms, for which several large evaluations were 
done by third parties, there have been no such evaluations for the 
correctness and runtime performance of association algorithms. 
This study compares five well-known association rule algorithms 
using three real-world datasets and an artificial dataset from IBM 
Almaden.  The experimental results confirm the performance 
improvements previously claimed by the authors on the artificial 
data, but some of these gains do not carry over to the real datasets, 
indicating overfitting of the algorithms to the IBM artificial 
dataset.  More importantly, we found that the choice of algorithm 
only matters at support levels that generate more rules than would 
be useful in practice. For support levels that generate less than 
1,000,000 rules, which is much more than humans can handle and 
is sufficient for prediction purposes where data is loaded into 
RAM, Apriori finishes processing in less than 10 minutes.   On 
our datasets, we observed super-exponential growth in the number 
of rules. On one of our datasets, a 0.02% change in the support 
increased the number of rules from less than a million to over a 
billion, implying that outside a very narrow range of support 
values, the choice of algorithm is irrelevant.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Applications – Data Mining. 
I.2.6 [Artificial Intelligence]: Learning. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Data Mining, Association Rules, Benchmark, Comparisons, 
Frequent Itemsets, Market Basket Analysis, Affinity Analysis. 

1. INTRODUCTION 
Practically anyone wishing to do affinity analysis on products, 
whether at a physical store or at an online store, will evaluate the 
use of association algorithms. In addition, online sites want to use 
such algorithms to evaluate page views that are associated in a 
session in order to improve the layout of the site or recommend 
related products to visitors.  Because association algorithms are 
sound and complete algorithms, they should, at least in theory, 
generate the same output for the same parameters (e.g., support 
and confidence) on the same data.   Whether you build your own 
association algorithm, whether you wish to license one, or you 
wish to research and develop a new algorithm, it is important to 
know how existing algorithms perform. 

Over the last several years, the problem of efficiently generating 
large numbers of association rules has been an active research 
topic in the data mining community.  Several different algorithms 
have been developed with promising results.  However, the 
authors typically only show the performance advantages of their 
new algorithms using artificial datasets provided by IBM 
Almaden.  To the authors’ best knowledge, there has been no 
large third-party benchmark in the area of association rule 
discovery, while several such comparisons have been performed 
in other related areas of machine learning and data mining.  For 
example, the Statlog project compared 22 different classification 
algorithms (including decision tree algorithms, rule algorithms, 
and neural networks) on 23 datasets [9].   MLC++ has several 
algorithms and a large comparison was done with 22 algorithms 
on eight datasets [5].  Lim et. al. compared 33 classification 
algorithms in terms of prediction accuracy, complexity, and 
training time on 32 datasets [7]. 

This paper has three main contributions.  Firstly, we provide the 
first objective evaluation and comparison of several well-known 
association rule algorithms on real-world e-commerce and retail 
datasets.  We are also donating one of these e-commerce datasets 
for use in the research community.  Secondly, we show that the 
artificial datasets from IBM Almaden have very different 
characteristics from our real-world datasets.  Optimizing 
algorithms for these artificial datasets can mislead research effort 
if algorithms will be applied to real-world datasets similar to ours.   
We are not against benchmark datasets; in fact we encourage more 
benchmarks and hope to see more comparisons with our donated 
dataset.  However, the community has worked for several years 
optimizing association algorithms against variants of one artificial 
dataset and, as we show in the rest of the paper, recent 
comparisons that show improvement against these artificial data 

 

A short version of this paper is published in Proceedings of the Seventh  
ACM-SIGKDD International Conference on Knowledge Discovery and 
Data Mining, New York, NY: ACM,2001. 
 



Page 2 of 14 

do not show similar improvements on our real-world datasets. 
Thirdly, and perhaps most interestingly, we show that the 
association rule algorithms exhibit similar and surprising 
performance characteristics on our datasets.  We demonstrate that 
for association rule generation, the choice of algorithm is 
irrelevant for a large range of choices of the minimum support 
parameter.  For support levels that generate less than 100,000 
rules, which is a very conservative upper bound for humans to sift 
through even considering pruning un-interesting rules, Apriori 
finishes on all datasets in less than 1 minute.1  For support levels 
that generate less than 1,000,000 rules, which is sufficient for 
prediction purposes where data is loaded into RAM, Apriori 
finishes processing in less than 10 minutes.  When the minimum 
support is smaller, and hence the number of frequent itemsets and 
association rules is very large, most algorithms either run out of 
memory or run over our 150GB of allowed disk space due to the 
huge number of frequent itemsets. 

We first give a brief description of association rule discovery and 
related concepts in Section 2. Then, in Sections 3, 4 and 5, we 
describe the association rule algorithms and the datasets used in 
the benchmarks, respectively.  Section 6 reports our experimental 
results and findings, followed by a discussion of the correctness of 
the algorithms in Section 7.   We give conclusions in Section 8.  
The appendices contain tables giving detailed information about 
the datasets and benchmark results. 

2. ASSOCIATION RULE GENERATION 
An association is a rule of the format: LHS � RHS, where LHS 
and RHS stand for Left Hand Side and Right Hand Side 
respectively. These are two sets of items (or equivalently 
conjunctions of conditions) and do not share common items. The 
rule can be read as “IF LHS THEN RHS”. A set of items is called 
an itemset. 

The goal of association rule discovery is to find associations 
among items from a set of transactions, each of which contains a 
set of items.  Not all of the association rules discovered within a 
transaction set are interesting or useful.  Generally the algorithm 
finds a subset of association rules that satisfy certain constraints.  
The most commonly used constraint is minimum support.  The 
support of a rule is defined as the support of the itemset consisting 
of both the LHS and the RHS.2 The support of an itemset is the 
percentage of transactions in the transaction set that contain the 
itemset.  An itemset with a support higher than a given minimum 
support is called frequent itemset.  Similarly, a rule is frequent if 
its support is higher than the minimum support.  Minimum 
confidence is another commonly used constraint for association 
rules.  The confidence of a rule is defined as the ratio of the 
support of the rule and the support of the LHS.  It is equivalent to 

                                                                 
1 Liu, Hsu, and Ma [8] report an average reduction of a factor 72 

from all association rules to pruned positively correlated rules, 
and a factor 386 from all association rules to direction setting 
rules. Even with these pruning and summarization techniques, 
we still expect about 1389 pruned positive correlated rules and 
259 direction setting rules, which in our opinion represents the 
maximum rule base size a business person will be willing to sift 
through. 

2 Sometimes this is defined using only the LHS. 

the probability that a transaction contains the RHS if the 
transaction contains the LHS.  A rule is confident if its confidence 
is higher than a given minimum confidence.  Lift is another 
important measure for association rules.  It is defined as the 
confidence of the rule divided by the probability that a transaction 
contains the RHS, indicating how much more confident we can be 
regarding that a transaction contains the RHS if we know the 
transaction contains the LHS.  Generally speaking, a rule with 
high support, high confidence, and high lift is good.  However, 
there is a trade-off among these three measures in practice. 

Most association rule algorithms generate association rules in two 
steps: 

1. Generate all frequent itemsets; and  
2. Construct all rules using these itemsets. 

The foundation of this type of algorithm is the fact that any subset 
of a frequent itemset must also be frequent, and that both the LHS 
and the RHS of a frequent rule must also be frequent.  Therefore, 
every frequent itemset of size n can result in n association rules 
with a single item RHS.  The first step, generating all frequent 
itemsets, is expensive in terms of computation, memory usage and 
I/O resources.  Much of the research effort in association rule 
discovery has been devoted to improving the efficiency of this 
first step.  The second step, generating rules from all of the 
frequent itemsets, is relatively straightforward, but it can still be 
very expensive when solving real-world problems. 

We have only briefly described the most basic concepts of 
association rule discovery. For more detailed information, see 
related technical publications [1][2][4][12][13]. 

3. ALGORITHMS 
In this section we describe the software implementations of the 
association rule algorithms used in our experiments.  The five 
algorithms evaluated were Apriori, Charm, FP-growth, Closet 
and MagnumOpus.  We provide references to articles describing 
the details of the algorithm when available and also specify the 
algorithms’ parameter settings used in our experiments (if any).  
We started the experiments several months ago and published 
preliminary results to the authors of the algorithms.   Several 
authors provided us with an updated version of their code to fix 
bugs and/or improve the performance.  We reran our experiments 
with the new versions and noted below when updated versions 
were received. 

Apriori:  Apriori is Christian Borgelt’s implementation of the 
well-known Apriori association rule algorithm [1][2].  The source 
code in C for this implementation is available under the “GNU 
Lesser General Public License” from http://fuzzy.cs.uni-
magdeburg.de/~borgelt/.  

Apriori takes transactional data in the form of one row for each 
pair of transaction and item identifiers.  It first generates frequent 
itemsets and then creates association rules from these itemsets.  It 
can generate both association rules and frequent itemsets.  Apriori 
supports many different configuration settings.  In our 
experiments, we used the percentage of transactions that satisfy 
both the LHS and the RHS of a rule as the support.  We also 
specified that Apriori should load the entire dataset into memory 

http://fuzzy.cs.uni-magdeburg.de/~borgelt/
http://fuzzy.cs.uni-magdeburg.de/~borgelt/
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rather than making multiple database scans.3 Running Apriori 
using multiple database scans would be significantly slower. 

Charm:  Charm is an algorithm for generating closed frequent 
itemsets for association rules from transactional data [13]. A 
closed frequent itemset is a subset of the corresponding frequent 
itemset.  This subset is necessary and sufficient to capture all of 
the information about the frequent itemset.  The closed frequent 
itemsets are the smallest representative subset of a frequent 
itemset without loss of information (under the lattice definition in 
Zaki’s paper).  For the formal definition of a closed frequent 
itemset, see [13].  All possible association rules can be generated 
from the association rules created from only the closed frequent 
itemsets. 

Charm takes transactional data in the form of one row for each 
single complete transaction, with a customer identifier, a 
transaction identifier, the number of items in the transaction, and a 
list of items.  The Charm implementation used in our experiments 
was obtained from Mohammed Zaki on February 25, 2001, which 
was an improved version of an earlier version after our 
preliminary experimental results were shared with the author.  
This implementation of Charm only generates the closed frequent 
itemsets, and not the association rules. 

FP-growth: FP-growth is an algorithm for generating frequent 
itemsets for association rules from Jiawei Han’s research group at 
Simon Fraser University.  It generates all frequent itemsets 
satisfying a given minimum support by growing a frequent pattern 
tree structure that stores compressed information about the 
frequent patterns.  In this way, FP-growth can avoid repeated 
database scans and also avoid the generation of a large number of 
candidate itemsets [4]. 

Jiawei Han and Jian Pei provided the FP-growth implementation 
used in our experiments.  We received the final version of this 
implementation on February 5, 2001, which significantly 
improved the earlier version we used after our preliminary 
experimental results were shared with the authors. 

Closet:  Closet is another frequent itemset generator for 
association rules from Jiawei Han’s research group.  Like Charm, 
it generates only the closed frequent itemsets using the minimum 
support constraint.  For the details of this algorithm, see [10]. 

Again, Jiawei Han and Jian Pei provided the Closet 
implementation used in our experiments.  We received this 
implementation on September 21, 2000.  Both FP-growth and 
Closet take transactional data in the form of one row for each 
single complete transaction, with the number of items in the 
transaction followed by a list of items.  These implementations of 
FP-growth and Closet only generate the frequent itemsets, and not 
the association rules. 

MagnumOpus:  MO [12] is the command line application 
shipped with the beta release of MagnumOpus1.2, a 
commercial system for association rule discovery.  The main 
unique technique used in MagnumOpus is the search algorithm 
based on OPUS [11], a systematic search method with pruning.  It 
considers the whole search space, but during the search, 

                                                                 
3 Changing the main memory setting will not help Apriori finish 

the failed runs as the transactional dataset itself is not large. 

effectively prunes a large area of search space without missing 
search targets provided that the targets can be measured using 
certain criteria.  Based on this technique, MagnumOpus can 
efficiently find top-N association rules with respect to a search 
criterion such as support or lift, which can be very useful in some 
applications. 

Geoff Webb provided the most recent implementation of MO used 
in our experiments on February 1, 2001.  MO directly generates 
association rules from a dataset based on a specified search 
preference.  In addition to transactional data, it can also process 
the data format of the C5 rules induction engine, that is, MO can 
efficiently generate association rules from non-transactional 
datasets or transactional datasets augmented with other 
information.  MO generates the top-N association rules based on 
sorting rules by the coverage, leverage, lift, strength, or support 
(see http://www.rulequest.com/MagnumOpus-info.html for the 
definitions of these measures).  MO only generates rules where 
the RHS is a single item, while the LHS can be any size.  To 
speed up rule generation, MO can take the following constraints 
as parameters: maximum size of the LHS, minimum coverage, 
minimum support, minimum leverage, minimum lift, and 
minimum strength. To compare with other association rule 
algorithms, we ran MO with the following settings: search based 
on support, all-associations, the default value (1 case) for 
minimum coverage, the default value (0 cases) for minimum 
leverage, minimum lift, and minimum strength.  The maximum 
size of the LHS was set to 1000 to effectively remove this 
constraint.  The minimum support was varied throughout the 
experiments.  To evaluate whether MO is efficient when 
generating the top-N association rules, we ran the same set of 
experiments replacing “all-associations” with “max-
associations=1000” to generate only the top 1000 rules.  This 
configuration is indicated in the results section using MO-1000.  
We did not test MO with other pruning constraints such as 
strength, which is claimed to improve performance significantly, 
but changes the resulting associations generated. 

4. DATASETS 
We now describe the four datasets, IBM-Artificial, BMS-POS, 
BMS-WebView-1 and BMS-WebView-2, used in our experiments. 
To make it easier to bridge our benchmarks with previously 
published experimental results we included the IBM-Artificial 
dataset, typically designated T10I4D100K, which is often used in 
the association rule research community.  This dataset was 
generated using a transaction data generator obtained from IBM 
Almaden.4  
The BMS-POS dataset contains several years worth of point-of-
sale data from a large electronics retailer.  Since this retailer has 
so many different products, we used product categories as items.  
Each item thus represents a category, rather than an individual 
product.  The transaction in this dataset is a customer’s purchase 
transaction consisting of all the product categories purchased at 
one time.  The goal for this dataset is to find associations between 
product categories purchased by customers in a single visit to the 
retailer. 

                                                                 
4 The data generator is available from 

http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData. 

http://www.rulequest.com/MagnumOpus-info.html
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The BMS-WebView-1 and BMS-WebView-2 datasets contain 
several months worth of clickstream data from two e-commerce 
web sites.   Each transaction in these datasets is a web session 
consisting of all the product detail pages viewed in that session.  
That is, each product detail view is an item.  The goal for both of 
these datasets is to find associations between products viewed by 
visitors in a single visit to the web site.  We are making the BMS-
WebView-1 dataset available to the research community.  This 
dataset comes from a small dot-com company called Gazelle.com, 
a legwear and legcare retailer, which no longer exists; a portion of 
their data was used in the KDD-Cup 2000 competition [6].5 

Table 1 Dataset characteristics 

 

Transac- 
tions 

 

Distinct 
Items 

 

Maximum 
Trans. 

Size 

Average 
Trans. Size

 
IBM-Artificial 100,000 870 29 10.1

BMS-POS 515,597 1,657 164 6.5

BMS-WebView-1 59,602 497 267 2.5

BMS-WebView-2 77,512 3,340 161 5.0

 
Table 1 characterizes the four datasets in terms of the number of 
transactions, the number of distinct items, the maximum 
transaction size, and the average transaction size. Figure 1 shows 
the distributions of transaction sizes in the four datasets. Part of 
the detailed transaction size distribution data is available in Table 
15 and Table 16 in Appendix D. It is very clear that the artificial 
dataset has a very different transaction size distribution from the 
three real-world datasets, while the distributions of the three real-
world datasets are similar. 

It is worth mentioning that all four benchmark datasets contain 
sparse data, since most association rules discovery algorithms 
were designed for these types of problems [12]. On non-sparse 
datasets, the number of frequent itemsets and the number of 
association rules grow even faster than what we see in these 

                                                                 
5 After receiving a username and password from the KDD-Cup 

2000 home page at http://www.ecn.purdue.edu/KDDCUP, the 
dataset can be downloaded from http://www.ecn.purdue.edu/ 
KDDCUP/data/BMS-WebView-1.dat.gz. 
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Figure 2. The number of frequent itemsets and association 

rules at different minimum support levels on IBM-Artificial. 
The two lines for frequent itemsets and closed frequent items 

overlap at many data points.
f 14 

experiments. For example, Zaki [13] showed that the number of 
rules with single RHS grows from 1,846 to 170,067 when the 
minimum support reduces from 97% to 90% on the Connect 
domain from UCI [3]. Such high minimum supports are 
uninteresting for many real world applications. 
 

5. SUPER EXPONENTIAL GROWTH 
Figures 2 through 5 show how the number of frequent itemsets, 
the number of association rules, and the number of closed 
frequent itemsets increase as the minimum support is reduced on 
each of the four datasets.  The detailed numbers are available in 
Tables 3 through 6 in Appendix A.  In all of these figures the 
number of closed frequent itemsets is the number produced by 
Charm.  We can see that the number of rules and frequent itemsets 

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

0.00 0.02 0.04 0.06 0.08 0.10

Minimum support (%)

C
ou

nt
#Frequent Itemsets
#Association Rules
#Closed Frequent Itemsets
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many data points. 
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increases super-exponentially on the three real-world datasets, in 
contrast to the IBM-Artificial dataset, where the number of rules 
and frequent items only increases exponentially (probably because 
of the significantly larger average transaction size for the artificial 
dataset).  This, in conjunction with the difference between the 
transaction size distributions, shows that the real-world datasets 
have fundamentally different characteristics to the artificial 

datasets typically used to benchmark the performance of 
association rule algorithms. 
Figures 6 and 7 show the ratio of the number of frequent itemsets 
over the number of closed frequent itemsets on BMS-POS and 
BMS-WebView-2 as two examples. The exponential growth in 
the ratio when the minimum support decreases indicates the big 
potential advantage of creating closed frequent itemsets over 
frequent itemsets in terms of execution time and memory needed. 
In Tables 3 through 6 in Appendix A, “Failed” indicates that we 
do not have that value for the cell as the corresponding algorithm 

failed due to bugs, out of memory, or over our 150GB disk space 
limit. The three numbers marked using “*” in Table 5 were 
estimated to give a feeling of how the number of frequent itemsets 
can grow on a domain like BMS-WebView-1. We could not get 
the true numbers for them as the algorithms ran over the disk 
space limit at these minimum support levels on this dataset. To 
estimate these numbers, we ran FP-growth once more at the 
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Figure 4. The number of frequent itemsets and association 

rules at different minimum support levels on BMS-WebView-
1. The two lines for frequent itemsets and closed frequent 

items overlap at many data points. 
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Figure 5. The number of frequent itemsets and association 
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imum support level of 0.058%, resulting in 1,177,607 
uent itemsets. We applied Log10 three times on the number of 
uent itemsets, resulting in a super-exponential curve. To make 

onservative estimation, we created a linear function using the 
 three points (corresponding to the support levels 0.07%, 
6%, and 0.058%) on the curve. The three estimated numbers 
re computed using this function. We have three pieces of 
dence indicating that the estimations are conservative: 1. The 
ar function is used to estimate the super-exponential curve. 2.  
 estimated value from the function for the level 0.058% is 

78,571, much smaller than the true value 1,177,607.  3. The 
 containing the 1,177,607 frequent itemsets generated by FP-
wth was 57MB, so the file containing the 3,782,775 frequent 
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itemsets estimated at the level of 0.055% should be 183MB. 
However, when running FP-growth at this level, the frequent 
itemsets file was over 150GB when it ran out of disk space, 
indicating a much faster growth. All these results suggest that for 
some real-world datasets, when the minimum support is low, there 
are too many frequent itemsets to be useful. 
 

6. EXPERIMENTS 
Each of the five algorithms described in Section 3 was tested on 
the four datasets described in Section 4.  The performance 
measure was the execution time (seconds) of the algorithms on the 
datasets with the following minimum support settings 1.00%, 
0.80%, 0.60%, 0.40%, 0.20%, 0.10%, 0.08%, 0.06%, 0.04%, 
0.02%, and 0.01%.  The minimum confidence was always set to 
zero.  That is, we required no minimum confidence for the 
generated association rules.  Since some of the algorithms could 
only generate frequent itemsets, and some others could directly 
generate association rules, we measured the execution time for 
both creating the frequent itemsets and for creating the association 
rules whenever possible.  Note that time for generating the 
association rules includes the computation for generating the 
frequent itemsets. 

The computer used to run the experiments had dual 550MHz 
Pentium III Xeon processors and 1 GB of memory.  The operating 
system used was Windows NT 4.0.  To make the time 
measurements more reliable, no other application was running on 
the machine while the experiments were running.  Although none 
of the algorithms supported parallel processing, the second 
processor helped to stabilize the measured results since system 
processes could run on the other processor.  To verify the stability 
of the timing, we ran Apriori five times to generate the frequent 
itemsets for BMS-WebView-1 with a minimum support level of 
0.06%.  The average running time was 110.5 seconds, with a 
standard deviation of only 0.1 seconds. 

6.1 Generating Frequent Itemsets 
Figures 8 though 11 show performance curves for the four 
algorithms that generate frequent itemsets, namely Closet, FP-
growth, Charm, and Apriori, on IBM-Artificial, BMS-POS, BMS-
WebView-1, and BMS-WebView-2 respectively.  The vertical 
axis is on a logarithmic scale (base 10).  For each figure, the 
bottom chart shows performance curves for the full range of 
minimum supports from 0.01% to 1.00%, while the top chart 
highlights the sub-range of the minimum supports from 0.01% to 
0.10%.  The detailed values for these results are listed in Tables 7 
through 10 in Appendix B.  MagnumOpus is not included in these 
results because it cannot generate frequent itemsets. 

The first thing to notice about these results is that when the 
minimum support is large,6 such as 0.10% for BMS-WebView-1 
or 0.40% for BMS-POS, all algorithms finish within a minute, 
and hence the choice of algorithm in these cases is irrelevant.  In 
the remaining analysis, we focus only on the results where the 
minimum supports ranges from 0.01% to 0.10% (the top chart in 
each figure). 

                                                                 
6 The definition of large is obviously dependent on the dataset. 
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For the artificial dataset, every algorithm outperforms Apriori by a 
significant margin for minimum support values less than 0.10%.  
FP-growth and Closet are one order of magnitude faster than 
Apriori when the minimum support reaches 0.02%, which is 
consistent with the results reported for previous experiments 
[4][10][13].  It is clear that the performance improvement of FP-
growth over Apriori increases as the minimum support decreases, 
indicating that FP-growth scales better than Apriori.  The results 
also show that FP-growth is consistently and significantly faster 
than Charm and Closet.  Charm is faster than Closet at all 
minimum support levels except 0.02% and 0.04%, which differs 
from the results reported in [10] where Closet is faster than 
Charm.  One explanation for this is that we are using a new 
version of Charm which has some newly developed techniques, 
while Closet is the old version.  Based on our experimental 
results, the latest implementation is significantly faster than 
previous versions.  To summarize, these results on the artificial 
dataset support the conclusion that the new algorithms have 
significant performance improvements over Apriori. 

From the results for the three real-world datasets (Figures 9, 10, 
and 11) we make the following observations: 

1. For BMS-WebView-1, Closet is much slower than 
every other algorithm for minimum support ranging 
from 0.10% to 0.06%.  At minimum support levels 
below 0.06%, Closet used more than the 1GB available 
memory.  The same trend exists on BMS-WebView-2. 
For BMS-POS, Closet ran out of memory once the 
minimum support level reached 0.10%.  These results 
suggest Closet does not scale well on the real-world 

datasets, which is contrary to the results on the artificial 
dataset. 

2. For all of the real-world datasets, FP-growth is faster 
than Apriori, but the differences are not as large as on 
the artificial dataset. 

3. For all of the real-world datasets, Charm is much faster 
than Apriori.  The improvement is one order of 
magnitude on BMS-POS when the minimum support is 
0.02% or 0.01%, and on BMS-WebView-2 when the 
minimum support is 0.06%, 0.04%, or 0.02%. It is two 
orders of magnitude faster on BMS-WebView-1 when 
the minimum support is 0.06%. On these datasets, 
Charm is also faster than FP-growth. 

4. Table 2 summarizes the rankings of the four algorithms 
for generating frequent itemsets on the four datasets for 
both high minimum supports and low minimum 
supports used in the experiments. It is clear that with 
high minimum supports, Apriori is always faster than 
the others, and Charm is always slower than Apriori and 
FP-growth. The reason could be that the frequent 
itemsets are very short (with 2 or 3 items) and the 
numbers of frequent itemsets are small with these high 
minimum supports (see Table 3 through Table 6), and 
Apriori can handle this type of problem quickly with 
very little overhead while others have some overhead. It 
seems that Charm’s overhead is larger than FP-
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Figure 10. Running time of the algorithms for 
generating frequent itemsets for BMS-WebView-1. 

1

10

100

1,000

10,000

100,000

1,000,000

0.00 0.02 0.04 0.06 0.08 0.10
Minimum support (%)

Ti
m

e 
(s

ec
on

ds
)

Charm
FP-grow th
Apriori
Closet

0
1

10
100

1,000
10,000

100,000

0.00 0.20 0.40 0.60 0.80 1.00
Minimum support (%)

Ti
m

e 
(s

ec
on

ds
)

Closet
Charm
FP-grow th
Apriori

Figure 11. Running time of the algorithms for 
generating frequent itemsets for BMS-WebView-2. 
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growth’s. On the three real-world datasets with low 

minimum supports, the ranking is always Charm > FP-
growth > Apriori > Closet. This shows the advantages 
of the techniques in Charm and FP-growth when there 
are many long frequent itemsets. Generating 
significantly smaller numbers of frequent itemsets (only 
closed) may partially explain the fast execution of 
Charm. 

5. None of the algorithms can handle too many frequent 
itemsets.  On BMS-WebView-1, with a minimum 
support of 0.04%, both Apriori and FP-growth ran out 
of disk space after writing over 150GB of data to disk.  
Since Charm generated significantly less closed 
frequent itemsets than all frequent itemsets on this 
dataset, it continued to work until the minimum support 
reached 0.01% when it ran out of memory.  Even if a 
much larger disk was available, it is questionable as to 
how one could make use of so many frequent itemsets.  
Since most algorithms (MagnumOpus being a notable 
exception) generate all frequent itemsets as the basis for 
generating associations, all these algorithms will fail on 
this initial step of the overall process.  Our results 
indicate that if we need association rules for low level of 
support, we need better techniques to filter association 
rules and avoid generating frequent itemsets in order to 
output a manageable number of associations. 

Table 2. Rankings (left is better) of the algorithms for 
generating frequent itemsets on the four datasets with high 

minimum supports and low minimum supports (Ap: Apriori, 
FP: FP-growth, Ch: Charm, Cl: Closet) 

 High Min-Support Low Min-Support 

 IBM-Artificial Ap > FP > Ch > Cl FP > Ch > Cl > Ap 

 BMS-POS Ap > Cl > FP > Ch Ch > FP > Ap > Cl 

 BMS-WebView-1 Ap > FP > Cl > Ch Ch > FP > Ap > Cl 

 BMS-WebView-2 Ap > FP > Ch > Cl Ch > FP > Ap > Cl 

 

6.2 Generating Association Rules 
Figures 12 through 15 show performance curves of the two 
algorithms that can generate association rules, MagnumOpus and 
Apriori, on the four datasets, IBM-Artificial, BMS-POS, BMS-
WebView-1, and BMS-WebView-2, respectively.  Since 
MagnumOpus has an option for generating the top-N association 
rules, we include MO-1000 for generating the top-1000 rules 
sorted by support.  The vertical time axis is on a logarithmic scale 
(base 10).  The time includes the running time for both creating 
the frequent itemsets and creating the association rules.  In each 
figure, the bottom chart shows performance curves for the full 
range of the minimum support from 0.01% to 1.00%, while the 
top chart highlights the sub-range of the minimum support from 
0.01% to 0.10%.  The detailed values of these results are listed in 
Tables 11 through 14 in Appendix C.  Charm, FP-growth, and 
Closet are not included in these results because they do not 
generate association rules.  As mentioned in the previous section, 
we focus on the results where the minimum support ranges from 
0.01% to 0.10%. 
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Figure 12. Running time of the algorithms for generating 

association rules for IBM-Artificial. 
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Figure 13. Running time of the algorithms for generating 

association rules for BMS-POS. 
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We make the following observations from these results: 

1. Unrestricted MagnumOpus (MO) is significantly slower 
than Apriori on all of the datasets.  This is not 
surprising, because these datasets are sparse and 
MagnumOpus was not designed for this type of data 
[12]. 

2. Both Apriori and MagnumOpus ran out of disk space 
while generating the rules for BMS-WebView-1 when 
the minimum support level reached 0.04%.  This was 
due to the fact that the number of rules created exceeded 
the available disk space of 150GB. 

3. MO-1000’s running time grows very slowly as the 
minimum support level decreases, indicating that it 
provides a solution when the number of association 
rules is very large and only the top-N rules are needed 
(based on some criteria such as lift or confidence). 

 

7. CORRECTNESS OF THE ALGORITHMS 
Apriori and FP-growth generated the same frequent itemset in 
every experiment where we verified the generated itemsets by 
hand. 

From Tables 4 and 5, we can see that Charm generates more 
closed frequent itemsets than there are frequent itemsets.  The 
reason for this disparity seems to be that it rounds a real-valued 
number down to an integer in evaluating the absolute minimum 

support, while all of the other algorithms round up.  For example, 
on BMS-WebView-1 with a minimum support of 1.00%, Apriori 
generates 77 frequent itemsets while Charm generates 78 closed 
frequent itemsets.  We compared these two sets by hand, and 
found that the 77 itemsets created by Apriori are contained within 
the 78 itemsets generated by Charm.  The one extra itemset is 
{32201} and has a support of 596.  This BMS-WebView-1 
dataset has 59,602 transactions and a minimum support of 1.00% 
corresponds to 596.02. Apriori rounds this up to 597, while 
Charm rounds it down to 596.   Charm therefore generates a 
frequent set that is sometimes slightly below the minimum 
support. 

Charm and Closet do not match in terms of the number of closed 
frequent itemsets in some experiments, and the difference is large 
in some cases.  For example, for the IBM-Artificial dataset, with a 
minimum support of 0.40%, Charm and Closet generated 1997 
and 1992 closed frequent itemsets respectively.  However, with a 
minimum support of 0.01% they generated 303,610 and 283,397 
closed frequent items respectively, a difference of 20,213.  Note 
that there can be no rounding problem for this dataset since it has 
exactly 100,000 transactions.  Therefore, one or both of these 
implementations seems to generate incorrect closed frequent 
itemsets in some cases. 

For generating association rules, MagnumOpus and Apriori do 
not match in terms of the number of rules.  One explanation is that 
Apriori generates association rules with an empty LHS while 
MagnumOpus does not.  However, even taking this into account, 
the number of generated rules still doesn’t match.  For example, 
on the IBM-Artificial dataset, with a minimum support of 0.40%, 
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Figure 14. Running time of the algorithms for generating 

association rules for BMS-WebView-1. 
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Figure 15. Running time of the algorithms for generating 

association rules for BMS-WebView-2. 
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MagnumOpus generated 3,649 rules, while Apriori generated 
4,278 rules with 3,648 rules having a non-empty LHS.  The two 
numbers differ by one, suggesting that one or both of these 
implementations seems to generate incorrect rules in some cases. 

These differences should clearly raise concern since these 
algorithms should all be sound and complete and generate exactly 
the same associations for the same input parameters. Authors 
consistently showed improvements in execution time but rarely 
mentioned correctness. 

8. CONCLUSIONS 
To better understand the performance characteristics of 
association rule algorithms in the e-commerce and retail domains, 
we benchmarked five well-known association rule algorithms 
(Apriori, FP-growth, Closet, Charm, and Magnum-Opus) using 
three real-world datasets (two e-commerce and one retail) and an 
IBM Almaden artificial dataset. 

The results show that the association rule algorithms that we 
evaluated perform differently on our real-world datasets than they 
do on the artificial dataset.  The performance improvements 
reported by previous authors can be seen on the artificial dataset, 
but some of these gains do not carry over to the real datasets, 
indicating that these algorithms overfit the IBM artificial dataset.  
The primary reason for this seems to be that the artificial dataset 
has very different characteristics, suggesting the need for 
researchers to improve the artificial datasets used for association 
rule research or use more real-world datasets.  We donated one 
such dataset for research use. 

We also found that the choice of algorithm only matters at support 
levels that generate more rules than would be useful in practice.  
For a support level that generates a small enough number of rules 
that a human could understand, Apriori finishes on all datasets in 
under a minute, so performance improvements are not very 
interesting.  Even for support levels that generate around 
1,000,000 rules, which is far more than humans can handle and is 
typically sufficient for prediction purposes, Apriori finishes 
processing in less than 10 minutes.  Beyond this level of support, 
the number of frequent itemsets and association rules grows 
extremely quickly on the real-world datasets, and most algorithms 
quickly run out of either memory or reasonable disk space. 

It would be interesting to see whether the artificial datasets have a 
closer similarity to real-world supermarket datasets (the traditional 
domain for market basket analysis using association rules).  Also, 
when generating association rules, we didn’t experiment with 
many of the different parameter settings (e.g., the minimum 
confidence level), and it would be interesting to see how these 
parameters impact performance and the number of associations 
generated. 
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10. APPENDICES 
A. Frequent Itemset Size, Association Rule 
Sizes, and Longest Frequent Itemset Length 
 

Table 3. IBM-Artificial 

Minimum 
Support 

(%) 

Frequent 
Itemsets 

Length of 
Longest 

Frequent 
Itemsets 

Association 
Rules 

Closed 
Frequent 
Itemsets 

1.00 385 3 396 385 

0.80 494 3 552 494 

0.60 772 5 1,110 772 

0.40 2,001 6 4,278 1,997 

0.20 13,255 9 44,315 13,151 

0.10 27,532 10 91,147 26,962 

0.08 35,019 10 118,254 32,676 

0.06 44,583 10 148,255 41,215 

0.04 62,864 11 204,439 56,962 

0.02 129,875 12 413,478 110,824 

0.01 411,365 13 1,376,684 303,610 

 
Table 4. BMS-POS 

Minimum
Support 

(%) 

Frequent 
Itemsets 

Length of 
Longest 

Frequent 
Itemsets 

Association 
Rules 

Closed 
Frequent 
Itemsets 

1.00 1,099 2 2,793 1,099

0.80 1,695 2 4,543 1,695

0.60 2,915 3 8,421 2,915

0.40 6,646 3 21,234 6,656

0.20 27,641 4 103,449 27,703

0.10 122,449 9 530,353 122,369

0.08 200,595 9 989,411 201,098

0.06 382,663 10 1,837,824 380,911

0.04 973,385 11 5,061,105 938,534

0.02 5,174,660 12 30,702,323 4,348,009

0.01 31,669,064 14 214,300,568 20,888,059

 
 
 
 
 
 
 
 



Page 11 of 14 

Table 5. BMS-WebView-1 

Minimum 
Support 

(%) 

Frequent 
Itemsets 

Length of 
Longest 

Frequent 
Itemsets 

Association 
Rules 

Closed 
Frequent 
Itemsets 

1.00 77 2 87 78

0.80 105 2 122 105

0.60 162 3 195 162

0.40 286 3 404 288

0.20 798 4 1,516 808

0.10 3,991 6 10,360 3,977

0.08 10,286 9 33,514 9,522

0.07 27,403 11 110,925 21,142

0.06 461,521 15 3,011,836 86,506

0.04  * 6.82×1010 Failed Failed 567,905

0.02  * 1.08×1026 Failed Failed 1,038,951

0.01  * 1.78×1045 Failed Failed Failed

 
Table 6. BMS-WebView-2 

Minimum 
Support 

(%) 

Frequent 
Itemsets 

Length of 
Longest 

Frequent 
Itemsets 

Association 
Rules 

Closed 
Frequent 
Itemsets 

1.00 81 3 108 82 

0.80 138 3 203 138 

0.60 257 4 452 257 

0.40 676 5 1,504 679 

0.20 3,683 7 12,665 3,743 

0.10 23,294 10 119.335 22,256 

0.08 40,855 11 230,996 37,285 

0.06 80.925 13 510,233 59.209 

0.04 168,375 15 1.096.720 118,434 

0.02 1,316,614 17 10,448,483 351,722 

0.01 7,313,361 20 Failed 799,764 

 
 
 
 
 
 
 
 
 
 
 

B. Running Time for Generating Frequent 
Itemsets 
 
All tables contain the time in seconds spent creating frequent 
itemsets. 
 

Table 7. IBM-Artificial 

Minimum 
Support 

(%) 
Closet Charm FP-growth Apriori 

1.00 7.2 5.1 3.7 2.2 

0.80 7.4 5.3 3.8 2.3 

0.60 7.9 5.5 4.0 3.7 

0.40 8.6 6.2 4.3 5.7 

0.20 10.9 8.6 5.8 19.5 

0.10 13.8 12.2 7.1 33.5 

0.08 15.3 14.1 7.6 37.9 

0.06 17.9 17.4 8.2 43.9 

0.04 23.2 24.8 9.2 61.3 

0.02 40.8 47.4 11.9 109.5 

0.01 131.1 89.0 20.2 244.9 

 
Table 8. BMS-POS 

Minimum 
Support 

(%) 
Closet Charm FP-growth Apriori 

1.00 20.7 30.8 24.5 11.0 

0.80 22.5 32.2 29.0 12.2 

0.60 25.3 36.8 35.4 17.3 

0.40 30.9 45.5 50.3 22.4 

0.20 62.0 66.0 94.5 73.6 

0.10 Failed 101.3 192.1 237.5 

0.08 Failed 117.7 256.9 311.5 

0.06 Failed 146.8 367.2 516.6 

0.04 Failed 211.2 641.3 969.2 

0.02 Failed 540.6 1,916.7 2,684.5 

0.01 Failed 3,134.1 7,191.5 11,150.2 
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Table 9. BMS-WebView-1 

Minimum 
Support 

(%) 
Closet Charm FP-growth Apriori 

1.00 1.4 1.6 0.7 0.4 

0.80 1.7 1.7 0.7 0.4 

0.60 2.2 1.8 0.7 0.4 

0.40 3.2 1.8 0.7 0.4 

0.20 7.4 2.1 0.8 0.6 

0.10 33.1 2.5 1.2 1.2 

0.08 77.8 3.0 1.8 3.7 

0.07 180.9 4.0 3.8 9.2 

0.06 Failed 8.8 52.1 110.4 

0.04 Failed 144.1 Failed Failed 

0.02 Failed 408.7 Failed Failed 

0.01 Failed Failed Failed Failed 

 
Table 10. BMS-WebView-2 

Minimum 
Support 

(%) 
Closet Charm FP-growth Apriori 

1.00 6.9 2.5 1.5 1.0 

0.80 10.6 2.5 1.5 0.9 

0.60 18.5 2.7 1.5 0.9 

0.40 45.9 2.9 1.7 1.1 

0.20 241.9 3.5 2.3 2.4 

0.10 1,458.3 5.2 5.9 9.1 

0.08 2,380.8 6.6 8.8 14.4 

0.06 3,950.8 8.5 15.7 27.8 

0.04 7,529.8 13.4 29.0 58.2 

0.02 26,662.8 33.5 136.5 423.8 

0.01 Failed 78.5 792.5 Failed 

 
 
 
 
 
 
 
 
 
 
 
 

C. Running Time for Creating Association 
Rules 
 
All tables contain the time in seconds spent creating association 
rules. 

Table 11. IBM-Artificial 

Minimum 
Support (%) 

Apriori MO MO-1000 

1.00 2.3 18.9 18.7 

0.80 2.4 25.8 23.8 

0.60 3.6 33.6 29.9 

0.40 5.8 50.4 37.0 

0.20 20.2 71.7 41.9 

0.10 34.8 82.9 44.8 

0.08 39.8 100.5 45.7 

0.06 47.5 141.2 46.4 

0.04 65.0 272.0 47.4 

0.02 102.4 970.9 48.2 

0.01 268.0 3,137.0 48.7 

 
Table 12. BMS-POS 

Minimum 
Support (%) 

Apriori MO MO-1000 

1.00 11.1 25.5 21.8 

0.80 12.3 30.6 22.3 

0.60 17.4 40.3 23.6 

0.40 22.7 65.2 25.5 

0.20 75.4 179.1 28.7 

0.10 246.6 643.8 32.4 

0.08 327.6 1,015.0 34.1 

0.06 550.0 1,864.5 35.9 

0.04 1,064.8 4,576.8 39.0 

0.02 3,300.5 23,559.7 44.7 

0.01 16,084.3 143,701.8 49.5 
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Table 13. BMS-WebView-1 

Minimum 
Support (%) 

Apriori MO MO-1000 

1.00 0.4 1.0 0.9 

0.80 0.4 1.0 1.0 

0.60 0.4 1.8 1.7 

0.40 0.4 2.7 2.7 

0.20 0.6 5.2 5.2 

0.10 1.3 9.7 6.3 

0.08 4.2 15.1 6.4 

0.07 11.1 29.5 6.4 

0.06 176.8 453.1 6.6 

0.04 Failed Failed 6.8 

0.02 Failed Failed 7.3 

0.01 Failed Failed 7.7 

 
Table 14. BMS-WebView-2 

Minimum 
Support (%) 

Apriori MO MO-1000 

1.00 0.8 2.4 2.3 

0.80 0.9 2.4 2.4 

0.60 0.9 3.1 3.2 

0.40 1.1 5.9 5.8 

0.20 2.6 27.0 10.1 

0.10 11.4 127.2 17.1 

0.08 19.3 205.6 19.9 

0.06 40.2 377.7 23.8 

0.04 84.7 712.8 28.7 

0.02 695.5 4,860.6 35.4 

0.01 Failed Failed 40.1 

 

 
 
 
 
 
 
 
 
 
 
 

D. Distribution of Dataset Transaction Sizes 
 
Table 15. Distribution of transaction sizes for each dataset (I) 

 Number of Transactions by Transaction Size 
 1 2 3 4 5 
 IBM-Artificial 128 545 1,607 3,287 4,849 
 BMS-POS 80,278 75,431 61,242 50,124 39,908 
 BMS-WebView-1 32,935 10,861 5,378 3,591 1,972 
 BMS-WebView-2 24,893 13,548 8,826 6,204 4,573 

 
 
Table 16. Distribution of transaction sizes for each dataset (II) 

    Number of Transactions by Transaction Size

 6 7 8 9 10 > 10
 IBM-Artificial 6,525 7,990 9,759 10,471 10,892 43,947

 BMS-POS 32,229 26,050 22,237 18,236 15,378 94,484

 BMS-WebView-1 1,220 908 639 420 315 1,363
 BMS-WebView-2 3,624 2,734 2,139 1,736 1,401 7,834
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