
To appear in the Third International Workshop on

Rough Sets and Soft Computing (RSSC 94)

A Third Dimension to Rough Sets

Ron Kohavi

Computer Science Dept.

Stanford University

Stanford, CA 94305

ronnyk@CS.Stanford.EDU

Abstract

Rough-sets relative reducts allow one to reduce the number of attributes in a supervised clas-

si�cation problem without sacri�cing the consistency of the decision table. In many problems,

the cardinality of the relative reducts is large, making the decision table unmanageably big. We

propose reducing the size of reducts, and hence the decision table, by increasing the number of

label values (values of the decision attribute). The reduction process is accomplished through

a two-step process whereby an instance is mapped to an intermediate label using one subset of

attributes, and then mapped to the �nal label using a disjoint subset of attributes. In some

cases, the table representation size of the functions generated using this method will be much

smaller than the representation of a single uni�ed function. It is possible to repeat the split-

ting process, creating multiple rough-set approximations, each one containing one attribute less

than the previous one, but at a possible increase in the number of labels. The structures formed

are isomorphic to oblivious read-once decision graphs (OODGs) and to ordered binary decision

diagrams (OBDDs), thus providing an alternative view of how algorithms that construct such

graphs operate.

1 Introduction

Rough-sets theory

[

Pawlak, 1991, Slowinski, 1992

]

de�nes a relative reduct as a subset of attributes

such that the indiscernibility relation formed using this subset has the same positive region as

the original set of attributes with respect to the label, or decision attribute. In many problems,

the subset is prohibitively large, and representing the concept of interest as a decision table is

impossible if a concise representation is required.

Since one of the main goals of supervised classi�cation learning is to introduce structure into

data, thus prompting greater understanding of the underlying concepts, problems with many in-

dispensable attributes pose a great problem to experts who attempt to understand the underlying

structure of the data.

We begin by showing that a two-step decomposition process may be a better way to capture

structure in the data. In the �rst step, a decision table employing a subset of the attributes is used

to classify a given instance into an intermediate label. The intermediate label is then mapped into

the �nal label using a disjoint subset of attributes.

By generalizing this two-step decomposition tom steps, wherem is the number of attributes, one

essentially builds an oblivious read-once decision graph (OODG)

[

Kohavi, 1994a, Kohavi, 1994b

]

,

or an ordered binary decision diagram (OBDD)

[

Bryant, 1992

]

. The rough-sets view provides an

interesting alternative view of the process being carried out by the HOODG algorithm

[

Kohavi,

1994b

]

.

2 The Two-Step Decomposition

The two-step decomposition divides the attributes into two mutually exclusive and exhaustive sets,

such that the �rst set is used to map to an intermediate label, and the second set is used to map

to the goal label. Intuitively, we would like both mapping functions to be \simple," with the sum

of the complexities less than the single mapping from the attributes to the label.

Let Q = fQ

1

; : : : ; Q

q

g and R = fR

1

; : : : ; R

r

g be two disjoint sets of attributes, such that

Q [R = P , where P = fP

1

; : : : ; P

p

g is the complete set of attributes. Let L be the label attribute,

and let A be a new attribute (the intermediate label). If

f : P

1

� � � ��P

p

7! L

is the original (target) mapping function, then we would like to replace it with two mapping

functions g and h such that

g : Q

1

� � � ��Q

q

7! A

h : A�R

1

� � ��R

r

7! L

Such that f(p

1

; : : : ; p

p

) = h(g(q

1

; : : : ; q

q

); r

1

; : : : ; r

r

)

One example of such a decomposition is to divide the attributes such that Q is the set of

attributes in a relative reduct and R is P n Q, i.e., the rest of the attributes. By the de�nition of

a relative reduct, the attributes in it are su�cient to determine the label value and we can thus

de�ne A = L, and be guaranteed that there exists a map g that will map the attributes in the

relative reduct to the correct values of the label. h can then be de�ned as h(a; r

1

; : : : ; r

r

) = a, i.e.,

ignore all the other attributes.

It has been well established in the rough-sets community that �nding reducts is important to

simplify decision tables, and hence understanding of the problem; however, when all relative reducts

are big, a di�erent decomposition is called for.

Example 1 (Multiplexer) Figure 1 depicts a General Logic Diagram (GLD)

[

Michalski, 1978,

Thrun et al., 1991, Wnek and Michalski, 1994

]

for a concept. Each instance in the space has exactly

one box that is marked with an X if it belongs to the concept and with an O if it does not. Readers

familiar with Karnaugh maps may note a resemblance, except that the ordering of attribute values

does not conform to the hamming distance restriction in Karnaugh maps because GLDs are not

restricted to Boolean attributes.

Because all attributes are indispensable for the target concept, the relative core consists of all

attributes and is therefore the only relative reduct.

If we select Q to be the set A

0

; A

1

, and allow four values for the intermediate label value, the

GLD that we get is the one shown in Figure 2. Each of the four symbols stands for a di�erent

intermediate label value. The GLD de�nes the mapping g.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 1 0 1 0 1 0 1

0 1 0 1

0 1A0

D0

D2

A1

D1
D3

Figure 1: A GLD for an \unknown" concept

A0

A1
0

1

2

3

0

1

0 1

Figure 2: A GLD for the attributes A

0

and A

1

The mapping h can then be de�ned as:

h(a; d

0

; d

1

; d

2

; d

3

) =

8

>

>

>

<

>

>

>

:

d

0

if a = 0

d

1

if a = 1

d

2

if a = 2

d

3

if a = 3

The function can be represented as four tables, each of size 2, with the g function choosing the

appropriate table.

Readers may recognize this as the 2 ! 4 multiplexer concept. In general, there are n address

bits and 2

n

data bits. An instance is labelled positive if and only if the data bit indicated by the

address bits is on. For a 2! 4 multiplexer, the saving is marginal (12 decision rules as opposed to

16), but the saving grows for larger multiplexers.

We urge the reader to attempt to de�ne g and h for di�erent Q's. For example, if Q =

fA

0

; A

1

; D

0

; D

1

g, four label values are still needed; if D

2

is added, only three label values are

needed, and if D

1

is deleted, �ve values are needed. There is no monotonic relation between the

number of label values and the size of the set Q.

3 Multi-Step Decomposition

A generalization of the above two-step decomposition can be made by looking at the function h

as if it were the original function, and attempting to decompose it. Each decomposition will reduce

the number of attributes in the set remaining to be composed, until the process ends.

If at each decomposition step exactly one attribute is chosen, then we can draw the functions

as nodes of a levelled graph. Each node represents all the instances which have attribute values

leading to it and maps them to the appropriate node with one more attribute value. A levelled

graph for the multiplexer function is shown in Figure 3.

Since many nodes ignore their inputs at given levels, that is, they are constant functions, we

may remove such nodes from the graph, and end up with the graph (OODG) shown in Figure 4.

Example 2 (Parity) A decision table for k bit parity, i.e., X

1

�X

2

� � � ��X

k

requires 2

k

entries

in the table. All attributes are in the core, and hence all of them form the only reduct. Using

multi-step decomposition, we can generate tables such that their overall size is linear in k:

g(X

1

; : : : ; X

k�1

; 0) = 0 g(X

1

; : : : ; X

k�1

; 1) = 1

h

1

(0; X

1

; : : : ; X

k�2

; 0) = 0 h

1

(0; X

1

; : : : ; X

k�2

; 1) = 1

h

1

(1; X

1

; : : : ; X

k�2

; 0) = 1 h

1

(1; X

1

; : : : ; X

k�2

; 1) = 0

h

2

(0; X

1

; : : : ; X

k�3

; 0) = 0 h

2

(0; X

1

; : : : ; X

k�3

; 1) = 1

h

2

(1; X

1

; : : : ; X

k�3

; 0) = 1 h

2

(1; X

1

; : : : ; X

k�3

; 1) = 0

.

.

.

.

.

.

h

k�2

(0; X

1

; 0) = 0 h

k�2

(0; X

1

; 1) = 1

h

k�2

(1; X

1

; 0) = 1 h

k�2

(1; X

1

; 1) = 0

h

k�1

(0; 0) = 0 h

k�1

(0; 1) = 1

h

k�1

(1; 0) = 1 h

k�1

(1; 1) = 0

0 1

Ignore D3

Always

D3

0 1

Ignore D3

Always

Ignore D2

Always

D2

0 1

Ignore D2

Always

Ignore D2

Always

D1

0 1

Ignore D1

Always

Ignore D1

Always

Ignore D1

Always

Ignore D1

Always

Ignore D0

Always

D0

0 1

Ignore D0

Always

Ignore D0

Always

A1

1 0

A1

01

A0

01

Figure 3: A graphical representation for a 2! 4 multiplexer as a levelled graph.

A0

A1A1

D0 D1 D2 D3

0 1

0 0

0
0

1
11

1

0 1

0 1 0 1

Figure 4: A graphical representation for a 2! 4 multiplexer with constant functions removed.

X1

X2 X2

X3

0 0

1 1

Xk

0

Xk

0 0

1 1

1

X3

10 01

0 1

Figure 5: A graphical representation for n bit parity.

Each function in the sequence returns a value which is the �rst argument to the next function

in the multi-step decomposition. The last function, h

k�1

returns the label for the classi�cation

problem. Since all the h functions use only their �rst and last argument, they can be implemented

as decision tables of size four. The overall size of parity under this representation is 4k� 2. Even if

we include some overhead for specifying which attributes a table needs to examine, the gap between

this representation and a uni�ed table is exponential. Figure 5 shows the OODG representation of

this function.

4 Discussion and Related Work

Bryant

[

Bryant, 1986

]

introduced Ordered Binary Decision Diagrams (OBDDs), which spawned a

plethora of articles and a whole sub-community dealing with ways to build small OBDDs

[

Bryant,

1992, Brace et al., 1990, Minato et al., 1990, Fujita et al., 1993

]

. OBDDs have been used for

automatically verifying �nite state machines, including 64-bit ALUs, with up to 10

120

states by

representing the state space symbolically instead of explicitly

[

Burch et al., 1990, Burch et al.,

1991

]

.

In the machine learning community, Kohavi

[

1994a, 1994b

]

investigated the possibility of using

oblivious decision graphs as the underlying hypothesis space for supervised classi�cation learning.

Modrzejewski's work on feature selection

[

Modrzejewski, 1993

]

uses oblivious trees (called \preset

tree" by Modrzejewski) as the underlying hypothesis space. The induction algorithm chooses

attributes for each level using their signi�cance measure. While oblivious graphs are a more compact

representation than trees, it is possible to convert oblivious trees to oblivious graphs, and thus view

his algorithm as a multi-step decomposition.

The multi-step decomposition illustrated here provides an interesting view of what algorithms

for building OODGs and OBDDs are trying to approximate, namely, multiple precision rough sets

using a smaller number of attributes at each level. For example, the HOODG algorithm

[

Kohavi,

1994b

]

chooses the attribute which would lead to the minimal number of intermediate label values

at the next decomposition step.

5 Summary

Attempts to construct decision tables or similar structures directly using reducts sometimes re-

sults in large incomprehensible structures. Instead of using rough sets on the original space, we

introduced a third dimension to the usual diagram representing rough sets|a dimension that al-

lows varying the number of label values. We illustrated how a multi-step decomposition creates

decomposed tables that may be exponentially smaller.

The multi-step decomposition process creates a structure that is isomorphic to oblivious decision

graphs (OODGs) and ordered binary decision diagrams (OBDDs), and thus provides an interesting

an alternative view of what such algorithms are attempting to optimize. It is conceivable that after

this connection has been established, results from rough-sets theory will be applicable to algorithms

constructing OODGs and OBDDs, and improve them.

Acknowledgments The work in this paper was done using the MLC

++

library, partly funded

by ONR grant N00014-94-1-0448 and NSF grant IRI-9116399. Yoav Shoham and Nils Nilsson

provided support for the MLC

++

project. Pat Langley deserves the credit for prompting me to

look at rough sets after seeing my work on OODGs.

References

[

Brace et al., 1990

]

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. E�cient implementa-

tion of a BDD package. In Proceedings of the 27th ACM/IEEE Design Automation Conference,

pages 40{45, 1990.

[

Bryant, 1986

]

Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677{691, 1986.

[

Bryant, 1992

]

Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293{318, 1992.

[

Burch et al., 1990

]

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10

20

states and beyond. In Fifth Annual IEEE Symposium on Logic

in Computer Science., pages 428{439. IEEE Comput. Soc. Press, 1990.

[

Burch et al., 1991

]

J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more e�-

ciently in symbolic model checking. In Proceedings of the 28th ACM/IEEE Design Automation

Conference, pages 403{407, 1991.

[

Fujita et al., 1993

]

Masahiro Fujita, Hisanori Fujisawa, and Jusuke Matsunaga. Variable ordering

algorithms for ordered binary decision diagrams and their evaluation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 12(1):6{12, 1993.

[

Kohavi, 1994a

]

Ron Kohavi. Bottom-up induction of oblivious, read-once decision graphs. In

Proceedings of the European Conference on Machine Learning, April 1994. Paper available by

anonymous ftp from

starry.Stanford.EDU:pub/ronnyk/euroML94.ps.

[

Kohavi, 1994b

]

Ron Kohavi. Bottom-up induction of oblivious, read-once decision graphs :

Strengths and limitations. In Twelfth National Conference on Arti�cial Intelligence, 1994. Paper

available by anonymous ftp from

Starry.Stanford.EDU:pub/ronnyk/aaai94.ps.

[

Michalski, 1978

]

Ryszard S. Michalski. A planar geometric model for representing multidimen-

sional discrete spaces and multiple-valued logic functions. Technical Report UIUCDCS-R-78-897,

University of Illinois at Urbaba-Champaign, 1978.

[

Minato et al., 1990

]

Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision

diagram with attributed edges for e�cient boolean function manipulation. In Proceedings of the

27th ACM/IEEE Design Automation Conference, pages 24{28, 1990.

[

Modrzejewski, 1993

]

Maciej Modrzejewski. Feature selection using rough sets theory. In Pavel B.

Brazdil, editor, Proceedings of the European Conference on Machine Learning, pages 213{226,

1993.

[

Pawlak, 1991

]

Zdzislaw Pawlak. Rough Sets. Kluwer Academic Publishers, 1991.

[

Slowinski, 1992

]

Roman Slowinski. Intelligent decision support : handbook of applications and

advances of the rough sets theory. Kluwer Academic Publishers, 1992.

[

Thrun et al., 1991

]

S.B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong,

S. Dzeroski, S.E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller, I. Kononenko,

J. Kreuziger, R.S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, W. Van de Weldel,

W.Wenzel, J. Wnek, and J. Zhang. The monk's problems: A performance comparison of di�erent

learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon University, 1991.

[

Wnek and Michalski, 1994

]

Janusz Wnek and Ryszard S. Michalski. Hypothesis-driven construc-

tive induction in AQ17-HCI : A method and experiments. Machine Learning, 14(2):139{168,

1994.

