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Abstract. We evaluate the power of decision tables as a hypothesis

space for supervised learning algorithms. Decision tables are one of the

simplest hypothesis spaces possible, and usually they are easy to un-

derstand. Experimental results show that on arti�cial and real-world

domains containing only discrete features, IDTM, an algorithm induc-

ing decision tables, can sometimes outperform state-of-the-art algorithms

such as C4.5. Surprisingly, performance is quite good on some datasets

with continuous features, indicating that many datasets used in machine

learning either do not require these features, or that these features have

few values. We also describe an incremental method for performing cross-

validation that is applicable to incremental learning algorithms including

IDTM. Using incremental cross-validation, it is possible to cross-validate

a given dataset and IDTM in time that is linear in the number of in-

stances, the number of features, and the number of label values. The time

for incremental cross-validation is independent of the number of folds

chosen, hence leave-one-out cross-validation and ten-fold cross-validation

take the same time.

1 Introduction

Write the vision, and make it plain upon tables,

that he may run that readeth it.

|Habakkuk 2:2

Given a dataset of labelled instances, supervised machine learning algorithms

seek a hypothesis that will correctly predict the class of future unlabelled in-

stances. In the machine learning literature, many representations for hypotheses

have been suggested, including decision trees, decision graphs, neural networks,

k-DNF formulae, automata, Lisp programs, and probability measures.

We investigate the power of one of the simplest representations possible|a

decision table with a default rule mapping to the majority class. This represen-

tation, called DTM (Decision Table Majority), has two components: a schema

which is a set of features that are included in the table, and a body consisting



of labelled instances from the space de�ned by the features in the schema. Given

an unlabelled instance, a decision table classi�er searches for exact matches in

the decision table using only the features in the schema (note that there may

be many matching instances in the table). If no instances are found, the major-

ity class of the DTM is returned; otherwise, the majority class of all matching

instances is returned.

To build a DTM, the induction algorithm must decide which features to

include in the schema and which instances to store in the body. In this paper,

we restrict ourselves to the former problem, called feature subset selection.

Given a target function f and a hypothesis class H, we de�ne the optimal

features to be the features used in a hypothesis h in H that has the highest

future prediction accuracy with respect to f . Because the hypothesis space is

limited in its expressive power, the optimal features may not include all relevant

features.

To search for the optimal features, the wrapper model (John, Kohavi &

P
eger 1994) is used. In the wrapper model, the induction algorithm is used

as a black box, and a search through the space of feature subsets is made by

a \wrapper" algorithm. In this paper, we search using best-�rst search and es-

timate the future prediction accuracy (the heuristic required for the best �rst

search) with k-fold cross-validation.

The goal of this paper is to evaluate the representation power of DTMs. In

experiments with feature subset selection for decision tree algorithms, we have

observed that in many cases the decision-trees were nearly complete, i.e., the

leaves represented almost all combinations of the chosen subset of the features.

We then conjectured that a simple decision table on a subset of the features might

be a good hypothesis space. While we use a speci�c technique for selecting the

features|the wrapper model|our aim is not to show that the speci�c method

for selecting features is good, but rather to show that at least one method for

selecting the schema works well. It is conceivable that other methods, perhaps

better and faster, exist.

The chances of getting a perfect match on the values of continuous features

are slim: even a single truly continuous feature in the schema will make the table

useless. Our initial experiments were therefore restricted to datasets containing

only discrete features. To determine how weak the performance of IDTM is on

datasets with continuous features, we also report on such experiments. Surpris-

ingly, performance is not signi�cantly worse than that of C4.5 (Quinlan 1993) in

some cases. On those that performance is not signi�cantly worse than C4.5, the

algorithm ignores the continuous features or uses those features that have few

values.

The paper is organized as follows. Section 2 formally de�nes DTMs and

the problem of �nding an optimal feature subset. Section 3 describes how we

search for the optimal feature subsets using best-�rst search to guide the search

and cross-validation to estimate the accuracy. Section 4 details the experimental

methodology and the results. Section 5 describes related work on decision tables

and feature subset selection. Section 6 concludes with a summary and directions



for future work.

2 Decision Tables and Optimal Features Subsets

Given a training sample containing labelled instances, an induction algorithm

builds a hypothesis in some representation. The representation we investigate

here is a decision table with a default rule mapping to the majority class, which

we abbreviate as DTM. A DTM has two components:

1. A schema, which is a set of features.

2. A body, which is a multiset of labelled instances. Each instance consists of

a value for each of the features in the schema and a value for the label.

Given an unlabelled instance I, the label assigned to the instance by a DTM

classi�er is computed as follows. Let I be the set of labelled instances in the DTM

exactly matching the given instance I, where only the features in the schema are

required to match and all other features are ignored. If I = ;; return the majority

class in the DTM; otherwise, return the majority class in I. Unknown values are

treated as distinct values in the matching process.

Let err(h; f) denote the error of a hypothesis h for a given target function f .

Since f is never known for real-world problems, we estimate the error using an

independent test set T as

cerr(h; T ) =
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where L is a loss function. In the rest of the paper we assume a zero-one loss

function, i.e., zero if h(x) = y and one otherwise. The approximate accuracy

is de�ned as 1� cerr(h; T ):

An optimal feature subset, A

�

, for a given hypothesis space H and a

target function f is a subset of the features A

�

such that there exists a hypothesis

h in H using only features in A

�

and having the lowest possible error with

respect to the target function f . (Note that the subset need not be unique.) As

the following example shows, relevant features are not necessarily included in

the optimal subset.

Example 1.

Let the universe of possible instances be f0; 1g

3

, that is, three Boolean features,

say X

1

; X

2

; X

3

. Let the distribution over the universe be uniform, and assume

the target concept is f(X

1

; X

2

; X

3

) = (X
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^ X
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) _ X

3

. Under any reasonable

de�nition of relevance, all variables are relevant to this target function.

If the hypothesis space is the space of monomials, i.e., conjunctions of literals,

the only optimal feature subset is fX

3

g The accuracy of the the monomial X

3

is 87:5%, the highest accuracy achievable within this hypothesis space.



An induction algorithm using DTMs as the underlying hypothesis space must

decide which instances to store in the table and which features to include in the

schema. In this paper we assume the induction algorithm includes the projections

of all instances de�ned by the schema in the DTM, but we do not restrict the

subset of features to use in the schema in any way. Let A = fX

1

; : : : ; X

n

g be a

set of features and let S be a sample ofm instances over the features in A. Given

a subset of features A

0

� A, DTM(A

0

;S) is the DTM with schema A

0

and a

body consisting of all instances in S projected on A

0

. The goal of the induction

algorithm is to chose a schema A

�

such that

A

�

= argmin

A

0

�A

err(DTM (A

0

;S); f) : (1)

The schema A

�

consists of an optimal feature subset for a DTM under the

assumption that all instances from the training set are stored in the body of the

decision table.

3 Finding an Optimal Feature Subset

In this section, we describe IDTM (Inducer of DTMs), an induction algorithm

that induces DTMs. The goal of IDTM is clear: �nd the feature subset A

�

that

is described in Equation 1. Since the target function f is unknown, no learning

algorithm can compute the exact error: it can only be approximated. Further-

more, the number of feature subsets for n features is 2

n

, a space too large to

search exhaustively even for moderately sized n.

An interesting way to view the induction process is to think of the feature

subset selection algorithm as wrapping around a trivial induction algorithm that

simply creates a DTM from the full dataset it receives (see John et al. (1994)

for details on the wrapper approach). The wrapper is the only part that makes

the inductive leap of which features to use.

1

We now give an overview of the feature subset selection mechanism, which

transforms the problem into one of state space search with probabilistic esti-

mates; further details can be found in Kohavi (1994c).

3.1 Searching the Space of Feature Subsets

In order to search the space of feature subsets e�ectively, we transform the

problem into a state space search and use best-�rst search to heuristically search

the space (Ginsberg 1993, Nilsson 1980).

The states in the space are feature subsets; operators can add or delete a

feature; the initial node can be either the set of all features or the empty set;

and the evaluation function is cross-validation (described below). Since we are

aiming for the optimal feature subset, there is no goal node. The optimization

1

Holte (personal communication) remarked that this type of learning is basically

a preprocessing step (feature selection), and an optional post-processing step to

simplify the rules, with nothing in between.



problem requires a termination condition, and the algorithm we used stops after

a �xed number of node expansions do not yield a node with a better estimated

accuracy than the current best estimate.

To estimate future prediction accuracy, cross-validation, a standard accuracy

estimation technique (Weiss & Kulikowski 1991, Breiman, Friedman, Olshen &

Stone 1984, Stone 1974), is used. Given an induction algorithm and a dataset, k-

fold cross-validation splits the data into k approximately equally sized partitions,

or folds. The induction algorithm is executed k times; each time it is trained on

k�1 folds and the generated hypothesis is tested on the unseen fold, which serves

as a test set. The estimated accuracy is computed as the average accuracy over

the k test sets.

The estimated accuracy for each cross-validation fold is a random variable

that depends on the random partitioning of the data. We observed high vari-

ance in the accuracy estimates and ameliorate this disturbing phenomenon by

repeating the cross-validation t times. Following John's suggestion (1994), we

used a 10% trimmed mean of the kt folds.

3.2 Incremental Cross-Validation

Each feature subset, represented as a node in the state space, is evaluated by

cross-validation. One of the main problems with regular k-fold cross-validation

is that the algorithm is run k times, introducing a multiplicative factor of k in

the running time. We now explain how to speed up cross-validation time for

algorithms that support incremental addition and deletion of instances. We feel

that this digression is important because the simple idea of incremental cross-

validation is what makes the IDTM algorithm practical.

The idea in incremental cross-validation is that instead of training k times on

k�1 folds each time, we train on the full dataset, then delete the instances in one

fold, test on that fold, and insert the instances back. The delete-test-insert phase

is repeated for each of the k folds. If the algorithm is guaranteed to produce the

same results in incremental mode as in batch mode, this incremental version of

cross-validation is guaranteed to produce the exact same result as batch cross-

validation.

Proposition1 Incremental Cross-Validation.

The running time of incremental cross-validation is

O(T +m(t

d

+ t

c

+ t

i

)) ;

where T is the running time of the induction algorithm on the full dataset, m is

the number of instances, and t

d

, t

c

, and t

i

represent the time it takes to delete

an instance, classify an instance, and insert an instance, respectively.

Proof: Incremental cross-validation starts out by running the original induction

algorithm on the full dataset. Since each instance appears in exactly one fold, it

is deleted once, classi�ed once, and inserted once during the overall incremental

cross-validation phase.



Example 2.

Conducting k-fold cross-validating of a decision tree induction algorithm and a

dataset is deemed an expensive operation because one typically builds k deci-

sion trees from scratch, one for each fold. However, Utgo� (1994) shows how to

incrementally add and delete instances in a way that is guaranteed to generate

the same tree as a batch algorithm. Thus, one can incrementally cross-validate

decision trees much faster.

Nearest neighbor algorithms support incremental addition and deletion of

instances by simply adding and removing prototype points. Since these opera-

tions are fast, it can be shown that incremental cross-validation of a dataset with

m instances and n features with a simple nearest neighbor induction algorithm

takes O(m(m � n)) time; incremental cross-validation of a weighted regression

nearest neighbor takes O(m(m �n

2

+m

3

)) time as shown in Moore & Lee (1994),

Maron & Moore (1994), and Moore, Hill & Johnson (1992).

We now describe the data structures that allow fast incremental operations

on DTMs. The underlying data structure that we use is a universal hash table

(Cormen, Leiserson & Rivest 1990). The time to compute the hash function

is O(n

0

) where n

0

is the number of feature values in the DTM's schema, and

the expected lookup time (given the hashed value of the instance) is O(1) if all

objects (unlabelled instances) stored are unique. To ensure that all stored objects

are unique, we store with each unlabelled instance ` counter values, where ` is the

number of label values. Each counter value c

i

represents the number of instances

in the training set having the same underlying unlabelled instance and label l

i

.

To classify an instance, the unlabelled instance is found in the hash table and

the label matching the highest counter value is returned.

2

The overall expected

time to classify an instance is thus O(n

0

+ `).

To delete an instance, the underlying unlabelled instance is found and the

appropriate label counter is decreased by one; if all counters are zero, the under-

lying unlabelled instance is deleted from the table. Inserting instances is done

similarly. Class counts must be kept for the whole body of the DTM in order to

change the majority class.

Corollary 2 Incremental Cross-Validation of IDTMs.

The overall time to cross-validate an IDTM with n

0

features in the schema and

a dataset with m instances and ` label values is O(m(n

0

+ `)).

Proof: All DTM operations have time complexity t

d

= t

c

= t

i

= O(n

0

+ `). The

overall time to build a DTM from scratch is the same as m insertions; thus by

Proposition 2, the overall time for the cross-validation O(m(n

0

+ `)).

2

The running time could further decreased to O(n

0

) by computing the majority of

every unlabelled instance in advance, but the counters are needed for the incremental

operations.



3.3 Choosing the Number of Folds

The time to incrementally cross-validate an IDTM and a dataset for any num-

ber of folds is the same. Leave-one-out is almost unbiased (Efron 1983) and was

commonly considered the preferred method for cross-validation. Recently Zhang

(1992) and Shao (1993) proved that, for linear models, using leave-one-out cross-

validation for model selection is asymptotically inconsistent in the sense that the

probability of selecting the model with the best predictive power does not con-

verge to 1 as the total number of observations approaches in�nity. The theorems

show that in order to select the correct model, as the number of instances in

the dataset grows, the number of instances left out for testing should grow as

well. Zhang showed that the models chosen by any k-fold cross-validation for

any k will over�t in the sense that too many features will be selected. However,

for moderately sized data sets, he claimed that 10 to 15 folds are reasonable

choices.

Empirically, we have observed similar results, namely that using ten-fold

cross-validation is slightly better than leave-one-out. Similar observations were

made by Weiss (1991). While the di�erences are usually small, especially for fea-

ture subset selection where only the relative ranking of di�erent subsets matters,

there is one extreme case that deserves special mention: the Monk1 dataset.

Example 3 Leave-one-out on Monk1.

The Monk1 problem (Thrun etal. 1991) has a standard training and test set.

There are no duplicate instances, nor is there noise in the training set. A DTM

with a schema that has all the features and that is tested on a test set disjoint

from the training set always predicts the majority class; hence it is equivalent

to an induction algorithm that predicts a constant function|True or False|

depending on the prevalent class in the training set.

The estimated accuracy using leave-one-out cross-validation on a DTM with

all the features (or equivalently, a majority inducer) and the standard training

set for the Monk1 problem is 0.0%! The example shows an inherent problem

with cross-validation that applies to more than just a majority inducer. In a no-

information dataset where the label values are completely random, the best an

induction algorithm can do is predict majority. Leave-one-out on such a dataset

with 50% of the labels for each class and a majority inducer would still predict 0%

accuracy.

The reason for this phenomenon is that the standard training set for the

Monk1 problem has 62 positive instances and 62 negative instances. Each time

an instance is removed in leave-one-out, the other class is the more prevalent in

the training set and the majority inducer predicts the wrong label for the test

instance.

We have observed a similar phenomenon even with ten-fold CV. The iris

dataset has 150 instances, 50 of each class. Predicting any class would yield

33.3% accuracy, but ten-fold CV using a majority induction algorithm yields



21.5% accuracy (averaged over 100 runs of ten-fold CV). The reason is that if

there is a majority of one class in the training set, there is a minority of that

class in the test set. (See Scha�er (1994) for a discussion along these lines.)

4 Experiments with IDTM

We now describe experiments conducted with IDTM, the induction algorithm

for DTMs. The experiments were done on all the datasets at the UC Irvine

repository (Murphy & Aha 1994) and StatLog repository (Taylor, Michie &

Spiegalhalter 1994) that contain only discrete features. To test the performance

on datasets with continuous features, we chose the rest of the StatLog datasets

except shuttle, which was too big, and all the datasets used by Holte (1993).

4.1 Methodology

We now de�ne the exact settings used in the algorithms. The estimated accu-

racy for each node was computed using ten-fold cross validation. Because of the

high variability of the estimates, the cross-validation was repeated (shu�ing the

instances between runs) until the standard deviation of the mean went below

one percent or until ten cross-validations runs have been executed.

The termination condition for the search was a consecutive sequence of �ve

node expansions that did not generate a feature subset with an estimated accu-

racy of at least 0.1% better than the previous best subset.

For datasets with a speci�ed training and test set, we executed the algorithm

once. For the rest of the datasets, we performed ten-fold cross-validation around

IDTM.

3

In the comparisons with C4.5, the same cross-validation folds were used

for both algorithms.

As in Holte's work, we believe that the weakest part of the IDTM algorithm

is the accuracy estimation. In order to derive an upper bound on the possible

accuracy of DTMs, the test set was used to guide the search, and the termina-

tion condition for the best-�rst search was changed so that a maximum of 30

consecutive nodes need not show improvement before we stop (up from �ve).

Because the search is still a heuristic search, the best feature subset might

not be found, and so this is not a true upper bound (it is a lower bound on the

upper bound). As shown in the next section, the heuristic sometimes fails to �nd

the best node. The upper bound usually leads to optimistic accuracy estimates,

especially if the test set size is small and there are many features that allow

perfectly �tting the test set (e.g., the lung-cancer dataset). The upper bound

does not show that the given accuracy is achievable, something we cannot expect,

but rather that performance above this level is impossible without changing the

hypothesis space or improving the search for the best feature subset.

3

Although IDTM performs cross-validations internally, the outer cross-validation is

completely independent.



Dataset Feat- Train Test Majority C4.5 IDTM IDTM

�

ures sizes Accuracy Accuracy Accuracy Accuracy

audiology 69 226 CV 25.2�2.8 79.3�3.5 71.3� 3.8 88.0�1.9

breast-cancer 9 286 CV 70.4�2.3 73.9�2.8 75.3� 2.4 83.7�1.9

chess 36 3196 CV 52.2�1.1 99.5�0.1 97.8� 0.2 98.4�0.2

corral 6 32 128 56.3�4.4 81.2�3.5 100.0�0.0 100.0�0.0

dna 180 2000 1186 50.8�1.5 92.3�0.8 94.6�0.7 94.9�0.6

lenses 4 24 CV 65.0�8.4 83.3�7.0 83.3� 7.0 91.7�5.7

lung-cancer 56 32 CV 41.7�9.0 49.2�7.5 53.3� 9.9 100.0�0.0

Monk1 6 124 432 50.0�2.4 75.7�2.1 100.0�0.0 100.0�0.0

Monk2 6 169 432 67.1�2.3 65.0�2.3 64.4� 2.3 81.9�1.9

Monk2-local 17 169 432 67.1�2.3 70.4�2.2 100.0�0.0 67.1�2.3

Monk3 6 122 432 47.2�2.4 97.2�0.8 97.2� 0.8 97.2�0.8

mushroom 22 8124 CV 51.8�0.5 100.0�0.0 99.9� 0.4 100.0�0.0

parity5+5 10 100 1024 50.0�1.6 50.0�1.6 100.0�0.0 50.0�1.6

tic-tac-toe 9 958 CV 65.4�1.7 85.6�1.1 78.2� 1.4 84.8�0.9

vote 16 435 CV 61.4�2.1 95.6�0.5 94.3� 0.4 99.1�0.4

vote1 15 435 CV 61.4�2.1 88.0�1.8 87.6�1.3 97.0�0.7

Table 1. Comparison of majority, C4.5, IDTM, and IDTM

�

on discrete domains. Bold

indicates signi�cantly better accuracies (either C4.5 or IDTM.)

4.2 Experimental Results

Table 1 shows the accuracy results for the following induction algorithms:

1. A majority induction algorithm, which simply predicts the majority class.

The accuracy shown is sometimes referred to as baseline accuracy.

2. The C4.5 decision-tree induction algorithm with the default parameter set-

tings.

3. The IDTM induction algorithm described in this paper.

4. The IDTM

�

induction \algorithm,"which gives an approximate upper bound

on the performance of any induction algorithm using DTMs. We stress that

this is not really a learning algorithm because it is given access to the test

set.

The numbers after the \�" sign indicate the standard deviation of the re-

ported accuracy. On cross-validated runs, the standard deviation of the fold

accuracies is given; on runs that had a pre-speci�ed test-set, the standard ac-

curacy is the computed according to the Binomial model which assumes each

test set instance is an independent Bernoulli experiment, and thus the standard

deviation of the mean accuracy is

p

acc(1� acc)=m (see Breiman et al. (1984),

Devijver & Kittler (1982)).

The results demonstrate that IDTM can achieve high accuracy in discrete

domains using the simple hypothesis space of DTMs. In corral, dna, the Monk



Dataset Feat- Train Test Majority C4.5 IDTM IDTM

�

ures sizes Accuracy Accuracy Accuracy Accuracy

australian 14 690 CV 55.5�2.3 85.4�1.1 84.9� 1.7 89.4�1.3

breast 10 699 CV 65.5�1.7 95.4�0.7 90.6� 0.9 96.1�0.6

cleve 13 303 CV 54.4�3.6 72.3�2.2 75.5� 3.2 90.8�2.2

crx 15 690 CV 55.5�2.0 85.9�1.4 86.7� 1.1 89.1�1.2

diabetes 8 768 CV 65.1�1.6 71.8�1.0 66.0� 1.1 71.0�1.2

german 24 1000 CV 70.0�1.3 69.8�1.1 69.4� 1.1 81.4�1.3

glass 9 214 CV 35.5�3.3 65.5�3.2 41.6� 3.0 55.6�1.8

glass2 9 163 CV 53.3�4.0 70.6�2.0 48.9� 4.0 69.2�2.8

hayes-roth 4 160 CV 31.8�2.6 64.8�4.6 57.5� 3.2 76.9�2.1

heart 13 270 CV 55.6�3.1 76.7�1.8 80.4� 1.6 91.5�1.5

hepatitis 19 155 CV 79.2�3.9 80.0�3.7 77.9� 2.8 96.0�2.0

horse-colic 22 368 CV 63.1�2.3 85.1�1.2 84.3� 0.7 92.1�0.9

hypothyroid 25 3163 CV 95.2�0.4 99.1�0.2 97.0� 0.4 97.9�0.3

iris 4 150 CV 23.3�2.5 95.3�1.4 94.7� 1.3 94.7�1.3

labor-neg 16 57 CV 65.3�7.7 85.7�3.5 75.3� 7.6 98.3�1.7

letter 16 15000 5000 3.7�0.3 86.8�0.5 69.2� 0.7 69.2�0.7

lymphography 18 148 CV 54.6�6.4 78.4�1.7 76.2� 3.6 93.9�1.61

satimage 36 4435 2000 23.1�0.9 85.2�0.8 78.9�0.9 78.9�0.9

segment 19 2310 CV 11.1�0.4 96.4�0.3 56.3�1.3 57.5�1.2

sick-euthyroid 25 3163 CV 90.7�0.6 97.7�0.3 94.9� 0.3 96.0�0.3

soybean-small 35 47 CV 36.0�6.7 100.0�0.0 97.5� 2.5 100.0�0

vehicle 18 846 CV 22.6�1.0 69.8�1.8 59.3� 1.5 63.4�1.4

Table 2. Comparison of majority, C4.5, IDTM, and IDTM

�

on non-discrete domains.

Bold indicates signi�cantly better accuracies (either C4.5 or IDTM.)

problems, and parity, IDTM signi�cantly outperforms C4.5 (a di�erence of more

than two standard deviations). In audiology, chess, tic-tac-toe, and vote, per-

formance is signi�cantly below that of C4.5. Performance is approximately the

same for the rest.

The 94:6%�0:7% accuracy of IDTM on the DNA dataset, containing 180 bi-

nary features, 2,000 training instances, and 1,186, test instances, is higher than

many other state-of-the-art induction algorithms reported for this dataset in

(Taylor et al. 1994). For example, CART (Breiman et al. 1984) achieves 91:5%

accuracy, Backprop (Rumelhart, Hinton & Williams 1986) achieves 91:2% ac-

curacy, CN2 (Clark & Niblett 1989) achieves 90:5% accuracy, and k-nearest

neighbor achieves 84.5% accuracy.

Table 2 shows some results for datasets containing continuous features. In

these domains, we expected IDTM to fail miserably, given that the chances of

matching continuous features in the table are slim without preprocessing the

data. Although C4.5 clearly outperforms IDTM on most datasets, IDTM out-

performs C4.5 on the heart dataset and achieves similar performance on nine



out of the 22 datasets (australian, cleve, crx, german, hepatitis, horse-colic, iris,

lymphography, and soybean).

Running times on a Sparc 10 varied from about one minute for the Monk

datasets to 15 hours for the dna dataset. The long running time for the dna

dataset was due to the branching factor of 180 in the feature-subset space.

4.3 Discussion

We believe that best-�rst search is doing a reasonable job at searching the space

for good feature-subset candidates. The dna dataset is a clear example; out of

2

180

= 1:5 � 10

54

possible subsets, only 21 nodes were expanded, resulting in

a graph with 3,723 nodes, each representing a feature subset. Two interesting

examples where best-�rst search fails to �nd a good subset are the Monk2-local

and the parity5+5 problems. In these datasets, the IDTM

�

algorithm fails to �nd

a feature subset at least as good as the subset chosen by IDTM. Monk2-local is

a local encoding of the original Monk2 problem where out of eighteen features,

only six are relevant. The baseline (majority) is 67.13% accuracy. All 268 nodes

that were expanded did not result in any improvement, so the algorithm halted.

IDTM, on the other hand, climbed a path of seemingly improving nodes, and

found the correct subset. Parity5+5 is parity of �ve features with �ve random

features; a similar event happened in this case.

The fact that IDTM's performance equals that of C4.5 in domains with

continuous features indicates that many such features are not very useful, or

that they contain few values, or that C4.5 is not using the information contained

in them. The soybean dataset contains only one feature with more than four

values, even though all are declared continuous. The german dataset contains

21 continuous features that have less than �ve values each (out of a total of

24 features); IDTM indeed chooses only the features with a few values. Iris

contains over 20 to 43 values for each continuous feature, yet a table using a

single feature|petal width|has 94.7% accuracy. The crx dataset contains six

continuous features, �ve having more than 130 values each; in our experiments,

IDTM usually used three non-continuous features that contained a total of 18

possible values (making the 18 line table extremeley easy to comprehend).

We conjecture that IDTM algorithm outperforms C4.5 in discrete domains

when the features interact and not too many features are relevant. Decision trees

are well suited for local relevances (i.e., di�erent features are relevant in di�erent

regions of the instance space), but the greedy top-down recursive partitioning

algorithms tend to fail when features interact. DTMs are suited to concepts

where some features are globally relevant; the feature subset selection algorithm

used here is conducting a best-�rst search and is thus able to capture interactions.

The tic-tac-toe dataset is an example where features are locally relevant; the

Monk1, Monk2, and parity5+5 datasets have feature interactions.



5 Related Work

Because they permit one to display succinctly the conditions that

must be satis�ed before prescribed actions are to be performed,

decision tables are becoming popular in computer programming and

system design as devices for organizing logic.

|Reinwald & Soland (1966)

In the early sixties, algorithms were created to convert decision tables into

optimal computer programs (decision trees) under di�erent measure of optimal-

ity using branch and bound procedures (Reinwald & Soland 1966, Reinwald &

Soland 1967). In the early seventies, these procedures were improved using dy-

namic programming techniques (Garey 1972, Schumacher & Sevcik 1976). Hya�l

& Rivest (1976) showed that building an optimal decision tree from instances

(or from a table) is NP-complete. Hartmann, Varshney, Mehrotra & Gerberich

(1982) show how to convert a decision table into a decision tree using mutual

information. The algorithm is very similar to ID3 (Quinlan 1986). All these ap-

proaches, however, dealt with conversions that are information preserving, i.e.,

all entries in the table are correctly classi�ed and the structures are not used for

making predictions.

The rough sets community has been using the hypothesis space of decision

tables for a few years (Pawlak 1987, Pawlak 1991, Slowinski 1992). Researchers

in the �eld of rough sets suggest using the degrees-of-dependency of a feature

on the label (called 
) to determine which features should be included in a

decision table (Ziarko 1991, Modrzejewski 1993). Another suggestion was to

use normalized entropy (Pawlak, Wong & Ziarko 1988), which is similar to the

information gain measure of ID3. These approaches ignore the utility of the

speci�c features to the speci�c induction algorithm and to the hypothesis space

used.

Much work in the rough sets community has focused on �nding the core

set of features, which are the indispensable features, and reducts which are

sets of features that allow a Bayesian classi�er to achieve the highest possible

accuracy. The core is the set of strongly relevant features as described in

John et al. (1994). While �nding reducts is appealing in theory, they are not

necessarily optimal subsets for a given induction algorithm. Much of the work

presented here stemmed from a paper claiming that reducts are not necessarily

useful (Kohavi & Frasca 1994).

Almuallim & Dietterich (1991) described the FOCUS algorithm which is

equivalent to �nding the DTM with the smallest number of features in the

schema and with no con
icting instance projections. The main problem with

FOCUS algorithm is that it has no way of dealing with noise and thus the table

over�ts the data. The algorithm is also unable to handle continuous features.

Almuallim & Dietterich (1992) discussed the \Multi-balls" algorithm that

has high coverage|for a given sample size, the number of concepts it can PAC

learn is close to the upper bound of any learning algorithm. DTMs can be viewed

as a multi-balls hypothesis space because the centers are equidistant. However,

the induction method is completely di�erent and the maximal number of balls



a DTMs creates is less than the upper bound given by the Gilbert-Varshamov

bound.

A nearest-neighbor algorithm can be viewed as a generalization of a DTM

with zero weights on the features not included in the schema. However, while

nearest-neighbor algorithms use the nearest neighbor to classify instances, a

DTM classi�er defaults to the majority whenever the distance is greater than

zero.

Feature subset selection has been long studied in the statistics community

(Miller 1990, Boyce, Farhi & Weischedel 1974), in the pattern recognition com-

munity (Devijver & Kittler 1982), and lately in the machine learning community

(John et al. 1994, Moore & Lee 1994, Caruana & Freitag 1994, Kohavi & Frasca

1994, Langley & Sage 1994, Aha & Bankert 1994).

Decision tables have a bias similar to that of oblivious read-once decision

graphs (OODGs) (Kohavi 1994a, Kohavi 1994b): all of the features chosen for

the schema are tested during classi�cation. This implies that it is easy to convert

a decision table into an OODG, perhaps making it more comprehensible.

6 Summary and Future Work

In this paper, we showed that a decision table with a default rule mapping to the

majority class can be used to classify instances in discrete spaces with accuracy

that is sometimes higher than state-of-the-art induction algorithms. Decision ta-

bles are easy for humans to understand, especially if not too big (e.g., the decision

table for the crx dataset has 18 entries). For future classi�cation, the resulting

decision table provides a constant classi�cation time on the average (using a

hash table storing the majority) and is therefore well suited for applications in

real-time environments.

We observed that on some datasets with continuous values, the prediction

accuracy of IDTM is comparable to that of C4.5. This observation indicates that

some real-world datasets from the StatLog and the UC Irvine repositories do not

have much \information" in the real values or that C4.5 is unable to utilize this

information.

Our goal in this paper has not been to claim that decision tables provide a

very good hypothesis space for induction algorithms; rather, we have shown that

such a simple hypothesis space can lead to high performance, a point previously

made by Holte (1993), although he used a di�erent algorithm. The IDTM al-

gorithm described here performs better than Holte's algorithm and sometimes

outperforms C4.5.

Generalization without a bias is impossible (Scha�er 1994, Wolpert 1994).

IDTM is biased to select a feature subset maximizing cross-validation accuracy

estimates. When the estimates are good, IDTM should choose a feature subset

that leads to high prediction accuracy. Our empirical evidence indicates that the

estimates are usually good, but have high variability.

We also formalized the idea of an incremental cross-validation algorithm,

which is applicable whenever an induction algorithm supports incremental add



and delete operations. We used this approach to show how cross-validation of an

IDTM and a dataset can be performed in time that is linear in the number of

instances, the number of features, and the number of label values. We suggested

that incremental cross-validation can lead to fast accuracy estimates for decision-

tree induction algorithm.

IDTMmay be used to select a subset of features that yield good performance

and which can provide a starting point for a feature subset selection search that

uses a more complex algorithm. It is also possible to test constructive induc-

tion methods that construct new features (e.g., interval discretization) with this

method.
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