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Abstract

In the feature subset selection problem� a learning algorithm is faced with the problem of selecting

a relevant subset of features upon which to focus its attention� while ignoring the rest� To achieve the

best possible performance with a particular learning algorithm on a particular training set� a feature

subset selection method should consider how the algorithm and the training set interact� We explore

the relation between optimal feature subset selection and relevance� Our wrapper method searches for

an optimal feature subset tailored to a particular algorithm and a domain� We study the strengths and

weaknesses of the wrapper approach and show a series of improved designs� We compare the wrapper

approach to induction without feature subset selection and to Relief� a �lter approach to feature subset

selection� Signi�cant improvement in accuracy is achieved for some datasets for the two families of

induction algorithms used� decision trees and Naive�Bayes�

� Introduction

A universal problem that all intelligent agents must face is where to focus their attention� A problem�solving
agent must decide which aspects of a problem are relevant� an expert�system designer must decide which
features to use in rules� and so forth� Any learning agent must learn from experience� and discriminating
between the relevant and irrelevant parts of its experience is a ubiquitous problem�

In supervised machine learning� an induction algorithm is typically presented with a set of training
instances� where each instance is described by a vector of feature �or attribute� values and a class label� For
example� in medical diagnosis problems the features might include the age� weight� and blood pressure of
a patient� and the class label might indicate whether or not a physician determined that the patient was
su�ering from heart disease� The task of the induction algorithm� or the inducer� is to induce a classi�er
that will be useful in classifying future cases� The classi�er is a mapping from the space of feature values to
the set of class values�

In the feature subset selection problem� a learning algorithm is faced with the problem of selecting some
subset of features upon which to focus its attention� while ignoring the rest� In the wrapper approach �John�
Kohavi � P�eger 	

��� the feature subset selection algorithm exists as a wrapper around the induction
algorithm� The feature subset selection algorithm conducts a search for a good subset using the induction
algorithm itself as part of the function evaluating feature subsets� The idea behind the wrapper approach�
shown in Figure 	� is simple� the induction algorithm is considered as a black box� The induction algorithm is
run on the dataset� usually partitioned into internal training and holdout sets� with di�erent sets of features
removed from the data� The feature subset with the highest evaluation is chosen as the �nal set on which to
run the induction algorithm� The resulting classi�er is then evaluated on an independent test set that was
not used during the search�

Since the typical goal of supervised learning algorithms is to maximize classi�cation accuracy on an
unseen test set� we have adopted this as our goal in guiding the feature subset selection� Instead of trying
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Figure 	� The wrapper approach to feature subset selection� The induction algorithm is used as a 
black
box� by the subset selection algorithm�

to maximize accuracy� we might instead have tried to identify which features were relevant� and use only
those features during learning� One might think that these two goals were equivalent� but we show several
examples of problems where they di�er�

This paper is organized as follows� In Section �� we review the feature subset selection problem� investigate
the notion of relevance� de�ne the task of �nding optimal features� and describe the �lter and wrapper
approaches� In Section �� we investigate the search engine used to search for feature subsets and show that
greedy search �hill�climbing� is inferior to best��rst search� In Section �� we modify the connectivity of the
search space to improve the running time� Section � contains a comparison of the best methods found� In
Section �� we discuss one potential problem in the approach� over�tting� and suggest a theoretical model
that generalizes the feature subset selection problem in Section �� Related work is given in Section �� future
work is discussed in Section 
� and we conclude with a summary in Section 	��

� Feature Subset Selection

If variable elimination has not been sorted out after two decades of work assisted by
high�speed computing� then perhaps the time has come to move on to other problems�

�R� L� Plackett� discussion in Miller �����	

In this section� we look at the problem of �nding a good feature subset and its relation to the set
of relevant features� We show problems with existing de�nitions of relevance� and show how partitioning
relevant features into two families� weak and strong� helps us understand the issue better� We examine two
general approaches to feature subset selection� the �lter approach and the wrapper approach� and we then
investigate each in detail�

��� The Problem

Practical machine learning algorithms� including top�down induction of decision tree algorithms such as
ID� �Quinlan 	
���� C��� �Quinlan 	

��� and CART �Breiman� Friedman� Olshen � Stone 	
���� and
instance�based algorithms� such as IBL �Dasarathy 	

�� Aha� Kibler � Albert 	

	�� are known to degrade
in performance �prediction accuracy� when faced with many features that are not necessary for predicting
the desired output� Algorithms such as Naive�Bayes �Langley� Iba � Thompson 	

�� Duda � Hart 	
���
Good 	
��� are robust with respect to irrelevant features �i�e�� their performance degrades very slowly as
more irrelevant features are added� but their performance may degrade quickly if correlated �even if relevant�
features are added�

For example� running C��� with the default parameter setting on the Monk	 problem �Thrun et al� 	

	��
which has three irrelevant features� generates a tree with 	� interior nodes� �ve of which test irrelevant
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features� The generated tree has an error rate of ������ which is reduced to 		�	� if only the three
relevant features are given� John �	

�� shows similar examples where adding relevant or irrelevant features
to the credit�approval and Pima diabetes datasets degrades the performance of C���� Aha �	

�� noted
that 
IB��s storage requirement increases exponentially with the number of irrelevant attributes� �IB� is a
nearest�neighbor algorithm that attempts to save only important prototypes�� Performance likewise degrades
rapidly with irrelevant features�

The problem of feature subset selection is that of �nding a subset of the original features of a dataset� such
that an induction algorithm that is run on data containing only these features generates a classi�er with the
highest possible accuracy� Note that feature subset selection chooses a set of features from existing features�
and does not construct new ones� there is no feature extraction or construction �Kittler 	
��� Rendell �
Seshu 	

���

From a purely theoretical standpoint� the question of which features to use is not of much interest� A
Bayes rule� or a Bayes classi�er� is a rule that predicts the most probable class for a given instance� based
on the full distribution D �assumed to be known�� The accuracy of the Bayes rule is the highest possible
accuracy� and it is mostly of theoretical interest� The optimal Bayes rule is monotonic� i�e�� adding features
cannot decrease accuracy� and hence restricting a Bayes rule to a subset of features is never advised�

In practical learning scenarios� however� we are face with two problems� the learning algorithms are not
given access to the underlying distribution� and most practical algorithms attempt to �nd a hypothesis by
approximating NP�hard optimization problems� The �rst problem is closely related to the bias�variance
tradeo� �Geman� Bienenstock � Doursat 	

�� Kohavi � Wolpert 	

��� one must tradeo� estimation of
more parameters �bias reduction� with accurately estimating these parameters �variance reduction�� This
problem is independent of the computational power available to the learner� The second problem� that
of �nding a 
best� �or approximately best� hypothesis� is usually intractable and thus poses an added
computational burden� For example� decision tree induction algorithms usually attempt to �nd a small
tree that �ts the data well� yet �nding the optimal binary decision tree is NP�hard �Hya�l � Rivest 	
���
Hancock 	
�
�� For neural�networks� the problem is even harder� the problem of loading a three�node neural
network with a training set is NP�hard if the nodes compute linear threshold functions �Judd 	
��� Blum �
Rivest 	

���

Because of the above problems� we de�ne an optimal feature subset with respect to a particular induction
algorithm� taking into account its heuristics� biases� and tradeo�s� The problem of feature subset selection
is then reduced to the problem of �nding an optimal subset�

De�nition �
Given an inducer I� and a dataset D with features X�� X�� � � � � Xn� from a distribution D over the labeled
instance space� an optimal feature subset� Xopt� is a subset of the features such that the accuracy of the

induced classi�er C � I�D� is maximal�

An optimal feature subset need not be unique because it may be possible to achieve the same accuracy
using di�erent sets of features �e�g�� when two features are perfectly correlated� one can be replaced by the
other�� By de�nition� to get the highest possible accuracy� the best subset that a feature subset selection
algorithm can select is an optimal feature subset� The main problem with using this de�nition in practical
learning scenarios is that one does not have access to the underlying distribution and must estimate the
classi�er�s accuracy from the data�

��� Relevance of Features

One important question is the relation between optimal features and relevance� In this section� we present
de�nitions of relevance that have been suggested in the literature�� We then show a single example where
the de�nitions give unexpected answers� and we suggest that two degrees of relevance are needed� weak and
strong�

�In general� the de�nitions given here are only applicable to discrete features� but can be extended to continuous features
by changing p�X � x� to p�X � x��

�



De�nition Relevant Irrelevant
De�nition � X� X�� X�� X�� X�

De�nition � None All
De�nition � All None
De�nition � X� X�� X�� X�� X�

Table 	� Feature relevance for the Correlated XOR problem under the four de�nitions�

����� Existing De�nitions

Almuallim� Dietterich �	

	� p� ���� de�ne relevance under the assumptions that all features and the label
are Boolean and that there is no noise�

De�nition �
A feature Xi is said to be relevant to a concept C if Xi appears in every Boolean formula that represents C
and irrelevant otherwise�

Gennari� Langley � Fisher �	
�
� Section ���� allow noise and multi�valued features and de�ne relevant
features as those whose 
values vary systematically with category membership�� We formalize this de�nition
as follows�

De�nition �
Xi is relevant i� there exists some xi and y for which p�Xi � xi� � � such that

p�Y � y j Xi � xi� �� p�Y � y� �

Under this de�nition� Xi is relevant if knowing its value can change the estimates for the class label Y � or in
other words� if Y is conditionally dependent on Xi� Note that this de�nition fails to capture the relevance
of features in the parity concept where all unlabeled instances are equiprobable� and it may therefore be
changed as follows�

Let Si � fX�� � � � � Xi��� Xi��� � � � � Xmg� the set of all features except Xi� Denote by si a value�assignment
to all features in Si�

De�nition �
Xi is relevant i� there exists some xi� y� and si for which p�Xi � xi� � � such that

p�Y � y� Si � si j Xi � xi� �� p�Y � y� Si � si� �

Under the following de�nition� Xi is relevant if the probability of the label �given all features� can change
when we eliminate knowledge about the value of Xi�

De�nition �
Xi is relevant i� there exists some xi� y� and si for which p�Xi � xi� Si � si� � � such that

p�Y � y j Xi � xi� Si � si� �� p�Y � y j Si � si� �

The following example shows that all the de�nitions above give unexpected results�

Example � �Correlated XOR	 Let features X�� � � � � X� be Boolean� The instance space is such that X�

and X� are negations of X� and X�� respectively� i�e�� X� � X�� X� � X�� There are only eight possible
instances� and we assume they are equiprobable� The �deterministic� target concept is

Y � X� � X� �� denotes XOR� �

Note that the target concept has an equivalent Boolean expression� namely� Y � X� � X�� The features
X� and X� are irrelevant in the strongest possible sense� X� is indispensable� and either but not both of
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fX�� X�g can be disposed of� Table 	 shows for each de�nition� which features are relevant� and which are
not�

According to De�nition �� X� and X� are clearly irrelevant� both X� and X� are irrelevant because each
can be replaced by the negation of the other� By De�nition �� all features are irrelevant because for any
output value y and feature value x� there are two instances that agree with the values� By De�nition �� every
feature is relevant because knowing its value changes the probability of four of the eight possible instances
from 	�� to zero� By De�nition �� X� and X� are clearly irrelevant� and both X� and X� are irrelevant
because they do not add any information to S� and S�� respectively�

Although such simple negative correlations are unlikely to occur� domain constraints create a similar
e�ect� When a nominal feature such as color is encoded as input to a neural network� it is customary to use
a local encoding� where each value is represented by an indicator feature� For example� the local encoding
of a four�valued nominal fa� b� c� dg would be f���	� ��	�� �	���	���g� Under such an encoding� any single
indicator feature is redundant and can be determined by the rest� Thus most de�nitions of relevance will
declare all indicator features to be irrelevant�

����� Strong and Weak Relevance

We now claim that two degrees of relevance are required� weak and strong� Relevance should be de�ned in
terms of a Bayes classi�er�the optimal classi�er for a given problem� A feature X is strongly relevant
if removal of X alone will result in performance deterioration of an optimal Bayes classi�er� A feature X
is weakly relevant if it is not strongly relevant and there exists a subset of features� S� such that the
performance of a Bayes classi�er on S is worse than the performance on S�fXg� A feature is irrelevant if
it is not strongly or weakly relevant�

De�nition � repeated below de�nes strong relevance� Strong relevance implies that the feature is indis�
pensable in the sense that it cannot be removed without loss of prediction accuracy� Weak relevance implies
that the feature can sometimes contribute to prediction accuracy�

De�nition � �Strong relevance	
A feature Xi is strongly relevant i� there exists some xi� y� and si for which p�Xi � xi� Si � si� � � such
that

p�Y � y j Xi � xi� Si � si� �� p�Y � y j Si � si� �

De�nition 
 �Weak relevance	
A feature Xi is weakly relevant i� it is not strongly relevant� and there exists a subset of features S�i of Si
for which there exists some xi� y� and s�i with p�Xi � xi� S

�

i � s�i� � � such that

p�Y � y j Xi � xi� S
�

i � s�i� �� p�Y � y j S�i � s�i� �

A feature is relevant if it is either weakly relevant or strongly relevant� otherwise� it is irrelevant�
In Example 	� feature X� is strongly relevant� features X� and X� are weakly relevant� and X� and X�

are irrelevant�

��� Relevance and Optimality of Features

A Bayes classi�er must use all strongly relevant features and possibly some weakly relevant features� Clas�
si�ers induced from data� however� are likely to be suboptimal� as they have no access to the underlying
distribution� furthermore� they may be using restricted hypothesis spaces that cannot utilize all features �see
example below�� Practical induction algorithms that generate classi�ers may bene�t from the omission of
features� including strongly relevant features� Relevance of a feature does not imply that it is in the optimal
feature subset and� somewhat surprisingly� irrelevance does not imply that it should not be in the optimal
feature subset �Example ���

�
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Figure �� The feature �lter approach� in which the features are �ltered independently of the induction
algorithm�

Example � �Relevance does not imply optimality	 Let the universe of possible instances be f�� 	g��
that is� three Boolean features� say X�� X�� X�� Let the distribution of instances be uniform� and assume
the target concept is f�X�� X�� X�� � �X� � X�� � X�� Under any reasonable de�nition of relevance� all
features are relevant to this target function�

If the hypothesis space is the space of monomials� i�e�� conjunctions of literals� the only optimal feature
subset is fX�g� The accuracy of the monomial X� is ������ the highest accuracy achievable within this
hypothesis space� Adding another feature to the monomial will decrease the accuracy�

The example above shows that relevance �even strong relevance� does not imply that a feature is in an
optimal feature subset� Another example is given in Section ���� where hiding features from ID� improves
performance even when we know they are strongly relevant for an arti�cial target concept �Monk��� Another
question is whether an irrelevant feature can ever be in an optimal feature subset� The following example
shows that this may be true�

Example � �Optimality does not imply relevance	 Assume there exists a feature that always takes
the value one� Under all the de�nitions of relevance described above� this feature is irrelevant� Now consider
a limited Perceptron classi�er �Rosenblatt 	
��� Minsky � Papert 	
��� that has an associated weight with
each feature and then classi�es instances based upon whether the linear combination is greater than zero
�the threshold is �xed at zero�� �Contrast this with a regular Perceptron that classi�es instances depending
on whether the linear combination is greater than some threshold� not necessarily zero�� Given this extra
feature that is always set to one� the limited Perceptron is equivalent in representation power to the regular
Perceptron� However� removal of all irrelevant features would remove that crucial feature�

In Section �� we show an interesting problem with using any �lter approach with Naive�Bayes� One of the
arti�cial datasets �m�of�n�����	�� represents a symmetric target function� implying that all features should
be ranked equally by any �ltering method� However� Naive�Bayes improves if a single feature �any one of
them� is removed�

We believe that cases such as those depicted in Example � are rare in practice and that irrelevant features
should generally be removed� However� it is important to realize that relevance according to these de�nitions
does not imply membership in the optimal feature subset� and that irrelevance does not imply that a feature
cannot be in the optimal feature subset�

��� The Filter Approach

There are a number of di�erent approaches to subset selection� In this section� we review existing approaches
in machine learning� We refer the reader to Section � for related work in Statistics and Pattern Recognition�
The reviewed methods for feature subset selection follow the �lter approach and attempt to assess the merits
of features from the data� ignoring the induction algorithm�

The �lter approach� shown in Figure �� selects features using a preprocessing step� The main disadvantage
of the �lter approach is that it totally ignores the e�ects of the selected feature subset on the performance
of the induction algorithm� We now review some existing algorithms that fall into the �lter approach�

����� The FOCUS Algorithm

The FOCUS algorithm �Almuallim � Dietterich 	

	� Almuallim � Dietterich 	

��� originally de�ned for
noise�free Boolean domains� exhaustively examines all subsets of features� selecting the minimal subset of
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features that is su�cient to determine the label value for all instances in the training set� This preference
for a small set of features is referred to as the MIN�FEATURES bias�

This bias has severe implications when applied blindly without regard for the resulting induced concept�
For example� in a medical diagnosis task� a set of features describing a patient might include the patient�s
social security number �SSN�� �We assume that features other than SSN are su�cient to determine the
correct diagnosis�� When FOCUS searches for the minimum set of features� it will pick the SSN as the only
feature needed to uniquely determine the label�� Given only the SSN� any induction algorithm is expected
to generalize very poorly�

����� The Relief Algorithm

The Relief algorithm �Kira � Rendell 	

�a� Kira � Rendell 	

�b� Kononenko 	

�� assigns a 
relevance�
weight to each feature� which is meant to denote the relevance of the feature to the target concept� Relief
is a randomized algorithm� It samples instances randomly from the training set and updates the relevance
values based on the di�erence between the selected instance and the two nearest instances of the same and
opposite class �the 
near�hit� and 
near�miss��� The Relief algorithm attempts to �nd all relevant features�

Relief does not help with redundant features� If most of the given features are relevant to the
concept� it would select most of them even though only a fraction are necessary for concept
description �Kira � Rendell 	

�a� page 	����

In real domains� many features have high correlations with the label� and thus many are weakly relevant�
and will not be removed by Relief� In the simple parity example used in �Kira � Rendell 	

�a� Kira
� Rendell 	

�b�� there were only strongly relevant and irrelevant features� so Relief found the strongly
relevant features most of the time� The Relief algorithm was motivated by nearest�neighbors and it is good
speci�cally for similar types of induction algorithms�

In preliminary experiments� we found signi�cant variance in the relevance rankings given by Relief�
Since Relief randomly samples instances and their neighbors from the training set� the answers it gives are
unreliable without a very high number of samples� In our experiments� the required number of samples
was on the order of two to three times the number of cases in the training set� We were worried by this
variance� and implemented a deterministic version of Relief that uses all instances and all nearest�hits and
nearest�misses of each instance� �For example� if there are two nearest instances equally close to the reference
instance� we average both of their contributions instead of picking one�� This gives the results one would
expect from Relief if run for an in�nite amount of time� but requires only as much time as the standard
Relief algorithm with the number of samples equal to the size of the training set� Since we are no longer
worried by high variance� we call this deterministic variant Relieved� We handle unknown values by setting
the di�erence between two unknown values to � and the di�erence between an unknown and any other known
value to one�

Relief as originally described can only run on binary classi�cation problems� so we used the Relief�F
method described by Kononenko �	

��� which generalizes Relief to multiple classes� We combined Relief�F
with our deterministic enhancement to yield the �nal algorithm Relieved�F� In our experiments� features
with relevance rankings below � were removed�

����� Feature Filtering Using Decision Trees

Cardie �	

�� used a decision tree algorithm to select a subset of features for a nearest�neighbor algorithm�
Since a decision tree typically contains only a subset of the features� those that appeared in the �nal tree
were selected for the nearest�neighbor� The decision tree thus serves as the �lter for the nearest�neighbor
algorithm�

Although the approach worked well for some datasets� it has some major shortcomings� Features that
are good for decision trees are not necessarily useful for nearest�neighbor� As with Relief� one expects
that the totally irrelevant features will be �ltered out� and this is probably the major e�ect that led to some

�This is true even if SSN is encoded in �� binary features as long as more than �� other binary features are required to
determine the diagnosis� Speci�cally� two real�valued attributes� each one with 	
 bits of precision� will be inferior under this
scheme�

�
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Figure �� A view of feature set relevance�

improvements in the datasets studied� However� while a nearest�neighbor algorithm can take into account the
e�ect of many relevant features� the current methods of building decision trees su�er from data fragmentation
and only a few splits can be made before the number of instances is exhausted� If the tree is approximately
balanced and the number of training instances that trickles down to each subtree is approximately the same�
then a decision tree cannot test more than O�lgm� features in a path�

����� Summary of Filter Approaches

Figure � shows the set of features that FOCUS and Relief search for� While FOCUS is searching for a
minimal set of features� Relief searches for all the relevant features �both weak and strong��

Filter approaches to feature subset selection do not take into account the biases of the induction algorithms
and select feature subsets that are independent of the induction algorithms� In some cases� measures can be
devised that are algorithm speci�c� and these may be computed e�ciently� For example� measures such as
Mallow�s Cp �Mallows 	
��� and PRESS �Prediction sum of squares� �Neter� Wasserman � Kutner 	

��
have been devised speci�cally for linear regression� These measures and the relevance measure assigned by
Relief would not be appropriate as feature subset selectors for algorithms such as Naive�Bayes because in
some cases the performance of Naive�Bayes improves with the removal of relevant features�

The Corral dataset� which is an arti�cial dataset from �John et al� 	

�� gives a possible scenario where
�lter approaches fail miserably� There are �� instances in this Boolean domain� The target concept is

�A� � A	� � �B� � B	� �

The feature named 
irrelevant� is uniformly random� and the feature 
correlated� matches the class label
��� of the time� Greedy strategies for building decision trees pick the 
correlated� feature as it seems best
by all known selection criteria� After the 
wrong� root split� the instances are fragmented and there are not
enough instances at each subtree to describe the correct concept� Figure � shows the decision tree induced
by C���� CART induces a similar decision tree with the 
correlated� feature at the root� When this feature
is removed� the correct tree is found� Because the 
correlated� feature is highly correlated with the label�
�lter algorithms will generally select it� Wrapper approaches� on the other hand� may discover that the
feature is hurting performance and will avoid selecting it�

These examples and the discussion of relevance versus optimality �Section ���� show that a feature
selection scheme should take the induction algorithm into account� as is done in the wrapper approach�

��� The Wrapper Approach

In the wrapper approach� shown in Figure 	� the feature subset selection is done using the induction algorithm
as a black box �i�e�� no knowledge of the algorithm is needed� just the interface�� The feature subset
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Figure �� The tree induced by C��� for the 
Corral� dataset� which fools top�down decision�tree algorithms
into picking the 
correlated� feature for the root� causing fragmentation� which in turns causes the irrelevant
feature to be chosen�

selection algorithm conducts a search for a good subset using the induction algorithm itself as part of the
evaluation function� The accuracy of the induced classi�ers is estimated using accuracy estimation techniques
�Kohavi 	

�b�� The problem we are investigating is that of state space search� and di�erent search engines
will be investigated in the next sections�

The wrapper approach conducts a search in the space of possible parameters� A search requires a state
space� an initial state� a termination condition� and a search engine �Ginsberg 	

�� Russell � Norvig 	

���
The next section focuses on comparing search engines� hill�climbing and best��rst search�

The search space organization that we chose is such that each state represents a feature subset� For n
features� there are n bits in each state� and each bit indicates whether a feature is present �	� or absent ����
Operators determine the connectivity between the states� and we have chosen to use operators that add or
delete a single feature from a state� corresponding to the search space commonly used in stepwise methods
in Statistics� Figure � shows such the state space and operators for a four�feature problem� The size of the
search space for n features is O��n�� so it is impractical to search the whole space exhaustively� unless n is
small� We will shortly describe the di�erent search engines that we compared�

The goal of the search is to �nd the state with the highest evaluation� using a heuristic function to
guide it� Since we do not know the actual accuracy of the induced classi�er� we use accuracy estimation
as both the heuristic function and the evaluation function �See Section � for more details on the abstract
problem�� The evaluation function we use is �ve�fold cross�validation �Figure ��� repeated multiple times�
The number of repetitions is determined on the �y by looking at the standard deviation of the accuracy
estimate� assuming they are independent� If the standard deviation of the accuracy estimate is above 	�
and �ve cross�validations have not been executed� we execute another cross�validation run� While this is
only a heuristic� it seems to work well in practice and avoids multiple cross�validation runs for large datasets�

This heuristic has the nice property that it forces the accuracy estimation to execute cross�validation
more times on small datasets than on large datasets� Because small datasets require less time to learn�
the overall accuracy estimation time� which is the product of the induction algorithm running time and
the cross�validation time� does not grow too fast� We thus have a conservation of 
hardness� using this
heuristic� small datasets will be cross�validated many times to overcome the high variance resulting from
small amounts of data� For much larger datasets� one could switch to a holdout heuristic to save even more
time �a factor of �ve�� but we have not found this necessary for the datasets we used�

The term forward selection refers to a search that begins at the empty set of features� the term
backward elimination refers to a search that begins at the full set of features �Devijver � Kittler 	
���
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Figure �� The state space search for feature subset selection� Each node is connected to nodes that have one
feature deleted or added�

Miller 	

��� The initial state we use in most of our experiments is the empty set of features� hence we are
using a forward selection approach� The main reason for this choice is computational� building classi�ers
when there are few features in the data is much faster� Although in theory� going backward from the full
set of features may capture interacting features more easily� the method is extremely expensive with only
the add�feature and delete�feature operators� In Section �� we will introduce compound operators that will
make the backward elimination approach practical� The following summary shows the instantiation of the
search problem�

State A Boolean vector� one bit per feature
Initial state The empty set of features ������� � � � ��
Heuristic�evaluation Five�fold cross�validation repeated multiple times with a

small penalty ���	�� for every feature�
Search algorithm Hill�climbing or best��rst search
Termination condition Algorithm dependent �see below�

A complexity penalty was added to the evaluation function� penalizing feature subsets with many
features so as to break ties in favor of smaller subsets� The penalty was set to ��	�� which is very small
compared to the standard deviation of the accuracy estimation� which is aimed to be below 	�� No attempts
were made to set this value optimally for the speci�c datasets� It was simply added to pick the smaller of
two feature subsets that have the same estimated accuracy�

� The Search Engine

In this section we evaluate di�erent search engines for the wrapper approach� We begin with a description
of the experimental methodology used in the rest of the paper� We then describe the hill�climbing �greedy�
search engine� and show that it terminates at local maxima too often� We then use a best��rst search engine
and show that it works much better�
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Figure �� The cross�validation method for accuracy estimation� ���fold cross�validation shown��

Table �� Summary of datasets� Datasets above the horizontal line are 
real� and those below are arti�cial�
CV indicates ten�fold cross�validation�

no� Dataset Features no� Train Test baseline
all nominal continuous classes size size accuracy

	 breast cancer 	� � 	� � �

 CV �����
� cleve 	� � � � ��� CV �����
� crx 	� 
 � � �
� CV ����	
� DNA 	�� 	�� � � ���� 		�� �	�
	
� horse�colic �� 	� � � ��� CV �����
� Pima � � � � ��� CV ���	�
� sick�euthyroid �� 	� � � �	�� 	��� 
����
� soybean�large �� �� � 	
 ��� CV 	����

 Corral � � � � �� 	�� �����
	� m�of�n�����	� 	� 	� � � ��� 	��� �����
		 Monk	 � � � � 	�� ��� �����
	� Monk��local 	� 	� � � 	�
 ��� ���	�
	� Monk� � � � � 	�
 ��� ���	�
	� Monk� � � � � 	�� ��� �����

��� Experimental Methodology

We now describe the datasets we chose� the algorithms used� and the experimental methodology�

����� Datasets

Table � provides a summary of the characteristics of the datasets chosen� All datasets except for Corral
were obtained from the University of California at Irvine repository �Merz � Murphy 	

��� from which
full documentation for all datasets can be obtained� Corral was introduced in John et al� �	

�� and was
de�ned above� The primary criteria were size �real datasets must have more than ��� instances�� di�culty
�the accuracy should not be too high after seeing only a small number of instances�� age �old datasets at the
UC Irvine repository� such as Chess� hypothyroid� and vote� were not considered because of their possible
in�uence on the development of algorithms�� A detailed description of the datasets and these considerations
is given in Kohavi �	

�c�� Small datasets were tested using ten�fold cross�validation� arti�cial datasets and
large datasets were split into training and testing sets �the arti�cial datasets have a well�de�ned training
set� as does the DNA dataset from StatLog �Taylor� Michie � Spiegalhalter 	

���� The baseline accuracy
is the accuracy �on the whole dataset� when predicting the majority class�

		



����� Algorithms

We use two families of induction algorithms as a basis for comparisons� These are the decision�tree and the
Naive�Bayes induction algorithms� Both are well known in the machine learning community and represent
two completely di�erent approaches to learning� hence we hope that our results are of a general nature and
will generalize to other induction algorithms� Decision trees have been well documented in Quinlan �	

���
Breiman et al� �	
���� Fayyad �	

	�� Buntine �	

��� and Moret �	
���� hence we will describe them brie�y�
The Naive�Bayes algorithm is explained below� The speci�c details are not essential for the rest of the paper�

The C��� algorithm �Quinlan 	

�� is a descendent of ID� �Quinlan 	
���� which builds decision trees
top�down and prunes them� In our experiments we used release � of C���� The tree is constructed by
�nding the best single�feature test to conduct at the root node of the tree� After the test is chosen� the
instances are split according to the test� and the subproblems are solved recursively� C��� uses gain ratio�
a variant of mutual information� as the feature selection measure� other measures have been proposed� such
as the Gini index �Breiman et al� 	
���� C�separators �Fayyad � Irani 	

��� distance�based measures �De
M�antaras 	

	�� and Relief �Kononenko 	

��� C��� prunes by using the upper bound of a con�dence interval
on the resubstitution error as the error estimate� since nodes with fewer instances have a wider con�dence
interval� they are removed if the di�erence in error between them and their parents is not signi�cant�

We reserve the term ID� to a run of C��� that does not execute the pruning step and builds the full
tree �i�e�� nodes are split unless they are pure or it is impossible to further split the node due to con�icting
instances�� The ID� induction algorithm we used is really C��� with the parameters �m� �c��� that cause
a full tree to be grown and only pruned if there is absolutely no increase in the resubstitution error rate� A
relatively unknown post processing step in C��� replaces a node by one of its children if the accuracy of the
child is considered better �Quinlan 	

�� page �
�� In one case �the Corral database described below�� this
had a signi�cant impact on the resulting tree� although the root split was incorrect� it was replaced by one
of the children�

The Naive�Bayesian classi�er �Domingos � Pazzani 	

�� Langley et al� 	

�� Duda � Hart 	
���
Good 	
��� Anderson � Matessa 	

�� Taylor et al� 	

�� uses Bayes� rule to compute the probability of
each class given the instance� assuming the features are conditionally independent given the label� Formally�

p�Y � y j �X � �x�

� p� �X � �x j Y � y� � p�Y � y��p� �X � �x� by Bayes rule

� p�X� � x�� � � � � Xn � xn j Y � y� � p�Y � y� p� �X � �x� is same for all label values�

�
nY
i��

p�Xi � xi j Y � y� � p�Y � y� by independence

The version of Naive�Bayes we use in our experiments was implemented inMLC�� �Kohavi� Sommer�eld �
Dougherty 	

��� The probabilities for nominal features are estimated from data using maximum likelihood
estimation� Continuous features are discretized using a minimum�description length procedure described
in Dougherty� Kohavi � Sahami �	

��� and were thereafter treated as multi�valued nominals� Unknown
values in a test instance �an instance that needs to be labeled� are ignored� i�e�� they do not participate in the
product� In case of zero occurrences for a label value and a feature value� we use the ���m as the probability�
where m is the number of instances� Other approaches are possible� such as using Laplace�s law of succession
or using a beta prior �Good 	
��� Cestnik 	

��� In these approaches� the probability for n successes after
N trials is estimated at �n � a���N � a � b�� where a and b are the parameters of the beta function� The
most common choice is to set a and b to one� and estimating the probability as �n � 	���N � ��� which is
Laplace�s law of succession�

����� Results

When comparing a pair of algorithms� we will present accuracy results for each algorithm on each dataset�
It is critical to understand that when we used ten�fold cross�validation for evaluation� this cross�validation
is an independent outer loop� not the same as the inner� repeated �ve�fold cross�validation that is a part
of the feature subset selection algorithms� Previously� some researchers have reported accuracy results from
the inner cross�validation loop� such results are optimistically biased and are a subtle means of training on
the test set�
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Table �� A hill�climbing search algorithm

	� Let v � initial state�

�� Expand v� apply all operators to v� giving v�s children�

�� Apply the evaluation function f to each child w of v�

�� Let v� � the child w with highest evaluation f�w��

�� If f�v�� � f�v� then v � v�� goto ��

�� Return v�

Our reported accuracies are the mean of the ten accuracies from ten�fold cross�validation� We also
show the standard deviation of the mean� To determine whether the di�erence between two algorithms is
signi�cant or not� we report the p�values� which indicate the probability that one algorithm is better than the
other� where the variance of the test is the average variance of the two algorithms and a normal distribution
is assumed� A more powerful method would have been to conduct a paired t�test for each instance tested�
or for each fold� but the overall picture would not change much�

Whenever we compare two or more algorithms�A� and A�� we give the table of accuracies� and show two
bar graphs� One bar graph shows the absolute di�erence� A� �A�� in accuracies and the second bar graph
shows the mean accuracy di�erence divided by the standard deviation� i�e�� �A� � A���std�dev� When the
length of the bars on the standard�deviation chart are higher than two� the results are signi�cant at the 
��
con�dence level� Comparisons will generally be made such that A� is the algorithm proposed just prior to
the comparison �the 
new� algorithm� and A� is either a standard algorithm� such as C���� or the previous
proposed algorithm� When the bar is above zero A�� the proposed algorithm� outperforms A�� which we are
comparing with�

When we report CPU time results� these are in units of CPU seconds �or minutes or hours� on a Sun
Sparc 	� for a single train�test sequence�

��� A Hill�climbing Search Engine

The simplest search technique is hill�climbing� also called greedy search or steepest ascent� Table � describes
the algorithm� which expands the current node and moves to the child with the highest accuracy� terminating
when no child improves over the current node�

Table � and Figures � and � show a comparison of ID� and Naive�Bayes� both with and without feature
subset selection� Table � and Figure 
 and 	� show the average number of features used for each algorithm
�averaged over the ten folds when relevant�� The following observations can be made�

	 For the real datasets and ID�� this simple version of feature subset selection provides a regularization
mechanism� which reduces the variance of the algorithm �Geman et al� 	

�� Kohavi � Wolpert 	

���
By hiding features from ID�� a smaller tree is grown� This type of regularization is di�erent than
pruning� which is another regularization method� because it is global� a feature is either present or
absent� whereas pruning is a local operation� As shown in Table � and Figures 
 and 	�� the number
of features selected is small compared to the original set and compared to those selected by ID�� For
ID�� the average accuracy increases from ������ to ������� which is a 	���� relative reduction in the
error rate� The accuracy uniformly improves for all real datasets�

	 For the arti�cial datasets and ID�� the story is di�erent� All the arti�cial datasets� except Monk�
involve high�order interactions� In the Corral dataset� after the correlated feature is chosen� no single
addition of a feature will lead to an improvement� so the hill�climbing process stops too early� similar
scenarios happen with the other arti�cial datasets� where adding a single feature at a time does not
help� In some cases� such asm�of�n�����	�� Monk��local� and Monk�� zero features were chosen� causing
the prediction to be the majority class independent of the attribute values�
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Table �� A comparison of ID� and Naive�Bayes with a feature subset selection wrapper �hill�climbing search��
The 
�FSS� su�x indicates an algorithm is run with feature subset selection� The �rst p�val column indi�
cates the probability that feature subset selection �FSS� improves ID� and the second column indicates the
probability that FSS improves Naive�Bayes�

Dataset ID� ID��FSS p�val Naive�Bayes NB�FSS p�val
	 breast cancer 
����
 ��
 
���	
 ��� ���� 
����
 ��� 
����
 ��� ����
� cleve �����
 ��� �����
 ��� 	��� �����
 ��� �
���
 ��
 ��	�
� crx �	�	�
 	�� �����
 	�� 	��� ���	�
 ��� �����
 	�� ����
� DNA 
����
 ��
 
����
 ��� 	��� 
����
 ��� 
����
 ��� ��
�
� horse�colic �	���
 ��� ���	�
 	�	 ���� �
���
 ��� ���	�
 ��� ��
�
� Pima �����
 ��� �
���
 ��� ���� ���
�
 	�� �����
 ��� ���	
� sick�euthyroid 
����
 ��� 
����
 ��� ���� 
����
 ��� 
����
 ��� 	���
� soybean�large 
����
 ��
 
����
 	�	 ���� 
	���
 	�� 
����
 	�	 ���


 Corral 	�����
 ��� �����
 ��� ���� 
����
 ��� �����
 ��� ����
	� m�of�n�����	� 
	���
 ��
 �����
 	�� ���� �����
 	�	 �����
 	�� ����
		 Monk	 ����	
 	�� �����
 ��	 ���� �	���
 ��� �����
 ��	 ��
�
	� Monk��local ����	
 	�� ���	�
 ��� ���� �����
 ��� ���	�
 ��� 	���
	� Monk� �
���
 ��� ���	�
 ��� ��	� �	���
 ��� ���	�
 ��� ��


	� Monk� 
����
 	�� 
����
 ��� 	��� 
����
 ��� 
����
 ��� ����

Average real� ����� ����� ���
� ���
�
Average artif� ����� ����� ���
� �����
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Figure �� ID�� Absolute di�erence �FSS minus ID�� in accuracy �left� and in std�devs �right��
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Figure �� Naive�Bayes� Absolute di�erence in accuracy �left� and in std�devs �right��
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Figure 
� ID�� Number of features in original dataset �left�� used by ID� �middle�� and selected by hill�
climbing feature subset selection �right�� The DNA dataset has 	�� features �partially shown��
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Figure 	�� Naive�Bayes� Number of features in original dataset �left� and selected by hill�climbing feature
subset selection �right��
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Table �� The number of features in the dataset� the number used by ID� �since it does some feature subset
selection�� the number selected by feature subset selection �FSS� for ID�� and the number selected by FSS
for Naive�Bayes� Numbers without a decimal point are for single runs� number with a decimal point are
averages for the ten�fold cross�validation�

Dataset Number of Features
Original Dataset ID� ID��FSS NB�FSS

	 breast cancer 	� 
�	 ��
 ���
� cleve 	� 		�� ��� ��	
� crx 	� 	��� ��
 	��
� DNA 	�� �� 		 		
� horse�colic �� 	��� ��� ���
� Pima � ��� 	�� ���
� sick�euthyroid �� 	� � �
� soybean�large �� ���� 	��� 	���

 Corral � � 	 	
	� m�of�n�����	� 	� 	� � �
		 Monk	 � � 	 	
	� Monk��local 	� 	� � �
	� Monk� � � � �
	� Monk� � � � �

The concept for Monk� is

�jacket�color � green and holding � sword� or
�jacket�color �� blue and body�shape �� octagon�

and the training set contains �� mislabeled instances� The feature subset selection algorithm quickly
�nds body�shape and jacket�color� which together yield the second conjunction in the above expression�
which has accuracy 
����� With more features� a larger tree is built which is inferior� This is another
example of the optimal feature subset being di�erent than the subset of relevant features�

	 For the real datasets and Naive�Bayes� the average accuracy is about same� but very few features are
used�

	 For the arti�cial datasets and Naive�Bayes� the average accuracy degrades because of Corral and
m�of�n�����	� �the relative error increases by ������ Both of these require a better search than hill
climbing can provide� An interesting observation is the fact that the performance on the Monk�
and Monk��local datasets improves simply by hiding all features� forcing Naive�Bayes to predict the
majority class� The independence assumption is so inappropriate for this dataset that it is better to
predict the majority class�

	 For the DNA dataset� both algorithms selected only 		 features out of 	��� While the selected set
di�ered� nine features were the same� indicating that these nine are crucial for both types of inducers�

The results� especially on the arti�cial datasets where we know what the relevant features are� indicate
that the feature subset selection is getting stuck at local maxima too often� The next section deals with
improving the search engine�

��� A best��rst Search Engine

Best��rst search �Russell � Norvig 	

�� Ginsberg 	

�� is a more robust method than hill�climbing� The
idea is to select the most promising node we have generated so far that has not already been expanded�
Table � describes the algorithm� which varies slightly from the standard version because there is no explicit
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Table �� The best��rst search algorithm

	� Put the initial state on the OPEN list�
CLOSED list � �� BEST � initial state�

�� Let v � argmax
w�OPEN

f�w� �get the state from OPEN with maximal f�w���

�� Remove v from OPEN� add v to CLOSED�

�� If f�v� � � � f�BEST�� then BEST� v�

�� Expand v� apply all operators to v� giving v�s children�

�� For each child not in the CLOSED or OPEN list� evaluate and add to the OPEN list�

�� If BEST changed in the last k expansions� goto ��

�� Return BEST�

goal condition in our problem� Best��rst search usually terminates upon reaching the goal� Our problem is
an optimization problem� so the search can be stopped at any point and the best solution found so far can be
returned �theoretically improving over time�� thus making it an anytime algorithm �Boddy � Dean 	
�
��
In practice� we must stop the run at some stage� and we use what we call a stale search� if we have not
found an improved node in the last k expansions� we terminate the search� An improved node is de�ned
as a node with an accuracy estimation at least � higher than the best one found so far� In the following
experiments� k was set to �ve and epsilon was ��	��

While best��rst search is a more thorough search technique� it is not obvious that it is better for feature
subset selection� Because of the bias�variance tradeo� �Geman et al� 	

�� Kohavi � Wolpert 	

��� it
is possible that a more thorough search will increase variance and thus reduce accuracy� Quinlan �	

��
and Murthy � Salzberg �	

�� showed examples where increasing the search e�ort degraded the overall
performance�

Table � and Figures 		 and 	� show a comparison of ID� and Naive�Bayes with hill�climbing feature
subset selection and best��rst search feature subset selection� Table � shows the average number of features
used for each algorithm �averaged over the ten folds when relevant�� The following observations can be made�

	 For the real datasets and both algorithms �ID� and Naive�Bayes�� there is almost no di�erence between
hill climbing and best��rst search� Best��rst search usually �nds a larger feature subset� but the
accuracies are approximately the same� The only statistically signi�cant di�erence is for Naive�Bayes
and soybean� where there was a signi�cant improvement with a p�value of ��
��

	 For the arti�cial datasets� there is a very large improvement for ID�� Performance drastically improves
on three datasets �Corral� Monk	� Monk��local�� remains the same on two �m�of�n�����	�� Monk���
and degrades on only one �Monk��� Analyzing the selected features� the optimal feature subset was
found for Corral� Monk	� Monk��local� and Monk� �only two features out of the three relevant ones
were selected for Monk� because this correctly led to better prediction accuracy�� The improvement
over ID� without FSS �Table �� is less dramatic but still positive� the absolute di�erence in accuracy
is ���
�� which translates into a relative error reduction of 	�����

The search was unable to �nd the seven relevant features in m�of�n�����	�� Because of the complexity
penalty of ��	� for extra features� only subsets of two features were tried� and such subsets never
improved over the majority prediction �ignoring all features� before the search was considered stale
��ve non�improving node expansions�� The local maximum where the search stops in this dataset is
too large for the current setting of best��rst search to overcome� A speci�c experiment was conducted
to determine how long it would take best��rst search to �nd the correct feature subset� The stale limit
�originally set to �ve� was increased until a node better than the node using zero features �predicting

	�



Table �� A comparison of a hill�climbing search and a best��rst search� The �rst p�val column indicates the
probability that best��rst search feature subset selection �BFS�FSS� improves hill�climbing feature subset
selection �HC�FSS� for ID� and the second column is analogous but for Naive�Bayes�

Dataset ID� p�val Naive�Bayes p�val
HC�FSS BFS�FSS HC�FSS BFS�FSS

	 breast cancer 
���	
 ��� 
����
 ��� ���	 
����
 ��� 
����
 ��� ��	�
� cleve �����
 ��� �
���
 ��� ���� �
���
 ��
 �����
 ��
 ����
� crx �����
 	�� �����
 	�� ���
 �����
 	�� �����
 	�� ����
� DNA 
����
 ��� 
����
 ��� ���� 
����
 ��� 
����
 ��� ����
� horse�colic ���	�
 	�	 �����
 	�� ���	 ���	�
 ��� �����
 ��� ����
� Pima �
���
 ��� �����
 ��� ���� �����
 ��� ���	�
 	�� ����
� sick�euthyroid 
����
 ��� 
����
 ��� ���� 
����
 ��� 
����
 ��� ����
� soybean�large 
����
 	�	 
	���
 	�� ���	 
����
 	�	 
����
 ��� ��
�

 Corral �����
 ��� 	�����
 ��� 	��� �����
 ��� 
����
 ��� 	���

	� m�of�n�����	� �����
 	�� �����
 	�� ���� �����
 	�� �����
 	�� ����
		 Monk	 �����
 ��	 
����
 ��� 	��� �����
 ��	 �����
 ��� ��	�
	� Monk��local ���	�
 ��� 
����
 	�� 	��� ���	�
 ��� ���	�
 ��� ����
	� Monk� ���	�
 ��� ����

 ��� ���� ���	�
 ��� ���	�
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Figure 		� ID�� Absolute di�erence �best��rst search FSS minus hill�climbing FSS� in accuracy �left� and in
std�devs �right��
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Figure 	�� Naive�Bayes� Absolute di�erence in accuracy �left� and in std�devs �right��
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Table �� The number of features in the dataset� the number used by ID� �since it does some feature subset
selection�� the number selected by hill�climbing FSS for ID�� best��rst search FSS for ID�� and analogously
for Naive�Bayes�

Dataset Number of Features
Original ID� ID��FSS NB�FSS
dataset HC BFS HC BFS

	 breast cancer 	� 
�	 ��
 ��� ��� ���
� cleve 	� 		�� ��� ��� ��	 ���
� crx 	� 	��� ��
 ��� 	�� ��

� DNA 	�� �� 		 		 		 	�
� horse�colic �� 	��� ��� ��� ��� ��	
� Pima � ��� 	�� ��� ��� ���
� sick�euthyroid �� 	� � � � �
� soybean�large �� ���� 	��� 	��� 	��� 	���

 Corral � � 	 � 	 �
	� m�of�n�����	� 	� 	� � � � �
		 Monk	 � � 	 � 	 �
	� Monk��local 	� 	� � � � �
	� Monk� � � � � � �
	� Monk� � � � � � �

the majority label value� was found� The �rst stale setting that overcame the local maximum was �

�any number above would do�� At this setting� a node with three features from the seven is found
that is more accurate than majority� Nine more node expansions lead to the correct feature subset�
Overall� 	
� nodes were evaluated out of the 	��� possibilities� The total running time to �nd the
correct feature subset was �� CPU minutes� and the prediction accuracy was 	����

In the Monk� dataset� a set of three features was chosen� and accuracy signi�cantly degraded compared
to hill�climbing� which selected the empty feature subset� This is the only case where performance
degraded signi�cantly because best��rst search was used �p�value of ������ The Monk� concept in this
encoding is unsuitable for decision trees� as a correct tree �built from the full space� contains ��
 nodes
and �
� leaves� Because the standard training set contains only 	�
 instances� it is impossible to build
the correct tree using the standard recursive partitioning techniques�

	 For the arti�cial datasets� there was a signi�cant improvement for Naive�Bayes only for Corral �p�value
of 	����� and performance signi�cantly degraded for Monk	 �p�value of ��	��� The rest of the datasets
were una�ected�

The chosen feature subset for Corral contained features A�� A�� B�� B�� and the 
correlated� feature�
It is known that only the �rst four are needed� yet because of the limited representation power of the
Naive�Bayes� performance using the 
correlated� feature is better than performance using only the �rst
four features� If Naive�Bayes is given access only to the �rst four features� the accuracy degrades from

����� to ������� This dataset is one example where the optimal feature subset for di�erent induction
algorithms is known to be di�erent� Decision trees are hurt by the addition of the 
correlated� feature
�performance degrades�� yet Naive�Bayes improves with this feature�

The Monk	 dataset degrades in performance because the features head�shape� body�shape� is�smiling�
and jacket�color were chosen� yet performance is better if only jacket�color is used� Note that both
head�shape and body�shape are part of the target concept� yet the representation power of Naive�
Bayes is again limited and cannot utilize this information well� As with the Monk� dataset for ID��
this may be an example of the search over�tting in the sense that some subset seems to slightly improve
the accuracy estimation� but not the accuracy on the independent test set �see Section � for further
discussion on issues of over�tting��

The datasets m�of�n�����	�� Monk��local� Monk�� and Monk�� all had the same accuracy with best�

	




�rst search as with hill�climbing� The performance of Naive�Bayes on the Monk� dataset cannot be
improved by using a di�erent feature subset� As with ID�� the search was unable to �nd a good feature
subset for m�of�n�����	� �the correct feature subset allows improving the accuracy to ������� For the
Monk� and Monk��local datasets� the optimal feature subset is indeed the empty set� Naive�Bayes on
the set of relevant features yields inferior performance to a majority inducer� which is how Naive�Bayes
behaves on the empty set of features�

While best��rst search generally gives better performance than hill�climbing� high�level interactions oc�
curring in m�of�n�����	� cannot be caught with a search that starts at the empty feature subset unless the
stale parameter is drastically increased� An alternative approach to forward selection tested here is backward
elimination� which su�ers less from feature interaction because it starts with the full set of features� however�
the running time would make the approach infeasible in practice� especially if there are many features�

The running times for the best��rst search starting from the empty set of features range from about ��	�
minutes of CPU time for small problems such as Monk	� Monk�� Monk�� and Corral� to 	� hours for DNA�
In the next section� we attempt to reorder the search space dynamically to allow the search to reach better
nodes faster and make the backward feature subset selection feasible�

� The State Space� Compound Operators

If we try to gild the lily by using both options together� � �
�Quinlan ����
	

In the previous section� we looked at two search engines� In this section� we look at the topology of the state
space and dynamically modify it based on accuracy estimation results� As previously described� the state
space is commonly organized such that each node represents a feature subset� and each operator represents
the addition or deletion of a feature� The main problem with this organization is that the search must expand
�i�e�� generate successors of� every node on the path from the initial feature subset to the best feature subset�
This section introduces a new way to change the search space topology by creating dynamic operators that
directly connect a node to nodes considered promising given the evaluation of its children� These operators
better utilize the information available in the evaluated children�

The motivation for compound operators comes from Figure 	�� which partitions the feature subsets into
strongly relevant� weakly relevant� and irrelevant features� In practice� an optimal feature subset is likely
to contain only relevant features �strongly and weakly relevant features�� A backward elimination search
starting from the full set of features �as depicted in Figure 	�� and that removes one feature at a time after
expanding all children reachable using one operator� will have to expand all the children of each node before
removing a single feature� If there are i irrelevant features and f features� �i � f� nodes must be evaluated�
Similar reasoning applies to forward selection search starting from the empty set of features� In domains
where feature subset selection might be most useful� there are many features but such a search may be
prohibitively expensive�

Compound operators are operators that are dynamically created after the standard set of children �created
by the add and delete operators� has been evaluated� They are used for a single node expansion and then
discarded� Intuitively� there is more information in the evaluation of the children than just the identi�cation of
the node with the maximumevaluation� Compound operators combine operators that led to the best children
into a single dynamic operator� Figure 	� depicts a possible set of compound operators for forward selection�
The root node containing no features was expanded by applying four add operators� each one adding a single
feature� The operators that led to �� 	� �� � and �� �� 	� � were combined into the �rst compound operator
�shown in a dashed line going left� because they led to the two nodes with the highest evaluation �evaluation
not shown�� If the �rst compound operator led to a node with an improved estimate� the second compound
operator �shown in a dashed line going right� is created that combines the best three original operators� etc�

Formally� if we rank the operators by the estimated accuracy of the children� then we can de�ne the
compound operator ci to be the combination of the best i�	 operators� For example� the �rst compound
operator will combine the best two operators� If the best two operators each added a feature� then the �rst
compound operator will add both� if one operator added and one operator deleted� then we try to do both
in one operation� The compound operators are applied to the parent� thus creating children nodes that are

��



Features

Relevant

Weakly

are either stongly relevant

Strongly Relevant

IrrelevantRelevant features

 One feature

Two features

features

n/2

All features

or weakly relevant

Delete operator

Compound operator

No features

Figure 	�� The feature subset state space divided into irrelevant� weakly relevant� and strongly relevant
feature subsets� The dotted arrows indicate compound operators�

0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

 1,1,0,0 1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,1 0,0,1,1

1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

1,1,1,1

Figure 	�� The state space search with dotted arrows indicating compound operators� From the root�s
children� the nodes ���	����� and �����	��� had the highest evaluation values� followed by �������	��
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Figure 	�� Comparison of compound �dotted line� and non�compound �solid line� searches� The accuracy
�y�axis� is that of the best node �as determined by the algorithm� on an independent test set after a given
number of node evaluations �x�axis�� The running time is proportional to the number of nodes evaluated�

farther away in the state space� Each compound node is evaluated and the generation of compound operators
continues as long as the estimated accuracy of the compound nodes improves�

Compound operators generalize a few existing approaches� Kohavi �	

�� suggested that the search
might start from the set of strongly relevant features� If one starts from the full set of features� removal of
any single strongly relevant feature will cause a degradation in performance� while removal of any irrelevant
or weakly relevant feature will not� Since the last compound operator� representing the combination of
all delete operators� connects the full feature subset to the empty set of features� the compound operators
from the full feature subset plot a path through the strongly relevant feature sets� The path is explored by
removing one feature at a time until estimated accuracy deteriorates� thus generalizing the original proposal�
Caruana � Freitag �	

�� implemented SLASH� a version of feature subset selection that eliminates the
features not used in the derived decision tree� If there are no features that improve the performance when
deleted� then �ignoring orderings due to ties� one of the compound operators will lead to the same node that
SLASH would take the search to� While the SLASH approach is only applicable to backward elimination�
compound operators are also applicable to forward selection�

Figure 	� shows two searches with and without compound operators� Compound operators improve the
search by �nding nodes with higher accuracy faster� however� whenever it is easy to over�t �e�g�� for small
datasets�� they cause over�tting earlier �see Section ��� Experimental accuracies using compound operators
are similar to those without them and the runs are usually faster� More signi�cant time di�erences are
achieved when the decision trees are pruned� Detailed results for that case are shown later in the paper
�Table 		��

The main advantage of compound operators is that they make backward feature subset selection compu�
tationally feasible� Table 
 and Figures 	� and 	� show the results of running the best��rst search algorithm
with compound operators but starting with the full set of features �backward elimination� compared with
best��rst search forward selection without compound operators� Accuracy results for forward selection with
and without compound operators did not signi�cantly di�er on any dataset� Table 	� shows the number
of features used for each of the di�erent methods� When one starts from the full set of features� feature
interactions are easier for the search to identify� The following observations can be made�

	 Except for m�of�n�����	�� the accuracy results for backward FSS with ID� generally degraded� The
main improvement was for m�of�n�����	�� where the correct seven bits were correctly identi�ed� re�
sulting in 	��� accuracy� The feature subsets were generally larger� and apparently even best��rst
search cannot overcome some local maxima with our stale parameter setting� For example� the run on
DNA stopped with �� features� but pruning more features would improve the performance because the
forward search found a subset of 		 features that was signi�cantly better �the accuracy estimation for
the 		 feature subset was higher than the one for the �� feature subset� and because the same folds are
used� if the best��rst search were to get to this 		�feature node� it would prefer it over the �nal node
selected in the backward search�� In the next section� we use the backward search with C���� Because
C��� prunes� the backward search is then more e�cient with the best��rst search algorithm�
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Table 
� A comparison of a forward best��rst search without compound operators and backward best��rst
search with compound operators� The p�val columns indicates the probability that backward is better than
forward�

Dataset ID� p�val Naive�Bayes p�val
BFS�FSS BFS�FSS BFS�FSS BFS�FSS
forward back forward back

	 breast cancer 
����
 ��� 
����
 ��� ��		 
����
 ��� 
����
 ��� ����
� cleve �
���
 ��� ����

 ��� ��	� �����
 ��
 �����
 ��� ����
� crx �����
 	�� �����
 	�� ��	� �����
 	�� �����
 ��� ����
� DNA 
����
 ��� 
	���
 ��� ���� 
����
 ��� 
��	�
 ��� ��


� horse�colic �����
 	�� ����	
 	�� ���� �����
 ��� �����
 	�� ����
� Pima �����
 ��� �����
 	�� ���� ���	�
 	�� �����
 	�� ����
� sick�euthyroid 
����
 ��� 
����
 ��� ���� 
����
 ��� 
����
 ��� ����
� soybean�large 
	���
 	�� 
	���
 	�� ���� 
����
 ��� 
���

 ��
 ���	

 Corral 	�����
 ��� 	�����
 ��� ���� 
����
 ��� 
����
 ��� ����

	� m�of�n�����	� �����
 	�� 	�����
 ��� 	��� �����
 	�� �����
 	�� 	���
		 Monk	 
����
 ��� 
����
 ��� ���� �����
 ��� �����
 ��� ����
	� Monk��local 
����
 	�� 
����
 	�� ���� ���	�
 ��� ���	�
 ��� ����
	� Monk� ����

 ��� �����
 ��� ���� ���	�
 ��� ���	�
 ��� ����
	� Monk� 
����
 ��� 
����
 ��� ���� 
����
 ��� 
����
 ��� ����

Average real� ����� ����� ����� �����
Average artif� ����� 
���� ����	 �����

	 For Naive�Bayes� backward FSS performs slightly better in terms of accuracy� Only on crx did the
accuracy degrade signi�cantly �p�val������� while on m�of�n�����	� and DNA it signi�cantly improved
�p�val�	��� and ��

 respectively�� In fact� for the DNA dataset� no other known algorithm out�
performed Naive�Bayes on the selected feature subset� Taylor et al� �	

�� page 	�
� compared ��
algorithms on this dataset �with the same training and test sets�� and the best was RBF �radial basis
functions� using ��� centers with an accuracy of 
��
�� The Naive�Bayes algorithm with backward
elimination had an accuracy of 
��	���

	 Them�of�n�����	� dataset with Naive�Bayes is a very interesting case� The feature subset selection �nds
six out of the seven relevant features� and the seventh selected feature is an irrelevant one� Althoughm�
of�n can be represented using a hyperplane� and although in a Boolean domain the surface represented
by Naive�Bayes is always a hyperplane� it turns out that Naive�Bayes is unable to learn this target
concept� The table below was constructed by giving Naive�Bayes all possible instances and their correct
classi�cation for the ��of�� concept� and testing it on the same instances� We can see that Naive�Bayes
is unable to learn ��of��� but what is intriguing is that fact that hiding one bit �feature� improves the
accuracy�

Features given Naive�Bayes Perceptron
accuracy accuracy

� �all� ����
 	�����
� ����� �����
� ����� �����

The explanation for this result is as follows� There are
�
�

�

�
�
�
�

�

�
�
�
�

�

�
� �
 instances out of �� � 	��

that have label �� There are
�
�

�

�
�
�
�

�

�
� � � �
 ones in these �
 instances� so each of the seven features

has �
�� � � ones� We thus get the following�

p�Y � � j Xi � 	� � ���

p�Y � � j Xi � �� � ����
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Figure 	�� ID�� Absolute di�erence �best��rst search FSS backward with compound operators minus for�
ward� in accuracy �left� and in std�devs �right��
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Figure 	�� Naive�Bayes� Absolute di�erence in accuracy �left� and in std�devs �right��

Similarly�
P�

i��

�
�

i

�
� i � �

� thus each of the seven features has �

�� � �� ones� giving the following�

p�Y � 	 j Xi � 	� � ���


p�Y � 	 j Xi � �� � ���



If there are only two ones in an instance� the probabilities computed by Naive�Bayes are�

p�Y � �� � �
�	�� � ����
�� � �����
�� � ������	���
p�Y � 	� � 

�	�� � ����

�� � ����

�� � ���������	

giving the label 
one� a small advantage� and making the wrong prediction� Thus there are
�
�

�

�
� �	

mistakes out of the 	�� possible instances� which is exactly ����
� accuracy�

With only six features� the best thing to do is to predict a label of one when there two 
on� bits� which
is what the Naive�Bayes does �the calculation is omitted�� This will correctly capture all instances
that originally had three bits� but will continue to be wrong for those instances that had only two bits�
However� out of the �	 instances that had two bits on� six will now have only one bit on because there
were �� bits total� and each of the seven bits had a one six times� Thus Naive�Bayes will now make
only �	� � � 	� mistakes� which yields an accuracy of �������

This example shows that although the hypothesis space for Naive�Bayes in Boolean domains is a space
of hyperplanes� it is unable to correctly identify this target concept� while a Perceptron can� More
interesting� however� is the fact that any approach to feature subset selection based on relevance that
is independent of the induction algorithm and that ranks each feature independently �conditioned on
the label� must give the same rank to each one of the seven relevant features �due to symmetry�� and
thus such an approach will never pick a subset of six features as the wrapper approach does� The
wrapper approach indeed �nds the optimal subset for this target concept�

��



Table 	�� The number of features in the dataset� the number used by ID� �since it does some feature subset
selection�� the number selected by best��rst search FSS for ID� forward without compound and backwards
with compound� and analogously for Naive�Bayes�

Dataset Number of Features
Original ID� ID��FSS NB�FSS
dataset Forward Backward Forward Backward

	 breast cancer 	� 
�	 ��� ��� ��� ��

� cleve 	� 		�� ��� ��� ��� ��

� crx 	� 	��� ��� ��� ��
 
�	
� DNA 	�� �� 		 �� 	� ��
� horse�colic �� 	��� ��� ��� ��	 ��	
� Pima � ��� ��� ��� ��� ���
� sick�euthyroid �� 	� � � � �
� soybean�large �� ���� 	��� 	��� 	��� 	���

 Corral � � � � � �
	� m�of�n�����	� 	� 	� � � � �
		 Monk	 � � � � � �
	� Monk��local 	� 	� � � � �
	� Monk� � � � � � �
	� Monk� � � � � � �

Running times for the backward feature subset selection were about �ve times longer than the forward�
which is not bad considering the fact that we started with the full set of features �also see the next section
where compound operators help more when C��� is used��

� Global Comparison

We have used ID� and Naive�Bayes as our basic inducers for feature subset selection because they do no
pruning and� therefore� the e�ect of feature subset selection can be seen more clearly� We have seen improve�
ments in both algorithms� but an important remaining question is how the wrapper algorithm developed
in Sections � and � compares to the �lter approach� and how the feature subset selection versions of these
algorithms compare to the original versions� Although we have presented arguments in favor of the wrapper
approach in Section �� we had to develop a high�performance wrapper algorithm for the empirical compar�
isons� and this was the purpose of the preceding sections� When used with C���� the hill�climbing wrapper
often gets stuck in local minima� and the best��rst search wrapper took too long� so the work in the previous
sections was necessary for the experiments in this section�

With compound operators� running the wrapper with C��� tends to be even faster than running the
wrapper with ID� because the compound operators tend to quickly remove the features pruned by C����
Features that do not appear in the tree are removed because the accuracy estimate does not change and� with
the small complexity penalty for every feature� the evaluation function improves� The compound operators
can remove all such features after a single node expansion� Without pruning� many more features are used
in the tree and they cause slight random variations in the accuracy estimates� It hence makes more sense to
run the feature subset selection search backwards� which is what we have done� Figures 	� and 	
 show how
the number of features used changes as the search progresses� i�e�� as more nodes are evaluated� Notice how
before each node expansion� the compound operators are applied and combine the operators leading to the
best children� thus drastically decreasing the number of nodes� Without compound operators� the number of
features could only decrease or increase by one at every node expansion� For example� in the DNA dataset
with C���� 
only� ���� nodes were evaluated and a subset of 	� features was selected� without compound
operators� the algorithm would have to expand �	�� � 	�� � 	�� � ��� ��� nodes just to get to this feature
subset�

Backward FSS with C��� is still very slow� but generally faster than backward FSS with ID�� Table 		
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Table 		� The CPU time for di�erent versions of the wrapper approach� Time is for a single fold when cross�
validation was done in an outer loop to estimate accuracy� All tests used compound operators� except for
ID��FSS�Forward� The 
time� command over�owed for ID��FSS�back on DNA under Sun�s Solaris operating
system� The command gave a negative number for execution time�

CPU time �seconds�
ID��FSS ID��FSS C����FSS NB�FSS

Dataset Forward Backward Backward Backward
breast cancer ��
 ��	 	�	�� �	
cleve ��� ��	�� �	� 	��
crx 
�� ����� 	���� ���
DNA ���
�� over�ow 	�����	 ������
horse�colic 	���� ����� 	���� ���
Pima 
�� ��	�� �	
 ��
sick�euthyroid ����� 	��	�� ����� ���
soybean�large ����� ��	
� ��
�	 �����
Corral 	�� �� �� �
m�of�n�����	� �	� 	�
 ��� ��
Monk	 	�� �� �� 	�
Monk��local 	���� ��� ��� 	�

Monk� ��� 
� �	 	�
Monk� 			 �� �� 


shows the running time for di�erent versions of the algorithms� compared to the original algorithm� they are
about two to three orders of magnitude slower� For example� running C��� on the DNA dataset takes about
	�� minutes� The wrapper model has to run C��� �ve times for every node that is evaluated in the state
space and in DNA there are hundreds of nodes�

We shall investigate two hypotheses� �rst� that using a �lter method will sometimes improve the accuracy
of ID� and Naive�Bayes on real datasets but will be fairly erratic �often hurting performance�� and second�
that improvements from using the wrapper approach will surpass the gains from the �lter and will be more
consistent� As a representative of the �lter methods� we chose the Relieved�F algorithm �Section ������� which
seemed to have the most desirable properties among the �lter algorithms discussed� For the reasons outlined
in the preceding paragraphs� we use the backward best��rst�search wrapper with compound operators as a
representative of wrapper algorithms� The experimental methodology used to run and compare algorithms
is the same as described in Section ��	�

Since C��� is a modern algorithm that performs well on a variety of real databases� we might expect it
to be di�cult to improve upon its performance using feature selection� Table 	� shows that this is the case�
overall� the accuracy on real datasets actually decreased when using Relieved�F� but the accuracy slightly
increased using the wrapper �a ���� relative reduction in error�� Note however that Relieved�F did perform
well on some arti�cial databases� all of which �except for Corral� contain only strongly relevant and totally
irrelevant attributes� On three arti�cial datasets� Relieved�F was signi�cantly better than plain C��� at the


� con�dence level� On the real datasets� where relevance is ill�determined� Relieved�F often did worse than
plain C���� on one dataset its performance was signi�cantly worse at the 

� con�dence level� and in no case
was its performance better at even the 
�� con�dence level� The wrapper algorithm did signi�cantly better
than plain C��� on two real databases and two arti�cial databases� and was never signi�cantly worse� Note
that the most signi�cant improvement on a real database was on the one real dataset with many features�
DNA� Relieved�F was outperformed by the wrapper signi�cantly on two real datasets� but it outperformed
the wrapper on the m�of�n�����	� dataset�

On the Corral dataset� the wrapper selected the correct features fA	� A�� B	� B�g as the best node early
in the search� but later settled on only the features A	 and A�� which gave better cross�validation accuracy�
The training set is very small ��� instances�� so the problem was that even though the wrapper gave the
ideal feature set to C���� it built the correct tree �	��� accurate� but then pruned it back because according
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Figure 	�� DNA� Number of features evaluated as the search progresses �C���� best��rst search� backward��
The vertical lines signify a node expansion� where the children of the best node are expanded� The slanted
line on the top shows how ordinary backward selection would progress�
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� Soybean� Number of features evaluated as the search progresses �C���� best��rst search� back�
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Table 	�� A comparison of C��� with no feature selection� with the Relieved�F �lter �RLF�� and with the
wrapper using backward best��rst search with compound operators �BFS�� The p�val columns indicates the
probability that the top algorithm is improving over the lower algorithm�

C����RLF C����BFS C����BFS
Dataset C��� C����RLF C����BFS vs C��� vs C��� vs C����RLF
breast cancer 
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to its pruning criterion the training set data was insu�cient to warrant such a large tree�
Perhaps surprisingly� the Naive�Bayes algorithm turned out to be more di�cult to improve using feature

selection �Table 	��� Both the �lter and wrapper approaches signi�cantly degraded performance on the breast
cancer and crx databases� In both cases the wrapper approach chose feature subsets with high estimated
accuracy that turned out to be poor performers on the real test data� The �lter caused signi�cantly worse
performance in one other dataset� Pima diabetes� and never signi�cantly improved on plain Naive�Bayes�
even on the arti�cial datasets� This is partly due to the fact that the severely restricted hypothesis space of
Naive�Bayes prevents it from doing well on the arti�cial problems �except for Monk�� for reasons discussed
in Section ���� and partly because Naive�Bayes� accuracy is hurt more by conditional dependence between
features than the presence of irrelevant features�

In contrast� the wrapper approach signi�cantly improved performance on �ve databases over the plain
Naive�Bayes accuracy� In the Monk� dataset it did so by discarding all features� Because the conditional
independence assumption is violated� one actually obtains better performance with Naive�Bayes by throwing
out all features and using only the marginal probability distribution over the classes �i�e�� always predict
the majority class�� The wrapper approach signi�cantly improved over the �lter in six cases� and was never
signi�cantly outperformed by the �lter approach�

Table 	� shows similar results with ID�� In this case� the �lter approach signi�cantly degraded perfor�
mance on one real dataset but signi�cantly improved all of the arti�cial datasets except for Monk�� as did
the wrapper approach� The Monk� concept is exactly���of��� so all features are relevant� Relieved�F judged
two features to be irrelevant �due to poor statistics from the small training set� and the wrapper�s internal
cross�validation gave an overly pessimistic estimate to the node representing the subset of all features� which
was optimal� Note that our 
ID�� is actually the C��� algorithmwith command line arguments specifying no
pruning� As it happens� command line arguments cannot turn o� a tree postprocessing step that can swap a
parent decision node with its child� and this swapping results in 	��� accuracy on Corral with 
plain ID���
The wrapper signi�cantly outperformed the �lter on two of the real datasets� but performed signi�cantly
worse than the �lter on the Monk� dataset� In Monk�� the feature subset search did test the node with
	��� test�set accuracy� but the internal cross�validation estimated its accuracy to be lower than the node
with 
����� test�set accuracy�

We have focused only on accuracy above� so other criteria merit some consideration� First� the wrapper
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Table 	�� A comparison of Naive�Bayes �NB� with no feature selection� with the Relieved�F �lter �RLF��
and with the wrapper using backward best��rst search with compound operators �BFS�� The p�val columns
indicates the probability that the top algorithm is improving over the lower algorithm�
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Table 	�� A comparison of ID� with no feature selection� with the Relieved�F �lter �RLF�� and with the
wrapper using backward best��rst search with compound operators �BFS�� The p�val columns indicates the
probability that the top algorithm is improving over the lower algorithm�

ID��RLF ID��BFS ID��BFS
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Table 	�� The number of features in each dataset� the number selected by Relieved�F� the number used by
the plain versions of the algorithms� and the number used by the wrapped versions using backward best��rst
search with compound operators �BFS��

Dataset All RLF C��� C����BFS NB�BFS ID� ID��BFS
breast cancer 	� ��� ��� ��
 ��
 
�	 ���
cleve 	� 	��� 
�	 ��� ��
 		�� ���
crx 	� 		�� 
�
 ��� 
�	 	��� ���
DNA 	�� 	�� �� 	� �� �� ��
horse�colic �� 	��� ��� ��� ��	 	��� ���
Pima � 	�� ��� ��� ��� ��� ���
sick�euthyroid �� �� � � � 	� �
soybean�large �� ���� ���� 	��	 	��� ���� 	���
Corral � � � � � � �
m�of�n�����	� 	� � 
 � � 	� �
Monk	 � � � � � � �
Monk��local 	� � 	� � � 	� �
Monk� � � � � � � �
Monk� � � � � � � �
Average
Reduction ��� ��� ��� ��� �� 	
�

method extends directly to minimizing misclassi�cation cost� Most Irvine datasets do not include cost
information and so accuracy is a natural performance metric� but one can trivially use a cost function instead
of accuracy as the evaluation function for the wrapper� For �lter approaches� adapting to misclassi�cation
costs is a research topic� Second� we should compare the number of features selected by the �lter and
wrapper� Table 	� shows the number of features in each dataset� the number selected by the Relieved�F
�lter �note that since the �lter is independent of the induction algorithm� it prescribes the same set of
features whether using ID�� C���� or Naive�Bayes�� and the number selected by the plain versions of the
algorithms and their wrapper�enhanced versions� �Plain Naive�Bayes always uses all features� so it does not
have its own column�� The average reduction column shows the average percentage decrease in number of
features between each column and its natural benchmark �e�g�� RLF and C��� are compared to the original
dataset� C����BFS is compared to plain C��� etc���

It is also interesting to compare results between the original C��� algorithm and the wrapped versions
of ID�� C���� and Naive�Bayes� Table 	� shows accuracy results for C���� ID� with best��rst forward
feature subset selection� C��� with best��rst backward FSS with compound operators� and Naive�Bayes with
backward compound�operator FSS� The following observations can be made�

	 For real datasets� ID��FSS and C��� perform approximately the same� but ID��FSS uses fewer features�
For the arti�cial datasets� ID��FSS signi�cantly outperforms C��� on three datasets �Corral� Monk	�
Monk��local�� and is signi�cantly inferior in one �m�of�n�����	���

	 C����FSS signi�cantly outperforms C��� on two real datasets �cleve and DNA�� two arti�cial datasets
�Monk	 and Monk��local�� and is never signi�cantly outperformed by C���� The relative error is
reduced by ���� for real datasets and by ����� for the arti�cial datasets�

	 What is perhaps most interesting is how C��� and Naive�Bayes with feature subset selection compare�
While there are datasets for which either one is better than the other� on the real datasets� C��� is
signi�cantly better only for the horse�colic dataset� but Naive�Bayes is signi�cantly better for cleve�
DNA� Pima� and soybean�large� The relative error of Naive�Bayes is smaller by 	��	�� For the arti�cial
datasets� the two are about equal� C��� is signi�cantly better on two datasets �Monk	� Monk��local��
and Naive�Bayes is better on two �Corral� m�of�n�����	���

In summary� feature subset selection using the wrapper approach signi�cantly improves ID�� C��� and
Naive�Bayes on some of the datasets tested� On the real datasets� the wrapper approach is clearly superior

��



Table 	�� A comparison of C��� with ID��FSS� C����FSS� and Naive�Bayes�FSS� The p�val columns indicates
the probability that the column before it is improving over C���

Dataset C��� ID��FSS p�val C����FSS p�val NB�FSS p�val
original Frwd�BFS Back�BFS Back�BFS
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to the �lter method� Perhaps the most surprising result is how well Naive�Bayes performs on real datasets
once discretization and feature subset selection are performed� Some explanations for the apparently high
accuracy of Naive�Bayes even when the independence assumptions are violated� are explained in Domingos
� Pazzani �	

��� However� we can see that in some real�world domains such as DNA� the feature selection
step is important to improve performance�

� Over�tting

Still� it is an error to argue in front of your data� You �nd yourself insensibly twisting them
round to �t your theories�

�Sherlock Holmes � The Adventure of Wisteria Lodge�

An induction algorithm over�ts the dataset if it models the training data too well and its predictions
are poor� An example of an over�specialized hypothesis� or classi�er� is a lookup table on all the features�
Over�tting is closely related to the bias�variance tradeo� �Kohavi � Wolpert 	

�� Geman et al� 	

��
Breiman et al� 	
���� if the algorithm �ts the data too well� the variance term is large� and hence the overall
error is increased�

Most accuracy estimation methods� including cross�validation� evaluate the predictive power of a given
hypothesis over a feature subset by setting aside instances �holdout sets� that are not shown to the induction
algorithm and using them to assess the predictive ability of the induced hypothesis� A search algorithm that
explores a large portion of the space and that is guided by the accuracy estimates can choose a bad feature
subset� a subset with a high accuracy estimate but poor predictive power�

Overuse of the accuracy estimates in feature subset selection may cause over�tting in the feature�subset
space� Because there are so many feature subsets� it is likely that one of them leads to a hypothesis that
has high predictive accuracy for the holdout sets� A good example of over�tting can be shown using a
no�information dataset �Rand� where the features and the label are completely random� The top graph in
Figure �� shows the estimated accuracy versus the true accuracy for the best node the search has found after
expanding k nodes� One can see that especially for the small sample of size 	��� the estimate is extremely
poor ���� optimistic�� indicative of over�tting� The bottom graphs in the �gure show over�tting in small
real�world datasets�
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Figure ��� Over�tting in feature subset selection� The top graph shows the estimated and true accuracies
for a random dataset and ID�� The solid line represents the estimated accuracy for a training set of 	��
instances� the thick grey line for a training set of ��� instances� and the dotted line shows the real accuracy�
The bottom graphs graphs show the accuracy for real�world datasets� The solid line is the estimated accuracy�
and the dotted line is the accuracy on an independent test set�

Recently� a few machine learning researchers have reported the cross�validation estimates that were used
to guide the search as a �nal estimate of performance� thus reporting overly optimistic results� Instead�
experiments using cross�validation to guide the search must report the accuracy of the selected feature
subset on a separate test set or on holdout sets generated by an external loop of cross�validation that were
never used during the feature subset selection process�

The problem of over�tting in feature subset space has been previously raised in the machine learning
community by Wolpert �	

�a� and Scha�er �	

��� and the subject has received much attention in the
statistics community �cf� Miller �	

���� Although the theoretical problem exists� our experiments indicate
that over�tting is mainly a problem when the number of instances is small� Kohavi � Sommer�eld �	

��
reported that out of �� searches for feature subsets with datasets containing over ��� instances� ten searches
were optimistically biased by more than two standard deviations and one was pessimistically biased by more
than two standard deviations� ��� searches ��� of ��� are expected to be biased� While the problem clearly
exists� it was not very severe on the datasets examined �all datasets contained more than ��� instances in the
training set�� Moreover� even if the estimates are biased� the algorithm may still choose the correct feature
subsets because it is the relative accuracy that matters most�
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� Subset Selection as Search with Probabilistic Estimates

We now look at the problem of feature subset selection as search with probabilistic estimates� which general�
izes standard search with deterministic state evaluations� The wrapper approach� using accuracy estimation
for node evaluation as the heuristic function� complicates the common state�space search paradigm� The fact
that the accuracy estimation is a random variable implies that there is uncertainty in the returned estimate�
One way to decrease the variance is to run the accuracy estimation �e�g�� k�fold cross�validation� more than
once and average the results� as we have done� Increasing the number of runs shrinks the con�dence interval
for the mean� but requires more time� The tradeo� between more accurate estimates and more extensive
exploration of the search space is referred to as the exploration versus exploitation problem �Kaelbling 	

���
We can either exploit our knowledge and shrink the con�dence intervals of the explored nodes to make sure
we select the right one� or we can explore new nodes in the hope of �nding better nodes� The tradeo� leads
to the following abstract search problem�

De�nition � �Search with Probabilistic Estimates	
Let S be a state space with operators between states� Let f � S 
� R be an unbiased probabilistic evaluation
function that maps a state to a real number� indicating how good the state is� The number returned by f�s�
comes from a distribution D�s� with mean f��s�� which is the actual �unknown� value of the state� The goal
is to �nd the state s with the maximal value of f��s��

The mapping of this de�nition to the feature subset selection problem is as follows� The states are the
subsets� and the operators are the common ones �add feature� delete feature� create compound node�� The
evaluation function is the accuracy estimation� Although some accuracy estimation techniques� such as cross�
validation� are biased� they can be viewed as unbiased estimators for a di�erent quantity� for example� k�fold
cross�validation is unbiased for datasets of size m �m�k� Furthermore� for model selection� this pessimism
is of minor importance because the bias may cancel out� We now describe work that falls under this general
framework of search with probabilistic estimators�

Greiner �	

�� described a method for conducting a hill�climbing search when the evaluation function is
probabilistic� The algorithm stops at a node that is a local optimum with high probability� based on the
Cherno� bound� Yan � Mukai �	

�� analyzed an algorithm based on simulated annealing and showed that
it will �nd the global optimum if given enough time�

Maron � Moore �	

��� in an approach similar to Greiner�s� attempted to shrink the con�dence interval
of the accuracy for a given set of models� until one model can be proven to be optimal with high probability�
The evaluation function is a single step in leave�one�out cross�validation� i�e�� the algorithm is trained on
randomly chosen n�	 instances and tested on the one that is left� The induction algorithm used is instance�
based learning� which leads to an extremely fast evaluation because training is not necessary� A step of
leave�one�out is merely a test of whether an instance is classi�ed correctly by its nearest�neighbor� Note�
however� that f�s� always returns either a zero or a one� The instance is either correctly classi�ed� or not�
This step must be repeated many times to get a reasonable con�dence bound�

The general idea is to race competing models� until one is a clear winner� Models drop out of the race
when the con�dence interval of the accuracy does not overlap with the con�dence interval of the accuracy
of the best model �this is analogous to imposing a higher and lower bound on the estimation function in
the B� algorithm �Berliner 	
�	��� The race ends when there is a winner� or when all n steps in the leave�
one�out cross�validation have been executed� The con�dence interval is de�ned according to Hoe�ding�s
formula �Hoe�ding 	
����

p
����f��s� � bf�s���� � �

�
� �e��m�

��B�

where bf �s� is the average of m evaluations and B bounds the possible spread of point values� Given a
con�dence level� one can determine �� and hence a con�dence interval for f��s�� from the above formula�
The paper �Maron � Moore 	

��� however� does not discuss any search heuristic� and assumes that a �xed
set of models is given by some external source�

Moore � Lee �	

�� describe an algorithm for feature subset selection that has both ingredients of the
abstract problem� it has a search heuristic� and it uses the probabilistic estimates in a non�trivial manner�
The algorithm does a forward selection and backward elimination� but instead of estimating the accuracy of

��



each added �deleted� feature using leave�one�out cross�validation� all the features that can be added �deleted�
are raced in parallel until there is a clear winner�

Schemata search �Moore � Lee 	

�� is another search variant that allows taking into account interactions
between features� Instead of starting with the empty or full set of features� the search begins with all
features marked as 
unknown�� Each time a feature is chosen and raced between being 
in� or 
out�� All
combinations of 
unknown� features are used in equal probability� thus a feature that should be 
in� will
win the race� even if correlated with another feature� Although this method uses the probabilistic estimates
in a Bayesian setting� the basic search strategy is simple hill�climbing�

Fong �	

�� gives bounds for the sample complexity �the number of samples one needs to collect before
termination� in the k�armed bandit problem� His ��IE approach allows trading o� exploitation and explo�
ration� thus generalizing Kaelbling�s interval estimation strategy �Kaelbling 	

��� However� in all cases
the worst�case bound remains the same and the optimal tradeo� between exploration and exploitation was
empirically determined to be domain dependent�

When using the wrapper method� it is important to explore a su�cient portion of the search space� By
using search algorithms that take advantage of the probabilistic nature of accuracy estimates� it is possible
to explore a larger portion of the space if the evaluation time for a state can be reduced based on statistical
estimates� Future work on the abstract problem presented above might improve the applicability of the
wrapper method to even larger state spaces�

	 Related Work

The pattern recognition literature �Devijver � Kittler 	
��� Kittler 	
��� Ben�Bassat 	
���� statistics lit�
erature �Draper � Smith 	
�	� Miller 	
��� Miller 	

�� Neter et al� 	

��� and recent machine learn�
ing papers �Almuallim � Dietterich 	

	� Almuallim � Dietterich 	

�� Kira � Rendell 	

�a� Kira �
Rendell 	

�b� Kononenko 	

�� consist of many measures for feature subset selection that are all based on
the data alone�

Most measures in the pattern recognition and statistics literature are monotonic� i�e�� for a sequence of
nested feature subsets F� � F� � � � � � Fk� the measure f obeys f�F�� � f�F�� � � � � � f�Fk�� Notable
selection measures that satisfy the monotonicity assumption are residual sum of squares �RSS�� adjusted R�
square� minimummean residual� Mallow�sCp �Mallows 	
���� discriminant functions� and distance measures�
such as the Bhattacharyya distance and divergence� The PRESS measure �Prediction sum of squares��
however� does not obey monotonicity� For monotonic functions� branch and bound techniques can be used to
prune the search space� Furnival �Wilson �	
��� show how to compute the residual sum of squares �RSS� for
all possible regressions of k features in less than six ��� �oating�point operations per regression� furthermore�
the technique can be combined with branch and bound algorithms as described in their paper�� Narendra
� Fukunaga �	
��� apparently rediscovered the branch�and�bound technique� which was later improved in
Yu � Yuan �	

��� Most machine learning induction algorithms do not obey monotonic restrictions� and so
this type of dynamic programming cannot be used� Even when branch and bound can be used� the search
is usually exponential� and when there are more than �� or �� features� heuristic methods need to be used�

Searching in the space of feature subsets has been studied for many years� Sequential backward elimi�
nation� sometimes called sequential backward selection� was introduced by Marill � Green �	
���� Kittler
�	
��� generalized the di�erent variants including forward methods� stepwise methods� and 
plus � take
away r�� Cover � Campenhout �	
��� showed that even for multivariate normally distributed features� no
hill�climbing procedure that uses a monotonic measure and that selects one feature at a time can �nd the
best feature subset of a desired size� even a ��	 algorithm that adds the best pair and removes the worst
single feature can fail� More recent papers attempt to use AI techniques� such as beam search and bidirec�
tional search �Siedlecki � Sklansky 	
���� best��rst search �Xu� Yan � Chang 	
�
�� and genetic algorithms
�Vafai � De Jong 	

�� Vafai � De Jong 	

��� All the algorithms described above use a deterministic
evaluation function� although in some cases they can easily be extended to probabilistic estimates� such
as cross�validation that we use� Recently� Bala� Jong� Haung� Vafaie � Wechsler �	

�� used the wrapper

�The Forest Service must have been really interested in this problem� Furnival was at the School of Forestry at Yale
University� and Wilson was from the USDA Forest Service� One would think that they should have been working on tree
pruning and not on linear regression�

��



approach with holdout for accuracy estimation and a genetic algorithm to search the space� Langley �	

��
reviewed feature subset selection methods in machine learning and contrasted the wrapper and �lter ap�
proaches� Atkeson �	

	� used leave�one�out cross�validation to search a multidimensional real�valued space
which includes feature weights in addition to other parameters for local learning�

The theory of rough sets de�nes notions of relevance that are closely related to the ones de�ned here
�Pawlak 	

	�� The set of strongly relevant features form the core and any set of features that allow a
Bayes classi�er to achieve the highest possible accuracy forms a reduct� A reduct can only contain strongly
relevant and weakly relevant features� Pawlak �	

	� shows that the core is the intersection of all the reducts
and that every reduct consists only of the core features and weakly relevant features� Pawlak �	

�� wrote
that one of the most important and fundamental notions to the rough sets philosophy is the need to discover
redundancy and dependencies between features� and there has been a lot of work on feature subset selection
coming from the rough sets community �cf� Modrzejewski �	

�� and Ziarko �	

	��� While the goal of
�nding a good feature subset is the same� Kohavi � Frasca �	

�� have claimed that relevance does not
necessarily imply usefulness for induction tasks �see also Section �����

While we concentrated on selection of relevant features in this paper� an alternative method is to weigh
features� giving each one a degree of relevance� Theoretical results have been shown for multiplicative
learning algorithms� which work well for linear combinations of features �e�g�� Perceptrons� �Littlestone �
Warmuth 	

���

Skalak �	

�� uses the wrapper approach for feature subset selection and for decreasing the number of
prototypes stored in instance�based methods� He shows that very few prototypes sometimes su�ce� This is
an example of choosing relevant training instances as opposed to relevant features�

Turney �	

�� de�nes a feature to be primary if there is one feature value such that the probability of a
class changes when conditioned on this value�� A primary feature is thus informative about the class when
considered all by itself� He then de�nes a contextual feature as a non�primary relevant feature� A feature
is contextual only if it helps in the context of all others� Contextual features are harder to �nd because they
involve interactions� These de�nitions are orthogonal to ours� a feature may be primary and either strongly
or weakly relevant� or contextual and either strongly or weakly relevant�

Since the introduction of the wrapper approach �John et al� 	

��� we have seen it used in a few papers�
Langley � Sage �	

�a� used the wrapper approach to select features for Naive�Bayes �but without dis�
cretization� and Langley � Sage �	

�b� used it to select features for a nearest�neighbor algorithm� Pazzani
�	

�� used the wrapper approach to select features and join features �create super�features that compound
others� for Naive�Bayes and showed that it indeed �nds correct combinations when features interact� Singh
� Provan �	

�� and Provan � Singh �	

�� used the wrapper approach to select features for Bayesian net�
works and showed signi�cant improvements over the original K� algorithm� Street� Mangasarian � Wolberg
�	

�� use the wrapper in the context of a linear programming generalizer� All the algorithms mentioned
above use a hill�climbing search engine�

The idea of wrapping around induction algorithms appeared several times in the literature without
the explicit name 
wrapper approach�� The closest formulation is the Search of the Bias Space approach
described in Provost � Buchanan �	

�� and which dates back to Provost �	

���

Aha � Bankert �	

�� used the wrapper for identifying feature subsets in a cloud classi�cation problem
with ��� features and 	��� instances� they concluded that their empirical results strongly support the
claim that the wrapper strategy is superior to �lter methods� Aha � Bankert �	

�� compare forward and
backward feature subset selection using the wrapper approach and a beam�search engine and conclude that
forward selection is better� In other work� we have applied the wrapper approach to parameter tuning as well
�speci�cally� setting the parameters of C��� for maximal performance� in Kohavi � John �	

��� Mladeni�c
�	

�� independently extended the use of wrappers from feature subset selection to parameter tuning� Doak
�	

�� has developed a method similar to the wrapper approach independently� and compared many search
engines for feature subset selection� however� he was not aware of the fact that one should use an independent
test set for the �nal estimation and used the accuracy estimation used to guide the search �see Section ����

�A longer discussion of contextual features may be found in Turney �	����� although the de�nitions originally given were
found to be 
awed as mentioned in Turney �	��
��

�The results in both papers by Aha and Bankert� those of Mladeni�c� and those of Doak must be interpreted cautiously
because they were using the cross�validation accuracy used during the search as the �nal estimated performance as opposed to
an independent test set or an external loop of cross�validation as we have done�

��




 Future Work

Many variations and extensions of the current work are possible� We have examined hill�climbing and best�
�rst search engines� Other approaches could be examined� such as simulated annealing approaches that
evaluate the better nodes more times �Laarhoven � Aarts 	
���� Looking at the search� we have seen that
one general area of the search space is explored heavily when it is found to be good� It might be worthwhile to
introduce some diversity into the search� following the genetic algorithmand genetic programmingapproaches
�Holland 	

�� Goldberg 	
�
� Koza 	

��� The problem has been abstracted as search with probabilistic
estimates �Section ��� but we have not done experiments in an attempt to understand the tradeo� between
the quality of the estimates and the search size� i�e�� exploration versus exploitation experiments�

The search for a good subset is conducted in a very large space� We have started the search from the
empty set of features and from the full set of features� but one can start from some other initial node� One
possibility is to estimate which features are strongly relevant� and start the search from this subset� although
compound operators seem to be a partial answer to this problem� Another possibility is to start at random
points and conduct a series of hill�climbing searches� We could also start with the set of features suggested
by Relieved�F� or at least ensure that this set is explored by the wrapper at some point during the search�

The wrapper approach is very slow� For larger datasets� it is possible to use cheaper accuracy estimation
methods� such as holdout� or decrease the number of folds� Furthermore� some inducers allow incremental
operations on the classi�ers �add and delete instances�� leading to the possibility of doing incremental cross�
validation as suggested in Kohavi �	

�a�� thus drastically reducing the running time� Although C��� does
not support incremental operations� Utgo� �	

�� has shown that this is possible and has implemented a
fast version of leave�one�out for decision trees �Utgo� 	

��� The wrapper approach is also very easy to
parallelize� In a node expansion� all children can be evaluated in parallel� which will cut the running time
by a factor equal to the number of attributes assuming enough processors are available �e�g�� 	�� for DNA��

In theory� every possible feature subset identi�es a di�erent model� so the problem can be viewed as that
of model selection �Linhart � Zucchini 	
��� in Statistics� If there are only a few models� as is the case when
one chooses between three induction algorithms� one can estimate the accuracy of each one and select the
one with the highest accuracy �Scha�er 	

�� or perhaps even �nd some underlying theory to help predict
the best one for a given dataset �Brazdil� Gama � Henery �	

���� For all but the smallest problems� the
space of possible feature subsets is too large for brute�force enumeration of all possibilities� and we must
resort to heuristic search�

Recently� aggregation techniques� sometimes called stacking� have been advocated by many people in
machine learning� neural networks� and Statistics �Wolpert 	

�b� Breiman 	

�� Freund � Schapire 	

��
Schapire 	

�� Freund 	

�� Perrone 	

�� Krogh � Vedelsby 	

�� Buntine 	

�� Kwok � Carter 	

��� It is
possible to build many models� each one with a di�erent parameter setting or with a di�erent feature subset�
and let them vote on the class� Aggregation techniques reduce the variance of the models by aggregating
them� but they make it extremely hard to interpret the resulting classi�er�

�� Summary

We have described the feature subset selection problem in supervised learning� which involves identifying
the relevant or useful features in a dataset and giving only that subset to the learning algorithm� We have
investigated the relevance and irrelevance of features� and concluded that weak and strong relevance are
needed to capture our intuition better� We have then shown that these de�nitions are mainly useful with
respect to an optimal rule� i�e�� Bayes rule� but that in practice one should look for optimal features with
respect to the speci�c learning algorithm and training set at hand� Such optimal features do not necessarily
correspond to relevant features �either weak or strong� as shown in Section ���� The optimal features depend
on the speci�c biases and heuristics of the learning algorithm� and hence the wrapper approach naturally
�ts with this de�nition� Feature relevance helped motivate compound operators� which work well in practice
and are currently the only practical way to conduct backward searches for feature subsets using the wrapper
approach when the datasets have many features�

The wrapper approach requires a search space� operators� a search engine� and an evaluation function�
For the evaluation function� we used cross�validation as our accuracy estimation technique� based on the
results in Kohavi �	

�b�� We have used the common search space with add and delete operators as the

��



basis for comparing two search engines� hill�climbing and best��rst search� We have then de�ned compound
operators that use more information in the children of an expanded node� not just the maximumvalue� These
compound operators make a backward search� starting from the full set of features� practical� Best��rst search
with compound operators seems to be a strong performer and improves ID�� C���� and Naive�Bayes� both
in accuracy� and in comprehensibility� as measured by the number of features used�

We showed several problems with �lter methods that attempt to de�ne relevance independently of the
learning algorithm� These problems include� inability to remove a feature in symmetric targets concepts
such as m�of�n�����	� where removal of one feature improves performance �Section ��� inability to include
irrelevant features that may actually help performance �Example ��� and inability to remove correlated
features that may hurt performance �Section ������� Not only have we given theoretical reasons why relevance
should be de�ned relative to an algorithm� but we conducted experiments comparing the wrapper approach
with Relieved�F� a �lter approach to feature subset selection�

Our comparisons include two di�erent families of induction algorithms� decision trees and Naive�Bayes�
Signi�cant performance improvement is achieved for both on some datasets� For the DNA dataset� which
was extensively compared in the StatLog project� the wrapper approach using Naive�Bayes reduced the error
rate from ��	� to ��
� �a relative error reduction of ����� making it the best known induction algorithm
for this problem� One of the more surprising results was how well Naive�Bayes performed overall� in the
global comparison �Table 	��� Naive�Bayes outperforms C��� �with and without feature selection� on the
real datasets� On average� the performance using feature subset selection improved both algorithms�

Our experiments were done on real and arti�cial datasets� In some cases� the results varied dramatically
between these two sets� One reason is that many of the real datasets were already preprocessed to include
only relevant features �DNA being the only exception�� while the arti�cial ones included irrelevant features on
purpose� The arti�cial datasets were mostly noise�free �except monk��� while the real ones contained noise�
Finally� the arti�cial problems contained high�order interactions� which make it harder for hill�climbing
algorithms such as C��� to �nd the optimal feature subset� We expect that tougher problems containing
interactions will occur more in unprocessed datasets coming from the real world�

We have also shown some problems with the wrapper approach� namely over�tting and the large amounts
of CPU time required� and we de�ned the search problem as an abstract state space search with probabilistic
estimates� a formulation that may capture other general problems and that might be studied independently
to solve the existing problems� The time issue seems to be the most important� although with larger amounts
of data� cross�validation can be replaced with holdout accuracy estimation for an immediate improvement
in time by a factor of �ve� Over�tting is a problem of lesser importance and seems to occur mostly in small
training sets� as more data is available for training� over�tting it by chance is much harder�

In supervised classi�cation learning� the question of whether a feature in a dataset is relevant to a given
prediction task is less useful than the question of whether a feature is relevant to the prediction task given
a learning algorithm� If the goal is to optimize accuracy� one should ask whether a set of features is optimal
for a task given the learning algorithm and the training set� Di�erent algorithms have di�erent biases and
a feature that may help one algorithm may hurt another� Similarly� di�erent training set sizes might imply
that a di�erent set of features is optimal� If only a small training set is given� it may be better to reduce the
number of features and thus reduce the algorithm�s variance� when more instances are given� more features
can be chosen to reduce the algorithm�s bias�
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