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ABSTRACT 

During the past 20 years, probability theory has become a critical 

element in the development of many areas in computer science.  

Commensurately, in this paper, we argue for expanding the 

coverage of probability in the computing curriculum.  

Specifically, we present details of a new course we have 

developed on Probability Theory for Computer Scientists.  An 

analysis of course evaluation data shows that students find the 

contextualized content of this class more relevant and valuable 

than general presentations of probability theory.  We also discuss 

different models for expanding the role of probability in different 

curricular programs that may not have the capacity to teach a full 

course on the subject. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – Computer science education. 

General Terms 

Algorithms, Theory, Human Factors, Design. 

Keywords 

Probability Theory, Computing Curricula, Discrete Mathematics 

1. INTRODUCTION 
During the past two decades, probability theory has come to play 

an increasingly important role in many areas of computer science.  

Understanding probability theory is not only useful for 

simulations, but it is becoming an essential tool for analyzing 

large-scale systems and is used as an integral part of many 

computing applications.  Probability is also the cornerstone for 

most machine learning (a.k.a. data mining) techniques used to 

build predictive models from huge volumes of data.  In this paper 

we describe a course on Probability Theory for Computer 

Scientists, explaining why such a course is needed and showing 

the efficacy of teaching this material in a computing context. 

In Section 2, we present a case for why knowledge of probability 

theory and machine learning is critical for students studying 

computing today.  Addressing this point, we describe a course on 

Probability Theory for Computer Scientists, which has been 

successfully offered three times in the past two years at Stanford 

University.  The course is detailed in Section 3.  We discuss the 

computing-specific applications presented in this course, 

distinguishing it from traditional courses in probability theory 

often taught in Mathematics or Statistics departments.   Section 4 

gives a comparative analysis of course evaluation data from 

several different probability theory courses at Stanford, providing 

evidence for the efficacy of a computing-centric course as 

opposed to general courses in probability theory.  We conclude in 

Section 5 with thoughts on how themes from this course may be 

adopted in other contexts at other institutions. 

2. THE NEED FOR PROBABILITY 

THEORY IN COMPUTING CURRICULA 
Work in computing increasingly relies on probability theory as a 

tool for analysis and data modeling.  Furthermore, probability 

theory now plays a foundational role in making advances in many 

areas of computing.   For example, while probability was once 

simply used as a tool to analyze the average running time of 

algorithms, it has now become a central tenant in developing a 

new class of randomized algorithms [14].  In the area of Systems, 

probabilistic analyses of network routing and machine failures 

have become essential elements for building robust large-scale 

distributed systems, and will continue to become more important 

with the growth of "cloud computing".  Much work in Artificial 

Intelligence is now based on probabilistic formalisms, 

encompassing work in reasoning, robotics, natural language 

understanding, and machine learning [18].  Specifically, the 

widespread use of data mining techniques for analyzing large data 

sets involves algorithms grounded in probability theory.  Even 

application areas such as Graphics make use of random sampling 

in image rendering and work in Human-Computer Interaction 

involves probabilistic models of uncertainty in user behavior. 

Despite the growing importance of probability theory in 

computing, the role of probability in the computing curriculum 

has remained relatively minor.  Although both Computing 

Curricula (CC) 1991 and 2001 [1, 2] include probability as one of 

several topics to be included as part of a discrete math course, CC 

1991 provides little guidance on the depth of coverage and CC 

2001 suggests only six total hours of instruction.  While some 

institutions suggest (or sometimes even require) that students take 

a full course in probability theory, the designated courses are 

often surveys taught in Mathematics or Statistics departments and 

do not offer any computing-specific applications.  As a result, 

even students who receive a full course in probability theory are 

often at a loss with regard to how it relates to problems in 

computing, and this lack of context means students may less 

effectively learn and apply the material [6].  This point is further 
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corroborated (later in this paper) by an analysis of data comparing 

the Probability for Computer Scientists course described here with 

several more traditional courses in probability theory. 

Nevertheless, the importance of probability theory has not been lost 

in the Computer Science Education community, as some have 

previously suggested the incorporation of more concepts from 

probability into early computing courses [7].  However, that 

discussion focused more on the use of randomness to generate 

problem simulations in CS0 and CS1 courses as opposed to a formal 

treatment of probability theory in computing.   

More recently, Anderson [4] has argued for combining probability 

with computing, suggesting a course in Simulation, Probability and 

Statistics as a means for students to satisfy a college "quantitative 

reasoning" requirement.  The suggested course focuses primarily on 

building simulations, which is certainly useful, but quite different in 

content, applications, and goals from the course we present here. 

Several textbooks on probability and statistics in computing have 

also been introduced in the past few years.  Some of these texts [12, 

16] are not introductory in nature, requiring previous coursework in 

probability.  Other texts with a more introductory flavor [5, 10] tend 

to focus on simulation and queuing theory, without giving much, if 

any, coverage of machine learning. 

While building randomized simulations is itself an important goal, 

the use of probability theory as a foundation for machine learning 

(i.e., building statistically valid models of data for prediction and 

insight) is a more central problem in the foreseeable future.  A 

recent report by the NSF Task Force on Cyberlearning [15] points to 

the need to "prepare students for the data deluge" by giving them the 

mathematical tools to analyze data as part of their training in 

computing.  The report goes on to state that "some of the world's 

largest companies (Google, Yahoo, Microsoft, Amazon, eBay) are 

struggling" with how to productively identify and exploit patterns in 

large amounts of data.  The need for computer scientists with 

experience in statistical data analysis is also reported in a recent 

Wall Street Journal article [21], stating that "technology 

companies... are in hot pursuit of a particular kind of employee: 

those with experience in statistics and other data-manipulation 

techniques."  Indeed, the article goes on to quote an executive at a 

high-tech recruiting firm who states that engineers "with strong 

statistics backgrounds will earn up to 20% more than generalist 

engineers", reflecting the strong industrial demand for software 

engineers with statistical modeling skills. 

The ever-present discussions of Computational Learning also point 

to the importance of probability theory and machine learning.  This 

point is forcefully made in Wing's seminal paper [22], which states 

that "machine learning has transformed statistics.  Statistical 

learning is being used for problems on a scale, in terms of both data 

size and dimension, unimaginable only a few years ago. Statistics 

departments in all kinds of organizations are hiring computer 

scientists."  As a result, we believe that giving students in computing 

a deep understanding of probability theory, grounded in real 

computing applications, is becoming increasingly important.  From 

both the standpoint of preparing students for research in the field as 

well as meeting industrial demands, there is a need to give students 

greater preparation in probability theory and machine learning 

methods.  We describe a course aimed at addressing this need 

presently. 

3. A COURSE ON PROBABILITY THEORY 

FOR COMPUTER SCIENTISTS  

3.1 Historical background 
During the past two years we have taught three offerings of a course 

entitled Probability Theory for Computer Scientists at Stanford 

University.  The course was created as part of recent curriculum 

revision of our undergraduate Computer Science program [19] and 

is a core class required for all CS majors.  Prior to the curriculum 

revision, we required all CS majors to take a full quarter-long course 

in probability theory.  Students could select any one of three classes 

to satisfy this requirement (all of which are rigorous calculus-based 

courses):  

1. Theory of Probability – Offered by the Statistics department, 

this course provides a general introduction to probability 

theory without a computational component. 

2. Intro. to Probability and Statistics – Offered by the program in 

Computational Mathematics, the course provides an 

engineering perspective on probability.  The course uses 

MATLAB for computational work. 

3. Probabilistic Analysis – Offered by the Management Science 

and Engineering department, the course emphasizes 

probabilistic model building and uses Microsoft Excel for 

computational work. 

While all of these courses provide students with significant exposure 

to probability theory, even from various engineering perspectives, 

we often heard that students had difficulty recalling and applying the 

material from these courses in subsequent computing classes (e.g., 

algorithms, artificial intelligence, etc.).  Since the probability 

courses were developed for more general audiences, they, 

understandably, provide no motivating examples that are 

computing-specific.  Moreover, the computational work provided in 

some of the courses is more focused on simulation and does not 

address the issue of analyzing data to build predictive models (i.e., 

machine learning). 

To remedy this issue, we developed a new course, specifically for 

computer science students, which we describe shortly.  As 

mentioned previously, the new course is now required for all our 

undergraduate computer science students (and is also strongly 

suggested for Masters students who may not already have a solid 

background in probability).  CS students no longer have the option 

of taking the other three probability courses, although students who 

took such a course prior to the availability of our new class were 

"grandfathered" into satisfying the requirement. 

3.2 Course Prerequisites 
As with the other probability course options previously available, 

the new course requires a background in calculus, which was 

already a mathematics requirement for our program.  However, the 

new course, being aimed at computer scientists, also has CS2 as a 

prerequisite.  CS2 provides a critical level of background in 

computing that allows for excellent contextually-relevant motivating 

examples in the probability course.  For example, the probabilistic 

nature of hash functions, insertions or look-ups into ordered data 

structures (e.g., lists, binary search trees), and the randomized 

selection of pivots in QuickSort all provide rich examples that we 

analyze in our new course.  Furthermore, by having CS2 as a 

prerequisite, we guarantee that all students have a 
 



reasonable foundation in programming.  This allows for class 

examples and homework problems that involve the direct 

probabilistic analysis of code.  Moreover, it allows us to have 

significant programming projects, where students implement 

algorithms that build predictive models of real-world data and 

then analyze the results of their programs. 

3.3 Course Details 

3.3.1 Structure 
The Probability Theory for Computer Scientists course is taught 

during a 10 week quarter, and has three 75 minute lectures 

(including interactive demonstrations) each week.  A weekly 

outline for the course is shown in Table 1, showing both the 

topics covered as well as a sampling of the examples that are used 

to motivate the material in class.  A complete set of course slides 

providing detailed course contents is available on the web [3]. 

3.3.2 General introduction to probability 
As seen in Table 1, the topical coverage of the course during the 

first seven weeks aligns with many traditional probability theory 

courses.  In fact, the textbook [17] we have used for our course is 

a general probability text that is also used in two of the other three 

probability courses taught at Stanford (previously mentioned). 

What distinguishes our course during the first seven weeks is that 

the vast majority of examples used to motivate and explain the 

various topics covered are drawn from computer science.  For 

example, in the first week, while we examine the traditional 

problems of computing the probability of various poker hands (via 

counting) or determining the probability that two people in a 

room share the same birthday, we also examine the number of 

degenerate (i.e., linear) Binary Search Trees that can be generated 

to show how slowly that number grows in comparison to the total 

number of possible Binary Search Trees.  The following week, we 

analyze the well-known "Monty Hall" problem [13], but also look 

at questions related to how evenly elements are likely to be spread 

across buckets in a hash table.  In the weeks following, there is a 

steady stream of real-world computing problems presented, 

including how error-correcting codes are used to increase the 

probability of robust communication in networks, determining the 

probability that web servers will become overloaded under 

particular distributions of requests, how probability is used in 

recommendation engines and email spam filters [20], as well as 

showing how to analyze the expected running time of algorithms. 

These examples significantly engage students as they see the role 

probability plays in many of the computing technologies 

presented in their other courses as well as applications they use on 

a regular basis (e.g., email, on-line shopping).  More importantly, 

by seeing probabilistic concepts in a domain that students are 

already familiar with, they have a framework to better assimilate 

the salient aspects of the new information they receive.  They are 

no longer learning probability in a vacuum (using the common 

notion of "balls and urns"), but can directly relate it to real 

problems in computing they will likely have to face.  By learning 

to identify which probabilistic aspects of a problem (e.g., 

independence, conditioning, etc.) give rise to which issues in real 

computing applications, they come away better prepared to tackle 

problems in the future.  Moreover, they gain a greater 

appreciation for the significant role that randomness plays in a 

domain that they tend to think of as strongly deterministic. 

During the course, we do also discuss classic problem set-ups in 

probability, such as "coupon collecting" and reasoning about 

distinguishable vs. indistinguishable "balls" in urns.  However, 

each of these cases is also directly related to applications in 

computing.  In this way, students not only see the general 

concepts, but also look at analogous computing-specific examples 

to gain a firm grounding of how such problems arise in the real 

world.  As a result, they gain experience mapping general 

concepts to solutions of actual problems, a key ingredient missing 

in the general probability courses students were previously taking. 

 Table 1. Weekly outline of Probability Theory for Computer Scientists course 

Week Topics Sample of Motivating Examples 

1 
Counting, Combinatorics (Combinations/Permutations), 

Intro. to probability, Sample spaces, Axioms of probability 

Counting degenerate Binary Search Trees, Sharing a birthday, 

Likelihood of poker hands, Sampling computer chips for defects  

2 
Conditional probability, Bayes Theorem, Independence, 

Discrete random variables, Expectation, Variance 

Analyzing hash table load, Email spam detection, Arrangements of 

bit strings,  HIV testing, "Monty Hall problem", Value of lotteries 

3 
Discrete probability distributions (Binomial, Multinomial, 

Poisson, Geometric, Negative Binomial, Hypergeometric) 

Flipping coins, St. Petersburg paradox, Error-correcting codes, 

Packet corruption in networks, Web server overload 

4 
Continuous random variables and probability distributions 

(Uniform, Normal, Exponential), Joint distributions 

Disk crashes and expected lifetime, Likelihood of error in 

digital/analog conversion, Probabilistic text analysis 

5 
Independent random variables, Conditional distributions and 

independence, Expected algorithm running times 

Distributing requests in a cluster, Recommendation engines, Hash 

tables as "coupon collecting", QuickSort expected running time 

6 
Covariance, Correlation, Conditional expectation,  

Moment generating functions 

Computer cluster utilization, Analyzing recursive functions,  

Simple predictive models, Optimizing hiring (software engineers) 

7 
Inequalities (Markov, Chebyshev, Chernoff, Jensen),  

 Law of Large Numbers, Central Limit Theorem 

Analyzing midterm scores, Modeling a risky investment,  

Estimating algorithm clock running time via repeated trials 

8 
Prior probabilities, Parameter estimation (Method of 

moments, Maximum likelihood, Maximum a posteriori) 

Number of idle machines in a computer cluster, Estimating 

probabilities from rolling dice, "Two envelopes" problem 

9 
Intro. to Machine Learning, Naive Bayesian classifier, 

Logistic regression, Simple Bayesian networks, Utility 

Predicting tomorrow's weather, Email spam filtering,  

 Simpson's paradox in data analysis, Utility of lotteries 

10 
Computational generation of probability distributions, 

Monte Carlo simulation 

Generating other distributions using only the rand() function, 

Algorithms for random shuffles, Monte Carlo integration 

  



3.3.3 Introducing Machine Learning 
The last three weeks of the course leverage what students learned 

during the prior seven weeks to introduce them to Machine 

Learning, specifically building classification models from data.  

Classification is the task of predicting a particular discrete value 

(i.e., the "class" or "prediction output") as a function of a set of 

observed input variables.  For example, we might consider 

building a model to predict if the weather tomorrow will be 

"sunny", "overcast", or "rainy" based on variables that can be 

measured today (e.g., average temperature, humidity, if the sky is 

currently cloudy, etc.).  Such prediction models are "learned" (i.e., 

parameters are estimated) using historical data to help determine 

how the prediction output is probabilistically related to the input 

variables.  Another common example of classification in a 

computing context is the detection and filtering of email spam.  

Indeed, most modern email servers treat spam detection as a 

classification problem, where the server must classify each email 

message as "spam" or "legitimate" based on characteristics of the 

message (e.g., the sender, the words contained in the messages, 

which SMTP server it was received from, etc.) 

Prior to discussing classification tasks, however, in week 8 of the 

course we get students to understand that in real-world 

applications of probability, the parameters for distributions (e.g., 

mean, variance, covariance, etc.) are not given, but rather must be 

estimated from data.  This begins a week of in-depth investigation 

of various parameter estimation techniques and their mathematical 

properties.  It also provides a natural context for discussing 

Bayesian techniques and the role of subjective prior probabilities.  

Indeed, some students have difficulty grappling with the general 

notion of subjective probabilities at first.  But through grounded 

examples we show how people naturally make use of such 

probabilities and how they are mathematically incorporated into 

probabilistic inference, giving students a concrete, yet formal 

treatment that they are more comfortable with.  Moreover, we 

explain various probabilistic smoothing techniques as forms of 

parameter estimation with the incorporation of subjective prior 

probabilities (e.g., Laplace smoothing [11]). 

Armed with knowledge about how data can be used to 

(computationally) estimate parameters of probability distributions, 

students are then introduced to the classification task and specific 

probabilistic models for addressing this problem.  Specifically, we 

focus on the Naive Bayesian classifier [8] and Logistic Regression 

models [9].  We start with the Naive Bayesian classifier, as this 

model is simple to understand.  Given a set of n input variables 

X1, X2, ..., Xn, the Naive Bayesian classifier predicts the class 

(output) ci that maximizes the probability P(X1, X2, ..., Xn, Class 

= ci) over all choices of i (i.e., all possible values of the discrete 

output variable) under the assumption that all the input variables 

are independent of each other, conditioned on the variable Class. 

More formally, the Naive Bayesian classifier predicts the output ci 

given by: 

)Class(P)Class|X,...,X,X(P argmax 21 iin

i

cc
c

  

under the "Naive Bayes assumption" that: 





n

j
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21 )Class|X(P)Class|X,...,X,X(P  

Importantly, this model shows the power of conditional 

independence (which students learned about earlier in the course) 

as a means of reducing the number of parameters needed to be 

estimated in the model from exponential to linear in n (the number 

of input variables).  Computer science students, already having an 

appreciation for the extreme difference between exponential and 

polynomial running times, quickly appreciate how the simplifying 

assumption made in the Naive Bayes model can lead to a dramatic 

change in the efficiency of probabilistic inference. 

After presenting the Naive Bayesian classifier, students then see 

the Logistic Regression model, which has many mathematical 

similarities to Naive Bayes, but a few critical differences that 

prevent its parameters from being estimated analytically (as can be 

done with Naive Bayes).  As a result, Logistic Regression 

immediately forces a computational solution in which parameters 

are optimized using gradient descent over a convex objective 

function.  To better understand the differences between the two 

models and gain hands-on experience with the issues that arise in 

doing actual data analysis, students implement both Naive Bayes 

and Logistic Regression and estimate their parameters using 

provided real-world data sets (described in more detail below). 

The course concludes with a discussion of how various 

probability distributions (e.g., Poisson, Normal, Exponential) may 

be computationally generated using only the uniform random 

distributions that are provided by a function such as the C 

standard library's rand().  This also provides an opportunity to 

discuss in detail the generation of pseudo-random numbers and 

the strengths and weaknesses of various random number 

generation techniques.  Along the same lines, we also discuss how 

algorithms for common tasks involving randomization, such as 

shuffling a deck of cards, are often incorrectly implemented by 

programmers, as we can rigorously analyze the properties of such 

algorithms that on the surface are easily mistaken for producing a 

truly random shuffle (where all permutations of the cards are 

equally likely).  Finally, we show how Monte Carlo simulation 

(making use of various random number generators) can be used to 

approximate the solution to many mathematical problems (e.g., 

evaluating an integral).  Thus, while we do discuss simulation 

(which is also a topic touched on at other points in the course as 

well), it is not meant to be the central theme of the course. 

3.3.4 Demonstrations 
While the course is organized using primarily a traditional lecture-

based format, the lectures also include a number of computer and 

interactive demonstrations to give students a better grounding in 

the material.  These demonstrations include the "classics", such as 

selecting a student from the class to actually try the "Monty Hall 

problem" using three envelopes (where one contains money and 

the other two are empty), as well as determining if two students in 

the class have the same birthday. 

We also consider more modern examples, such as providing a 

computer simulation of how sampling distributions are generated 

to show the Normality of such distributions as predicted by the 

Central Limit Theorem.  While the Central Limit Theorem is one 

of the most powerful results in probability, it is often misapplied 

by those confused by the difference between a sampling 

distribution and the underlying distribution that the samples are 

drawn from.  To clarify this issue, we play a simple game where 

students (in front of the class) roll 10 fair 6-sided dice to see if 

they can roll a total less than 25 or greater than 45 (and thereby 

win a prize).  This demonstration allows students to map 

theoretical concepts to a physical process (i.e., the 6-sided die 



represents the underlying distribution, the 10 rolls represents a 

sample from the distribution, and the average of the 10 rolls is a 

value from the sampling distribution of the mean), allowing them 

to better remember the material.  The physical demonstration is 

then reinforced by the computer application which they can use to 

try various other underlying distributions and see that the 

sampling distribution of the mean tends to always be Normal.  

Students report that class demonstrations help them better 

remember the material, especially when they have the opportunity 

to follow-up on them afterwards. 

3.3.5 Assignments 
There are six assignments in the course, spanning a range of 

problem modalities.  Most assignment problems are word 

problems that involve analytically deriving a mathematical result 

based on appropriately modeling the probabilistic dynamics of the 

problem.  What distinguishes such problems from a more 

traditional probability course is that a large majority of them 

involve realistic problems in computing, such as analyzing the 

distribution of elements in hash tables and determining request 

distributions to web sites.  Also, in such problems, students are 

encouraged (but not required) to write simulation programs to 

verify their answers.  Several assignment problems also involve 

the direct analysis of code.  For example, students may be asked 

to determine the expected running time of a stylized recursive 

algorithm or determine if an algorithm is correct with respect to 

modeling some probabilistic process. 

In the final portion of the course, where the focus shifts to 

Machine Learning, students are required to implement various 

learning algorithms (specifically, the Naive Bayesian classifier 

and Logistic Regression, as mentioned above) and test their 

implementations using real-world data sets.  In the past, students 

have built models using data to predict Congressmembers' 

political affiliation based on their voting records as well as 

tackling medical diagnosis tasks, such as determining if a patient 

has a heart abnormality based on tomography (X-ray) data.  Other 

tasks considered for future courses include building an email 

spam filter or predicting the locations of splice junctions in DNA. 

Students have their choice of implementing their algorithms in 

Java, C/C++, or R (a functional statistical modeling language).  

All of the students in the course are expected to have worked with 

Java or C/C++ previously (as a result of CS2 being a 

prerequisite).  We also allow R as an option for programming 

assignments as we have recently started to offer an optional one 

unit adjunct lab course entitled Statistical Programming with R. 

The R course provides two main benefits for students.  First, it 

provides them with an opportunity to see a more direct 

relationship between programming and the statistical theory they 

are learning, as the topics covered in the R course mirror those 

covered in the probability course.  This parallel structure also 

allows many examples in the R course to be relevant to building 

computational simulations to verify analytical results of problems 

in the probability course.   Second, the course provides a 

convenient way to expose students to functional programming in a 

context which is not just about learning programming, but 

motivated by solving real statistical problems. 

4. COURSE EVALUATION ANALYSIS 
To evaluate the efficacy of our course, we compare end-of-quarter 

student evaluation data from our Probability Theory for Computer 

Scientists course against all three other probability theory courses 

taught at Stanford.  Since we want the data from the three other 

probability theory courses to reflect evaluations from CS students 

(to create a more direct comparison to the population of our new 

course), we consider every offering of the other three courses in 

the year and a half prior to the introduction of our new course 

(Fall 2007-08 through Winter 2008-09), when a substantial 

portion of the population of those other courses would still be CS 

students.  We then compare the data we have on every offering of 

our new course over the immediately following year and a half 

period (Spring 2008-09 through Spring 2009-10).  We denote the 

courses compared as follows: 

 Theory of Probability – Denoted TP.  The course was 

offered three times from Fall 2007-08 through Winter 2008-

09.  A total of 184 student evaluations were collected. 

 Intro. to Probability and Statistics – Denoted IPS.  The 

course was offered twice from Fall 2007-08 through Winter 

2008-09.  A total of 191 student evaluations were collected. 

 Probabilistic Analysis – Denoted PA.  The course was 

offered twice from Fall 2007-08 through Winter 2008-09.  A 

total of 163 student evaluations were collected. 

 Probability Theory for Computer Scientists – Denoted PCS.  

The course was offered three times from Spring 2008-09 

through Spring 2009-10.  A total of 277 student evaluations 

were collected. 

In the evaluation data, we examine questions specifically related 

to the value of the course and the relevance of course content, 

which we believe are the most meaningful indicators for 

comparing across courses in this context.  Using a 5-point scale  

(5 = Excellent, 4 = Very Good, 3 = Good, 2 = Fair, and 1 = Poor), 

students rated several course criteria.  Table 2 presents these 

criteria (column 1), and the average score received in each of the 

10 class offerings (columns 2 through 11 in the table each 

represents a distinct offering of a course).  It is worth noting that 

every offering of the Probability Theory for Computer Scientists 

course (PCS 1/2/3) ranks higher on all of the five criteria than any 

of the more general probability theory courses. 

To determine the significance of these results, we compute t-tests 

between the data for each of the four courses under consideration.  

Since it is infeasible to report the results of comparing every class 

offering versus every other class offering, we first pool the student 

evaluation data on a per course basis.  This also provides the 

benefit that data is focused more on the content of the course in 

general as opposed to the particulars of any one offering.  The 

pooled per-course data is given in columns 12 through 15 of 

Table 2.   We compute t-tests (unpaired, heteroscedastic, two-

tailed) on the pooled data for PCS vs. TP, IPS, and PA, 

respectively.  The t-test results (p-values) are given in columns 16 

through 18 of Table 2.  On every criteria, PCS scores statistically 

significantly higher than any of the other probability courses with 

p < 0.001, providing strong evidence that students find the 

contents of the new course more relevant, valuable, and related to 

their studies in computing. 



It is also worth noting that while the class was originally designed 

for CS students, it does attract a number of non-CS majors who 

report that they are interested in the Machine Learning aspect of 

the course, which is not available in the other probability courses. 

5. CONCLUSIONS 
Probability theory and machine learning will continue to grow in 

importance for students studying computing.  We believe the 

course presented here helps effectively prepare students for 

applying probability in computing contexts and using it as a tool 

for data analysis and modeling.  The comparative analysis of 

course evaluation data shows that students are finding the new 

course content to be more relevant and valuable than more general 

courses in probability.  Materials from our course are available 

on-line and have been freely distributed in various educational 

forums.  Indeed, we have already learned of at least one other 

university planning to offer a course this coming year modeled on 

the one described here, and several other programs that are 

considering similar courses in the future. 

Understanding that some CS programs cannot justify a full course 

in probability, we would encourage an expanded coverage of the 

topic with more computing-relevant examples in existing discrete 

math courses.  In such contexts, probability can be taught using 

only discrete variables, which still provides sufficient foundation 

for discussing topics in Machine Learning (parameter estimation 

and Naive Bayes).  In fact, such a treatment can be provided 

without requiring a background in calculus. 

Alternatively, some schools have reported that they are planning a 

move toward the model described here by restructuring existing 

course offerings.  For example, rather than requiring a full course 

in Automata Theory and Computability, these topics are now 

covered in a condensed treatment in an existing discrete math 

course (in place of probability) and the probability material is 

expanded into a separate course (perhaps with the inclusion of 

some additional topics).  We believe there will be many models 

that will work for providing expanded coverage of probability 

theory in the computing curriculum. 
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 Table 2. Student evaluation and t-test results for probability courses. 

Criteria \ Course Offering 
TP 

(1) 

TP 

(2) 

TP 

(3) 

IPS 

(1) 

IPS 

(2) 

PA 

(1) 

PA 

(2) 

PCS 

(1) 

PCS 

(2) 

PCS 

(3) 

TP 

(all) 

IPS 

(all)  

PA 

(all) 

PCS 

(all) 

PCS vs. 

TP (all) 

PCS vs. 

IPS (all) 

PCS vs. 

PA (all) 

The quality of the course content 3.60 3.58 4.17 4.29 4.06 3.41 3.84 4.53 4.32 4.51 3.80 4.18 3.60 4.45 < 0.001 < 0.001 < 0.001 

Set out and met clear objectives 

announced for the course 
3.00 3.57 4.22 4.44 4.23 3.60 3.76 4.62 4.57 4.61 3.58 4.34 3.67 4.60 < 0.001 < 0.001 < 0.001 

Emphasized conceptual  

understanding and critical thinking 
3.36 3.50 4.01 4.20 4.14 3.45 3.81 4.52 4.41 4.56 3.63 4.17 3.61 4.49 < 0.001 < 0.001 < 0.001 

Related course topics  

to one another 
3.17 3.52 4.14 4.31 4.24 3.40 3.72 4.59 4.45 4.79 3.61 4.27 3.54 4.57 < 0.001 < 0.001 < 0.001 

Selected course content that was 

valuable and worth learning 
3.37 3.50 4.21 4.25 4.07 3.28 3.64 4.55 4.51 4.69 3.70 4.13 3.43 4.56 < 0.001 < 0.001 < 0.001 

# Evaluations (N) 75 43 66 102 89 90 73 131 101 45 184 191 163 277   
 

 
                  

 

  


