
A Course on Probability Theory for Computer Scientists

Mehran Sahami
Computer Science Department

Stanford University
Stanford, CA 94305

sahami@cs.stanford.edu

ABSTRACT

During the past 20 years, probability theory has become a critical

element in the development of many areas in computer science.

Commensurately, in this paper, we argue for expanding the

coverage of probability in the computing curriculum.

Specifically, we present details of a new course we have

developed on Probability Theory for Computer Scientists. An

analysis of course evaluation data shows that students find the

contextualized content of this class more relevant and valuable

than general presentations of probability theory. We also discuss

different models for expanding the role of probability in different

curricular programs that may not have the capacity to teach a full

course on the subject.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – Computer science education.

General Terms

Algorithms, Theory, Human Factors, Design.

Keywords

Probability Theory, Computing Curricula, Discrete Mathematics

1. INTRODUCTION
During the past two decades, probability theory has come to play

an increasingly important role in many areas of computer science.

Understanding probability theory is not only useful for

simulations, but it is becoming an essential tool for analyzing

large-scale systems and is used as an integral part of many

computing applications. Probability is also the cornerstone for

most machine learning (a.k.a. data mining) techniques used to

build predictive models from huge volumes of data. In this paper

we describe a course on Probability Theory for Computer

Scientists, explaining why such a course is needed and showing

the efficacy of teaching this material in a computing context.

In Section 2, we present a case for why knowledge of probability

theory and machine learning is critical for students studying

computing today. Addressing this point, we describe a course on

Probability Theory for Computer Scientists, which has been

successfully offered three times in the past two years at Stanford

University. The course is detailed in Section 3. We discuss the

computing-specific applications presented in this course,

distinguishing it from traditional courses in probability theory

often taught in Mathematics or Statistics departments. Section 4

gives a comparative analysis of course evaluation data from

several different probability theory courses at Stanford, providing

evidence for the efficacy of a computing-centric course as

opposed to general courses in probability theory. We conclude in

Section 5 with thoughts on how themes from this course may be

adopted in other contexts at other institutions.

2. THE NEED FOR PROBABILITY

THEORY IN COMPUTING CURRICULA
Work in computing increasingly relies on probability theory as a

tool for analysis and data modeling. Furthermore, probability

theory now plays a foundational role in making advances in many

areas of computing. For example, while probability was once

simply used as a tool to analyze the average running time of

algorithms, it has now become a central tenant in developing a

new class of randomized algorithms [14]. In the area of Systems,

probabilistic analyses of network routing and machine failures

have become essential elements for building robust large-scale

distributed systems, and will continue to become more important

with the growth of "cloud computing". Much work in Artificial

Intelligence is now based on probabilistic formalisms,

encompassing work in reasoning, robotics, natural language

understanding, and machine learning [18]. Specifically, the

widespread use of data mining techniques for analyzing large data

sets involves algorithms grounded in probability theory. Even

application areas such as Graphics make use of random sampling

in image rendering and work in Human-Computer Interaction

involves probabilistic models of uncertainty in user behavior.

Despite the growing importance of probability theory in

computing, the role of probability in the computing curriculum

has remained relatively minor. Although both Computing

Curricula (CC) 1991 and 2001 [1, 2] include probability as one of

several topics to be included as part of a discrete math course, CC

1991 provides little guidance on the depth of coverage and CC

2001 suggests only six total hours of instruction. While some

institutions suggest (or sometimes even require) that students take

a full course in probability theory, the designated courses are

often surveys taught in Mathematics or Statistics departments and

do not offer any computing-specific applications. As a result,

even students who receive a full course in probability theory are

often at a loss with regard to how it relates to problems in

computing, and this lack of context means students may less

effectively learn and apply the material [6]. This point is further

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.

Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

corroborated (later in this paper) by an analysis of data comparing

the Probability for Computer Scientists course described here with

several more traditional courses in probability theory.

Nevertheless, the importance of probability theory has not been lost

in the Computer Science Education community, as some have

previously suggested the incorporation of more concepts from

probability into early computing courses [7]. However, that

discussion focused more on the use of randomness to generate

problem simulations in CS0 and CS1 courses as opposed to a formal

treatment of probability theory in computing.

More recently, Anderson [4] has argued for combining probability

with computing, suggesting a course in Simulation, Probability and

Statistics as a means for students to satisfy a college "quantitative

reasoning" requirement. The suggested course focuses primarily on

building simulations, which is certainly useful, but quite different in

content, applications, and goals from the course we present here.

Several textbooks on probability and statistics in computing have

also been introduced in the past few years. Some of these texts [12,

16] are not introductory in nature, requiring previous coursework in

probability. Other texts with a more introductory flavor [5, 10] tend

to focus on simulation and queuing theory, without giving much, if

any, coverage of machine learning.

While building randomized simulations is itself an important goal,

the use of probability theory as a foundation for machine learning

(i.e., building statistically valid models of data for prediction and

insight) is a more central problem in the foreseeable future. A

recent report by the NSF Task Force on Cyberlearning [15] points to

the need to "prepare students for the data deluge" by giving them the

mathematical tools to analyze data as part of their training in

computing. The report goes on to state that "some of the world's

largest companies (Google, Yahoo, Microsoft, Amazon, eBay) are

struggling" with how to productively identify and exploit patterns in

large amounts of data. The need for computer scientists with

experience in statistical data analysis is also reported in a recent

Wall Street Journal article [21], stating that "technology

companies... are in hot pursuit of a particular kind of employee:

those with experience in statistics and other data-manipulation

techniques." Indeed, the article goes on to quote an executive at a

high-tech recruiting firm who states that engineers "with strong

statistics backgrounds will earn up to 20% more than generalist

engineers", reflecting the strong industrial demand for software

engineers with statistical modeling skills.

The ever-present discussions of Computational Learning also point

to the importance of probability theory and machine learning. This

point is forcefully made in Wing's seminal paper [22], which states

that "machine learning has transformed statistics. Statistical

learning is being used for problems on a scale, in terms of both data

size and dimension, unimaginable only a few years ago. Statistics

departments in all kinds of organizations are hiring computer

scientists." As a result, we believe that giving students in computing

a deep understanding of probability theory, grounded in real

computing applications, is becoming increasingly important. From

both the standpoint of preparing students for research in the field as

well as meeting industrial demands, there is a need to give students

greater preparation in probability theory and machine learning

methods. We describe a course aimed at addressing this need

presently.

3. A COURSE ON PROBABILITY THEORY

FOR COMPUTER SCIENTISTS

3.1 Historical background
During the past two years we have taught three offerings of a course

entitled Probability Theory for Computer Scientists at Stanford

University. The course was created as part of recent curriculum

revision of our undergraduate Computer Science program [19] and

is a core class required for all CS majors. Prior to the curriculum

revision, we required all CS majors to take a full quarter-long course

in probability theory. Students could select any one of three classes

to satisfy this requirement (all of which are rigorous calculus-based

courses):

1. Theory of Probability – Offered by the Statistics department,

this course provides a general introduction to probability

theory without a computational component.

2. Intro. to Probability and Statistics – Offered by the program in

Computational Mathematics, the course provides an

engineering perspective on probability. The course uses

MATLAB for computational work.

3. Probabilistic Analysis – Offered by the Management Science

and Engineering department, the course emphasizes

probabilistic model building and uses Microsoft Excel for

computational work.

While all of these courses provide students with significant exposure

to probability theory, even from various engineering perspectives,

we often heard that students had difficulty recalling and applying the

material from these courses in subsequent computing classes (e.g.,

algorithms, artificial intelligence, etc.). Since the probability

courses were developed for more general audiences, they,

understandably, provide no motivating examples that are

computing-specific. Moreover, the computational work provided in

some of the courses is more focused on simulation and does not

address the issue of analyzing data to build predictive models (i.e.,

machine learning).

To remedy this issue, we developed a new course, specifically for

computer science students, which we describe shortly. As

mentioned previously, the new course is now required for all our

undergraduate computer science students (and is also strongly

suggested for Masters students who may not already have a solid

background in probability). CS students no longer have the option

of taking the other three probability courses, although students who

took such a course prior to the availability of our new class were

"grandfathered" into satisfying the requirement.

3.2 Course Prerequisites
As with the other probability course options previously available,

the new course requires a background in calculus, which was

already a mathematics requirement for our program. However, the

new course, being aimed at computer scientists, also has CS2 as a

prerequisite. CS2 provides a critical level of background in

computing that allows for excellent contextually-relevant motivating

examples in the probability course. For example, the probabilistic

nature of hash functions, insertions or look-ups into ordered data

structures (e.g., lists, binary search trees), and the randomized

selection of pivots in QuickSort all provide rich examples that we

analyze in our new course. Furthermore, by having CS2 as a

prerequisite, we guarantee that all students have a

reasonable foundation in programming. This allows for class

examples and homework problems that involve the direct

probabilistic analysis of code. Moreover, it allows us to have

significant programming projects, where students implement

algorithms that build predictive models of real-world data and

then analyze the results of their programs.

3.3 Course Details

3.3.1 Structure
The Probability Theory for Computer Scientists course is taught

during a 10 week quarter, and has three 75 minute lectures

(including interactive demonstrations) each week. A weekly

outline for the course is shown in Table 1, showing both the

topics covered as well as a sampling of the examples that are used

to motivate the material in class. A complete set of course slides

providing detailed course contents is available on the web [3].

3.3.2 General introduction to probability
As seen in Table 1, the topical coverage of the course during the

first seven weeks aligns with many traditional probability theory

courses. In fact, the textbook [17] we have used for our course is

a general probability text that is also used in two of the other three

probability courses taught at Stanford (previously mentioned).

What distinguishes our course during the first seven weeks is that

the vast majority of examples used to motivate and explain the

various topics covered are drawn from computer science. For

example, in the first week, while we examine the traditional

problems of computing the probability of various poker hands (via

counting) or determining the probability that two people in a

room share the same birthday, we also examine the number of

degenerate (i.e., linear) Binary Search Trees that can be generated

to show how slowly that number grows in comparison to the total

number of possible Binary Search Trees. The following week, we

analyze the well-known "Monty Hall" problem [13], but also look

at questions related to how evenly elements are likely to be spread

across buckets in a hash table. In the weeks following, there is a

steady stream of real-world computing problems presented,

including how error-correcting codes are used to increase the

probability of robust communication in networks, determining the

probability that web servers will become overloaded under

particular distributions of requests, how probability is used in

recommendation engines and email spam filters [20], as well as

showing how to analyze the expected running time of algorithms.

These examples significantly engage students as they see the role

probability plays in many of the computing technologies

presented in their other courses as well as applications they use on

a regular basis (e.g., email, on-line shopping). More importantly,

by seeing probabilistic concepts in a domain that students are

already familiar with, they have a framework to better assimilate

the salient aspects of the new information they receive. They are

no longer learning probability in a vacuum (using the common

notion of "balls and urns"), but can directly relate it to real

problems in computing they will likely have to face. By learning

to identify which probabilistic aspects of a problem (e.g.,

independence, conditioning, etc.) give rise to which issues in real

computing applications, they come away better prepared to tackle

problems in the future. Moreover, they gain a greater

appreciation for the significant role that randomness plays in a

domain that they tend to think of as strongly deterministic.

During the course, we do also discuss classic problem set-ups in

probability, such as "coupon collecting" and reasoning about

distinguishable vs. indistinguishable "balls" in urns. However,

each of these cases is also directly related to applications in

computing. In this way, students not only see the general

concepts, but also look at analogous computing-specific examples

to gain a firm grounding of how such problems arise in the real

world. As a result, they gain experience mapping general

concepts to solutions of actual problems, a key ingredient missing

in the general probability courses students were previously taking.

 Table 1. Weekly outline of Probability Theory for Computer Scientists course

Week Topics Sample of Motivating Examples

1
Counting, Combinatorics (Combinations/Permutations),

Intro. to probability, Sample spaces, Axioms of probability

Counting degenerate Binary Search Trees, Sharing a birthday,

Likelihood of poker hands, Sampling computer chips for defects

2
Conditional probability, Bayes Theorem, Independence,

Discrete random variables, Expectation, Variance

Analyzing hash table load, Email spam detection, Arrangements of

bit strings, HIV testing, "Monty Hall problem", Value of lotteries

3
Discrete probability distributions (Binomial, Multinomial,

Poisson, Geometric, Negative Binomial, Hypergeometric)

Flipping coins, St. Petersburg paradox, Error-correcting codes,

Packet corruption in networks, Web server overload

4
Continuous random variables and probability distributions

(Uniform, Normal, Exponential), Joint distributions

Disk crashes and expected lifetime, Likelihood of error in

digital/analog conversion, Probabilistic text analysis

5
Independent random variables, Conditional distributions and

independence, Expected algorithm running times

Distributing requests in a cluster, Recommendation engines, Hash

tables as "coupon collecting", QuickSort expected running time

6
Covariance, Correlation, Conditional expectation,

Moment generating functions

Computer cluster utilization, Analyzing recursive functions,

Simple predictive models, Optimizing hiring (software engineers)

7
Inequalities (Markov, Chebyshev, Chernoff, Jensen),

 Law of Large Numbers, Central Limit Theorem

Analyzing midterm scores, Modeling a risky investment,

Estimating algorithm clock running time via repeated trials

8
Prior probabilities, Parameter estimation (Method of

moments, Maximum likelihood, Maximum a posteriori)

Number of idle machines in a computer cluster, Estimating

probabilities from rolling dice, "Two envelopes" problem

9
Intro. to Machine Learning, Naive Bayesian classifier,

Logistic regression, Simple Bayesian networks, Utility

Predicting tomorrow's weather, Email spam filtering,

 Simpson's paradox in data analysis, Utility of lotteries

10
Computational generation of probability distributions,

Monte Carlo simulation

Generating other distributions using only the rand() function,

Algorithms for random shuffles, Monte Carlo integration

3.3.3 Introducing Machine Learning
The last three weeks of the course leverage what students learned

during the prior seven weeks to introduce them to Machine

Learning, specifically building classification models from data.

Classification is the task of predicting a particular discrete value

(i.e., the "class" or "prediction output") as a function of a set of

observed input variables. For example, we might consider

building a model to predict if the weather tomorrow will be

"sunny", "overcast", or "rainy" based on variables that can be

measured today (e.g., average temperature, humidity, if the sky is

currently cloudy, etc.). Such prediction models are "learned" (i.e.,

parameters are estimated) using historical data to help determine

how the prediction output is probabilistically related to the input

variables. Another common example of classification in a

computing context is the detection and filtering of email spam.

Indeed, most modern email servers treat spam detection as a

classification problem, where the server must classify each email

message as "spam" or "legitimate" based on characteristics of the

message (e.g., the sender, the words contained in the messages,

which SMTP server it was received from, etc.)

Prior to discussing classification tasks, however, in week 8 of the

course we get students to understand that in real-world

applications of probability, the parameters for distributions (e.g.,

mean, variance, covariance, etc.) are not given, but rather must be

estimated from data. This begins a week of in-depth investigation

of various parameter estimation techniques and their mathematical

properties. It also provides a natural context for discussing

Bayesian techniques and the role of subjective prior probabilities.

Indeed, some students have difficulty grappling with the general

notion of subjective probabilities at first. But through grounded

examples we show how people naturally make use of such

probabilities and how they are mathematically incorporated into

probabilistic inference, giving students a concrete, yet formal

treatment that they are more comfortable with. Moreover, we

explain various probabilistic smoothing techniques as forms of

parameter estimation with the incorporation of subjective prior

probabilities (e.g., Laplace smoothing [11]).

Armed with knowledge about how data can be used to

(computationally) estimate parameters of probability distributions,

students are then introduced to the classification task and specific

probabilistic models for addressing this problem. Specifically, we

focus on the Naive Bayesian classifier [8] and Logistic Regression

models [9]. We start with the Naive Bayesian classifier, as this

model is simple to understand. Given a set of n input variables

X1, X2, ..., Xn, the Naive Bayesian classifier predicts the class

(output) ci that maximizes the probability P(X1, X2, ..., Xn, Class

= ci) over all choices of i (i.e., all possible values of the discrete

output variable) under the assumption that all the input variables

are independent of each other, conditioned on the variable Class.

More formally, the Naive Bayesian classifier predicts the output ci

given by:

)Class(P)Class|X,...,X,X(P argmax 21 iin

i

cc
c

under the "Naive Bayes assumption" that:

n

j

ijin cc
1

21)Class|X(P)Class|X,...,X,X(P

Importantly, this model shows the power of conditional

independence (which students learned about earlier in the course)

as a means of reducing the number of parameters needed to be

estimated in the model from exponential to linear in n (the number

of input variables). Computer science students, already having an

appreciation for the extreme difference between exponential and

polynomial running times, quickly appreciate how the simplifying

assumption made in the Naive Bayes model can lead to a dramatic

change in the efficiency of probabilistic inference.

After presenting the Naive Bayesian classifier, students then see

the Logistic Regression model, which has many mathematical

similarities to Naive Bayes, but a few critical differences that

prevent its parameters from being estimated analytically (as can be

done with Naive Bayes). As a result, Logistic Regression

immediately forces a computational solution in which parameters

are optimized using gradient descent over a convex objective

function. To better understand the differences between the two

models and gain hands-on experience with the issues that arise in

doing actual data analysis, students implement both Naive Bayes

and Logistic Regression and estimate their parameters using

provided real-world data sets (described in more detail below).

The course concludes with a discussion of how various

probability distributions (e.g., Poisson, Normal, Exponential) may

be computationally generated using only the uniform random

distributions that are provided by a function such as the C

standard library's rand(). This also provides an opportunity to

discuss in detail the generation of pseudo-random numbers and

the strengths and weaknesses of various random number

generation techniques. Along the same lines, we also discuss how

algorithms for common tasks involving randomization, such as

shuffling a deck of cards, are often incorrectly implemented by

programmers, as we can rigorously analyze the properties of such

algorithms that on the surface are easily mistaken for producing a

truly random shuffle (where all permutations of the cards are

equally likely). Finally, we show how Monte Carlo simulation

(making use of various random number generators) can be used to

approximate the solution to many mathematical problems (e.g.,

evaluating an integral). Thus, while we do discuss simulation

(which is also a topic touched on at other points in the course as

well), it is not meant to be the central theme of the course.

3.3.4 Demonstrations
While the course is organized using primarily a traditional lecture-

based format, the lectures also include a number of computer and

interactive demonstrations to give students a better grounding in

the material. These demonstrations include the "classics", such as

selecting a student from the class to actually try the "Monty Hall

problem" using three envelopes (where one contains money and

the other two are empty), as well as determining if two students in

the class have the same birthday.

We also consider more modern examples, such as providing a

computer simulation of how sampling distributions are generated

to show the Normality of such distributions as predicted by the

Central Limit Theorem. While the Central Limit Theorem is one

of the most powerful results in probability, it is often misapplied

by those confused by the difference between a sampling

distribution and the underlying distribution that the samples are

drawn from. To clarify this issue, we play a simple game where

students (in front of the class) roll 10 fair 6-sided dice to see if

they can roll a total less than 25 or greater than 45 (and thereby

win a prize). This demonstration allows students to map

theoretical concepts to a physical process (i.e., the 6-sided die

represents the underlying distribution, the 10 rolls represents a

sample from the distribution, and the average of the 10 rolls is a

value from the sampling distribution of the mean), allowing them

to better remember the material. The physical demonstration is

then reinforced by the computer application which they can use to

try various other underlying distributions and see that the

sampling distribution of the mean tends to always be Normal.

Students report that class demonstrations help them better

remember the material, especially when they have the opportunity

to follow-up on them afterwards.

3.3.5 Assignments
There are six assignments in the course, spanning a range of

problem modalities. Most assignment problems are word

problems that involve analytically deriving a mathematical result

based on appropriately modeling the probabilistic dynamics of the

problem. What distinguishes such problems from a more

traditional probability course is that a large majority of them

involve realistic problems in computing, such as analyzing the

distribution of elements in hash tables and determining request

distributions to web sites. Also, in such problems, students are

encouraged (but not required) to write simulation programs to

verify their answers. Several assignment problems also involve

the direct analysis of code. For example, students may be asked

to determine the expected running time of a stylized recursive

algorithm or determine if an algorithm is correct with respect to

modeling some probabilistic process.

In the final portion of the course, where the focus shifts to

Machine Learning, students are required to implement various

learning algorithms (specifically, the Naive Bayesian classifier

and Logistic Regression, as mentioned above) and test their

implementations using real-world data sets. In the past, students

have built models using data to predict Congressmembers'

political affiliation based on their voting records as well as

tackling medical diagnosis tasks, such as determining if a patient

has a heart abnormality based on tomography (X-ray) data. Other

tasks considered for future courses include building an email

spam filter or predicting the locations of splice junctions in DNA.

Students have their choice of implementing their algorithms in

Java, C/C++, or R (a functional statistical modeling language).

All of the students in the course are expected to have worked with

Java or C/C++ previously (as a result of CS2 being a

prerequisite). We also allow R as an option for programming

assignments as we have recently started to offer an optional one

unit adjunct lab course entitled Statistical Programming with R.

The R course provides two main benefits for students. First, it

provides them with an opportunity to see a more direct

relationship between programming and the statistical theory they

are learning, as the topics covered in the R course mirror those

covered in the probability course. This parallel structure also

allows many examples in the R course to be relevant to building

computational simulations to verify analytical results of problems

in the probability course. Second, the course provides a

convenient way to expose students to functional programming in a

context which is not just about learning programming, but

motivated by solving real statistical problems.

4. COURSE EVALUATION ANALYSIS
To evaluate the efficacy of our course, we compare end-of-quarter

student evaluation data from our Probability Theory for Computer

Scientists course against all three other probability theory courses

taught at Stanford. Since we want the data from the three other

probability theory courses to reflect evaluations from CS students

(to create a more direct comparison to the population of our new

course), we consider every offering of the other three courses in

the year and a half prior to the introduction of our new course

(Fall 2007-08 through Winter 2008-09), when a substantial

portion of the population of those other courses would still be CS

students. We then compare the data we have on every offering of

our new course over the immediately following year and a half

period (Spring 2008-09 through Spring 2009-10). We denote the

courses compared as follows:

 Theory of Probability – Denoted TP. The course was

offered three times from Fall 2007-08 through Winter 2008-

09. A total of 184 student evaluations were collected.

 Intro. to Probability and Statistics – Denoted IPS. The

course was offered twice from Fall 2007-08 through Winter

2008-09. A total of 191 student evaluations were collected.

 Probabilistic Analysis – Denoted PA. The course was

offered twice from Fall 2007-08 through Winter 2008-09. A

total of 163 student evaluations were collected.

 Probability Theory for Computer Scientists – Denoted PCS.

The course was offered three times from Spring 2008-09

through Spring 2009-10. A total of 277 student evaluations

were collected.

In the evaluation data, we examine questions specifically related

to the value of the course and the relevance of course content,

which we believe are the most meaningful indicators for

comparing across courses in this context. Using a 5-point scale

(5 = Excellent, 4 = Very Good, 3 = Good, 2 = Fair, and 1 = Poor),

students rated several course criteria. Table 2 presents these

criteria (column 1), and the average score received in each of the

10 class offerings (columns 2 through 11 in the table each

represents a distinct offering of a course). It is worth noting that

every offering of the Probability Theory for Computer Scientists

course (PCS 1/2/3) ranks higher on all of the five criteria than any

of the more general probability theory courses.

To determine the significance of these results, we compute t-tests

between the data for each of the four courses under consideration.

Since it is infeasible to report the results of comparing every class

offering versus every other class offering, we first pool the student

evaluation data on a per course basis. This also provides the

benefit that data is focused more on the content of the course in

general as opposed to the particulars of any one offering. The

pooled per-course data is given in columns 12 through 15 of

Table 2. We compute t-tests (unpaired, heteroscedastic, two-

tailed) on the pooled data for PCS vs. TP, IPS, and PA,

respectively. The t-test results (p-values) are given in columns 16

through 18 of Table 2. On every criteria, PCS scores statistically

significantly higher than any of the other probability courses with

p < 0.001, providing strong evidence that students find the

contents of the new course more relevant, valuable, and related to

their studies in computing.

It is also worth noting that while the class was originally designed

for CS students, it does attract a number of non-CS majors who

report that they are interested in the Machine Learning aspect of

the course, which is not available in the other probability courses.

5. CONCLUSIONS
Probability theory and machine learning will continue to grow in

importance for students studying computing. We believe the

course presented here helps effectively prepare students for

applying probability in computing contexts and using it as a tool

for data analysis and modeling. The comparative analysis of

course evaluation data shows that students are finding the new

course content to be more relevant and valuable than more general

courses in probability. Materials from our course are available

on-line and have been freely distributed in various educational

forums. Indeed, we have already learned of at least one other

university planning to offer a course this coming year modeled on

the one described here, and several other programs that are

considering similar courses in the future.

Understanding that some CS programs cannot justify a full course

in probability, we would encourage an expanded coverage of the

topic with more computing-relevant examples in existing discrete

math courses. In such contexts, probability can be taught using

only discrete variables, which still provides sufficient foundation

for discussing topics in Machine Learning (parameter estimation

and Naive Bayes). In fact, such a treatment can be provided

without requiring a background in calculus.

Alternatively, some schools have reported that they are planning a

move toward the model described here by restructuring existing

course offerings. For example, rather than requiring a full course

in Automata Theory and Computability, these topics are now

covered in a condensed treatment in an existing discrete math

course (in place of probability) and the probability material is

expanded into a separate course (perhaps with the inclusion of

some additional topics). We believe there will be many models

that will work for providing expanded coverage of probability

theory in the computing curriculum.

6. REFERENCES
[1] ACM/IEEE-CS Joint Curriculum Task Force. 1991. Computing

curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task

Force, ACM Press, NY.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2001.

ACM/IEEE Computing Curricula 2001 Final Report.

http://www.acm.org/sigcse/cc2001.

[3] http://ai.stanford.edu/users/sahami/cs109/

[4] Anderson, S. D. 2007. A course on simulation, probability and

statistics. SIGCSE Bull. 39, 1 (Mar. 2007), 110-114.

[5] Baron, M. 2006. Probability and Statistics for Computer Scientists,

Chapman and Hall/CRC Press.

[6] Carraher, T. N., Carraher, D. W., and Schliemann, A.D. 1985.

Mathematics in the streets and in the schools. British Journal of

Developmental Psychology 3.

[7] Ginat, D., Anderson, R., Garcia, D., and Rasala, R. 2005.

Randomness and probability in the early CS courses. In Proc. of

SIGCSE '05, 556-557.

[8] Good, I. J. 1965. The Estimation of Probabilities: An Essay on

Modern Bayesian Methods. MIT Press, Cambridge, MA.

[9] Hosmer, D. W. and Lemeshow, S. 2000. Applied Logistic

Regression (2nd Ed.), John Wiley & Sons, Hoboken, NJ.

[10] Johnson, J. 2008. Probability and Statistics for Computer Science,

John Wiley & Sons, Hoboken, NJ.

[11] Lidstone, G.J. 1920. Note on the general case of the Bayes-Laplace

formula for inductive or a posteriori probabilities. Trans. of the

Faculty of Actuaries 8.

[12] Mitzenmacher, M. and Upfal, E. 2005. Probability and Computing:

Randomized Algorithms and Probabilistic Analysis, Cambridge

University Press, New York, NY.

[13] http://montyhallproblem.com/

[14] Motwani, R. and Raghavan, P. 1995. Randomized Algorithms,

Cambridge University Press, New York, NY.

[15] NSF Task Force on Cyberlearning. 2008. Fostering Learning in the

Networked World: The Cyberlearning Opportunity and Challenge.

http://www.nsf.gov/pubs/2008/nsf08204/nsf08204_1.pdf

[16] Ross, S., 2001. Probability Models for Computer Science,

Academic Press, San Diego, CA.

[17] Ross, S., 2009. A First Course in Probability (8th Ed.). Prentice

Hall, Englewood Cliffs, NJ.

[18] Russell, S. and Norvig, P. 2009. Artificial Intelligence: A Modern

Approach (3rd Ed.), Prentice Hall, Englewood Cliffs, NJ.

[19] Sahami, M., Aiken, A., and Zelenski, J. 2010. Expanding the

frontiers of computer science: designing a curriculum to reflect a

diverse field. In Proc. of SIGCSE '10, 47-51.

[20] Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. 1998. A

Bayesian Approach to Filtering Junk E-Mail. In Learning for Text

Categorization: Papers from the 1998 Workshop. AAAI Press

Technical Report WS-98-05.

[21] Vascellaro, J. E., April 8, 2010. New Hiring Formula Values Math

Pros: Region's Employers Seek Statistical Experts Over Computer-

Science Generalists. Wall Street Journal (San Francisco Bay Area).

[22] Wing, J. M. 2006. Computational thinking. Commun. ACM 49, 3

(Mar. 2006).

 Table 2. Student evaluation and t-test results for probability courses.

Criteria \ Course Offering
TP

(1)

TP

(2)

TP

(3)

IPS

(1)

IPS

(2)

PA

(1)

PA

(2)

PCS

(1)

PCS

(2)

PCS

(3)

TP

(all)

IPS

(all)

PA

(all)

PCS

(all)

PCS vs.

TP (all)

PCS vs.

IPS (all)

PCS vs.

PA (all)

The quality of the course content 3.60 3.58 4.17 4.29 4.06 3.41 3.84 4.53 4.32 4.51 3.80 4.18 3.60 4.45 < 0.001 < 0.001 < 0.001

Set out and met clear objectives

announced for the course
3.00 3.57 4.22 4.44 4.23 3.60 3.76 4.62 4.57 4.61 3.58 4.34 3.67 4.60 < 0.001 < 0.001 < 0.001

Emphasized conceptual

understanding and critical thinking
3.36 3.50 4.01 4.20 4.14 3.45 3.81 4.52 4.41 4.56 3.63 4.17 3.61 4.49 < 0.001 < 0.001 < 0.001

Related course topics

to one another
3.17 3.52 4.14 4.31 4.24 3.40 3.72 4.59 4.45 4.79 3.61 4.27 3.54 4.57 < 0.001 < 0.001 < 0.001

Selected course content that was

valuable and worth learning
3.37 3.50 4.21 4.25 4.07 3.28 3.64 4.55 4.51 4.69 3.70 4.13 3.43 4.56 < 0.001 < 0.001 < 0.001

Evaluations (N) 75 43 66 102 89 90 73 131 101 45 184 191 163 277

