
Chapter 19

Empirical Hardness Models for

Combinatorial Auctions

Kevin Leyton-Brown, Eugene Nudelman and Yoav

Shoham

In this chapter we consider the empirical hardness of the winner

determination problem. We identify distribution-nonspecific features of data

instances and then use statistical regression techniques to learn, evaluate and

interpret a function from these features to the predicted hardness of an

instance, focusing mostly on ILOG’s CPLEX solver. We also describe two

applications of these models: building an algorithm portfolio that selects

among different WDP algorithms, and inducing test distributions that are

harder for this algorithm portfolio.

1

19.1 Introduction

Figure 14 in Chapter 18 showed that the runtimes of WDP algorithms can

vary by many orders of magnitude across different problems of the same size,

and even across different instances drawn from the same distribution. (In

particular, this figure showed CPLEX runtimes for WDP instances of the

same size varying from about a hundredth of a second to about a day.) This

raises a puzzling question—what characteristics of the instances are

responsible for this enormous variation in empirical hardness? Since an

understanding of the amount of time an auction will take to clear is a

requirement in many combinatorial auction application areas, an answer to

this question would greatly benefit the practical deployment of WDP

algorithms.

It is not altogether surprising to observe significant variation in runtime

for a WDP algorithm, as such variation has been observed in a wide variety

of algorithms for solving other NP-hard problems. Indeed, in recent years a

growing number of computer scientists have studied the empirical hardness

of individual instances or distributions of various NP-hard problems, and in

many cases have managed to find simple mathematical relationships between

features of the problem instances and the hardness of the problem. The

majority of this work has focused on decision problems: that is, problems

2

that ask a yes/no question of the form, “Does there exist a solution meeting

the given constraints?”. The most successful approach for understanding the

empirical hardness of such problems—taken for example in Cheeseman et al.

(1991) and Achlioptas et al. (2000)—is to vary some parameter of the input

looking for a easy-hard-easy transition corresponding to a phase transition in

the solvability of the problem. This approach uncovered the famous result

that 3-SAT instances are hardest when the ratio of clauses to variables is

about 4.3 (Selman et al. 1996); it has also been applied to other decision

problems such as quasigroup completion (Gomes and Selman 1997). Another

approach rests on a notion of backbone (Monasson et al. 1998; Achlioptas

et al. 2000), which is the set of solution invariants.

For optimization problems, experimental researchers have looked at

reductions to decision problems, or related the backbone of an optimization

problem to its empirical hardness (Slaney and Walsh 2001). It is also possible

to take an analytic approach, although this approach typically requires strong

assumptions about the algorithm and/or the instance distribution (e.g., that

the branching factor is constant and node-independent and that edge costs

are uniform throughout the search tree) (Zhang 1999; Korf and Reid 1998).

Some optimization problems do not invite study by existing experimental

or theoretical approaches. Existing experimental techniques have trouble

3

when problems have high-dimensional parameter spaces, as it is impractical

to manually explore the space of all relations among parameters in search of

a phase transition or some other predictor of an instance’s hardness. This

trouble is compounded when many different data distributions exist for a

problem, each with its own set of parameters. Theoretical approaches are

also difficult when the input distribution is complex or is otherwise hard to

characterize; moreover, they tend to become unwieldy when applied to

complex algorithms, or to problems with variable and interdependent edge

costs and branching factors. Furthermore, standard techniques are generally

unsuited to making predictions about the empirical hardness of individual

problem instances, instead concentrating on average (or worst-case)

performance on a class of instances.

The empirical properties of the combinatorial auction winner

determination problem are difficult to study for all of the reasons discussed

above. Instances are characterized by a large number of apparently relevant

features. Many different input distributions exist, each with its own large set

of parameters. There is significant variation in edge costs throughout the

search tree. Finally, it is desirable to predict the empirical hardness of

individual problem instances. Thus, a new approach is called for.

4

19.1.1 Methodology

Instead of using any of the approaches mentioned above, we suggested an

experimental methodology for constructing hardness landscapes for a given

algorithm (Leyton-Brown et al. 2002). Such models are thus capable of

predicting the running time of a given algorithm on new, previously-unseen

problem instances. They are built as follows:

1. One or more algorithms are chosen.

2. A problem instance distribution is selected, and the distribution is

sampled to generate a set of problem instances.

3. Problem size is defined and a size is chosen. Problem size will be held

constant to focus on unknown sources of hardness.

4. A set of fast-to-compute, distribution-independent features is selected.

5. For each problem instance the running time of each optimization

algorithm is measured, and all features are computed.

6. Redundant or uninformative features are eliminated.

7. A function of the features is learned to predict each algorithm’s

running time, and prediction error is analyzed.

5

The application of machine learning to the prediction of running time has

received some recent study (see, eg., (Horvitz et al. 2001; Ruan et al. 2002;

Lagoudakis and Littman 2000; Lagoudakis and Littman 2001)); however,

there is no other work of which we are aware that uses a machine learning

approach in order to understand the empirical hardness of an NP-hard

problem. There have been some reports in the literature about the relation

of particular features or parameters of input distributions to the hardness of

WDP instances (e.g., (Sandholm 2002)), but to our knowledge no systematic

study has been attempted. Finally, as is common with hard problems,

empirical evaluations have focused on scaling behavior of algorithms on

different distributions rather than on structural differences at a fixed size.

As described above, our main motivation for proposing this methodology

has been the problem of understanding the characteristics of data instances

which are predictive of long running times. However, empirical hardness

models have other more practical uses, making them important for CA

practitioners as well as for academic researchers. These applications of

empirical hardness models include:

• predicting how long an auction will take to clear;

• tuning benchmark distributions for hardness;

6

• constructing algorithm portfolios;

• designing package bidding rules to reduce the chances of long clearing

times;

• efficiently scheduling auction clearing times;

• improving the design of WDP algorithms.

19.2 Building hardness models for WDP

19.2.1 Optimization algorithm

In recent years, researchers working on the WDP have converged towards

branch-and-bound search, using a linear-programming relaxation of the

problem as a heuristic. There has thus been increasing interest in the use of

ILOG’s CPLEX software to solve the WDP, particularly since the mixed

integer programming module in that package improved substantially in

version 6 (released 2000), and again in version 7 (released 2001). In version

7.1 this off-the-shelf software has reached the point where it is competitive

with the best academic special purpose software. In this chapter we selected

CPLEX 7.1 as our WDP algorithm, 1 although we do consider some

special-purpose software in Section 19.4. A survey describing the architecture

of special-purpose WDP algorithms is given by Sandholm (Chapter 14).

7

19.2.2 Instance distribution

There are a variety of widely-used benchmark generators for CAs (see

Chapter 18). To avoid bias, we used all Legacy and CATS generators that

are able to generate instances with arbitrary numbers of goods and

undominated bids, and created the same number of instances with each

generator. Our instance distribution can thus be understood as sampling

uniformly from instances created by the following generators:2

• Uniform (L2)

• Constant (L3)

• Decay (L4)

• Exponential (L6)

• Binomial (L7)

• Regions (CATS)

• Arbitrary (CATS)

• Matching (CATS)

• Scheduling (CATS)

8

Most of these generators has one or more parameters which must be

assigned values before instances can be generated. As described in Section

4.2 of Chapter 18, for each parameter of each instance generator we

established a “reasonable” range, and then before creating an instance

sampled uniformly at random from this range. This helped us to explore

more of the parameter space.

19.2.3 Problem size

Some sources of empirical hardness in NP-hard problem instances are

well-understood. For the WDP—an NP-hard problem, as discussed in

Lehmann, Müller and Sandholm (Chapter 12)—it is known that instances

generally become harder as the problem gets larger: i.e., as the number of

bids and goods increases. Furthermore, as argued in Chapter 18, the removal

of dominated bids can have a significant effect. Our goal is to understand

what other features of instances are predictive of hardness so we hold these

parameters constant, concentrating on variations in other features. We

therefore defined problem size as the pair (number of goods, number of

non-dominated bids).

9

19.2.4 Features

As described above, we must characterize each problem instance with a set of

features. There is no known automatic way of constructing such a feature

set: researchers must use domain knowledge to identify properties of the

instance that appear likely to provide useful information. We do restrict the

sorts of features we will use in two ways, however. First, we only consider

features that can be generated from any problem instance, without

knowledge of how that instance was constructed. (For example, we do not

use parameters of the specific distribution used to generate an instance.)

Second, we restrict ourselves to those features that are computable in

low-order polynomial time, since the computation of the features should scale

well as compared to solving the optimization problem.

We determined 35 features which we thought could be relevant to the

empirical hardness of WDP, ranging in their computational complexity from

linear to cubic time. After having generated feature values for all our

problem instances, we examined our data to identify redundant features.

After eliminating these, we were left with 25 features, which are summarized

in Figure 19.1. We describe our features in more detail below, and also

mention some of the redundant features that were eliminated.

There are two natural graphs associated with each instance; examples of

10

Bid-Good Graph Features:

1-3. Bid nodes degree statistics: max and min de-
gree of the bid nodes, and standard deviations.

4-7. Good nodes degree statistics: average, maxi-
mum, minimum degree of the good nodes, and their
standard deviations.

Bid Graph Features:

8. Edge Density: number of edges in the BG divided
by the number of edges in a complete graph with the
same number of nodes.

9-11. Node degree statistics: the max and min node
degrees in the BG, and their standard deviation.

12-13. Clustering Coefficient and Deviation. A
measure of “local cliquiness.” For each node calculate
the number of edges among its neighbors divided by
k(k−1)/2, where k is the number of neighbors. We
record average (the clustering coefficient) and stan-
dard deviation.

14. Average minimum path length: the average
minimum path length, over all pairs of bids.

15. Ratio of the clustering coefficient to the
average minimum path length: One of the
measures of the smallness of the BG.

16-19. Node eccentricity statistics: The eccentricity
of a node is the length of a shortest path to a node fur-
thest from it. We calculate the maximum eccentricity
of BG (graph diameter), the minimum eccentricity of
BG (graph radius), average eccentricity, and standard
deviation of eccentricity.

LP-Based Features:

20-22. `1, `2, `∞ norms of the integer slack vector.

Price-Based Features:

23. Standard deviation of prices among all
bids: stdev(pi)

24. Deviation of price per number of goods:
stdev(pi/|Si|)

25. Deviation of price per square root of the

number of goods: stdev(pi/
p
|Si|).

Figure 19.1: Four Groups of Features

these graphs appear in Figure 19.2. First is the bid-good graph (BGG): a

bipartite graph having a node for each bid, a node for each good and an edge

between a bid and a good node for each good in the given bid. We measure a

variety of BGG’s properties: extremal and average degrees and their

standard deviations for each group of nodes. The average number of goods

per bid was perfectly correlated with another feature, and so did not survive

our feature selection.

The bid graph (BG) has an edge between each pair of bids that cannot

appear together in the same allocation (thus it is the constraint graph for the

associated CSP). As is true for all CSPs, the BG captures a lot of useful

11

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid Bid

BidBid

Bid

Bid Bid

BidBid

Figure 19.2: Examples of the Graph Types Used in Calculating Features 1–19:
Bid-Good Graph (left); Bid Graph (right)

information about the problem instance. Our second group of features are

concerned with structural properties of the BG.3 We originally measured the

first, second and third quartiles of the BG node degrees, but they turned out

to be highly correlated with edge density. We also measured the average

number of conflicts per bid, but as the number of bids was held constant this

feature was always proportional to edge density. We considered using the

number of connected components of the BG to measure whether the problem

is decomposable into simpler instances, but found that virtually every

instance consisted of a single component.4

The third group of features is calculated from the solution vector of the

linear programming relaxation of the WDP. Recall that WDP can be

formulated as an integer program, as described in Chapter 12. In our

notation Si stands for the set of goods in bid i, pi for the corresponding

12

price, and a variable xi is set to 1 if and only if bid i is part of an optimal

allocation.

We calculate the integer slack vector by replacing each component xi with

|0.5− xi|. These features appeared promising both because the slack gives

insight into the quality of CPLEX’s initial solution and because CPLEX uses

LP as its search heuristic. Originally we also included median integer slack,

but excluded the feature when we found that it was always zero.

Our last group of features is the only one that explicitly considers the

prices associated with bids. Observe that the scale of the prices has no effect

on hardness; however, the spread is crucial, since it impacts pruning. We

note that feature 25 was shown to be an optimal bid-ordering heuristic for

certain greedy WDP approximation schemes in (Gonen and Lehmann 2000).

19.2.5 Running experiments

We generated three separate data sets of different problem sizes, to ensure

that our results were not artifacts of one particular choice of problem size.

The first data set contained runs on instances of 1000 bids and 256 goods

each, with a total of 4500 instances (500 instances per distribution). The

second data set with 1000 bids and 144 goods had a total of 2080 instances;

the third data set with 2000 bids and 64 goods contained 1964 instances.

13

Where we present results for only a single data set, the first data set was

always used. All of our runtime data was collected by running CPLEX 7.1

with minimal preprocessing. We used a cluster of 4 machines, each of which

had 8 Pentium III Xeon 550 MHz processors and 4G RAM and was running

Linux 2.2.12. Since many of the instances turned out to be exceptionally

hard, we interrupted CPLEX runs once they had expanded 130,000 nodes

(reaching this point took between 2 hours and 22 hours, averaging 9 hours).

Overall, solution times varied from as little as 0.01 seconds to as much as 22

hours. We estimate that we consumed approximately 3 years of CPU time

collecting the runtime data described here. We also computed 35 features for

each instance. (Recall that feature selection took place after all instances had

been generated.) Each feature in each data set was normalized to have a

mean of 0 and a standard deviation of 1.

19.2.6 Learning models

Since we wanted to learn a continuous-valued model of the features, we used

statistical regression techniques. (A large literature addresses the statistical

techniques we used; for an introduction see, e.g., (Hastie et al. 2001).) We

used the logarithm of CPLEX running time as our response variable

(dependent variable). In a sense, this equalizes the effort that the regression

14

algorithm spends on fitting easy and hard instances—taking the log

essentially corresponds to penalizing the relative prediction error rather than

absolute error. Without this transformation, a 100-second prediction error

would be penalized equally on an instance that took 0.01 seconds to run as

on an instance that took 10,000 seconds. Our use of log runtime as the

response variable also allows us to ask the question of how accurately our

methods would be able to reconstruct the gross hardness figure (Fig. 14) for

unseen instances, without any knowledge of the distribution from which each

instance was drawn.

We performed regression on a training set consisting of 80% of each of

our datasets, and then tested our model on the remaining 20% to evaluate its

ability to generalize to new data. Regression was performed using the

open-source R package (see www.r-project.org).

Linear regression

One of the simplest and most widely-studied regression techniques is linear

regression. This technique works by finding a hyperplane in the feature space

that minimizes root mean squared error (RMSE), which is defined as the

square root of the average squared difference between the predicted value

and the true value of the response variable. Minimizing RMSE is reasonable

15

because it conforms to the intuition that, holding mean absolute error

constant, models that mispredict all instances equally should be preferred to

models that vary in their mispredictions. Although we go on to consider

nonlinear regression, it is useful to consider the results of linear regression for

two reasons. First, one of our main goals was to understand the factors that

influence hardness, and insights gained from a linear model are useful even if

other, more accurate models can be found. Second, our linear regression

model serves as a baseline to which we can compare the performance of more

complex regression techniques.

Overall, we found that even linear models have a surprising ability to

predict the amount of time CPLEX will take to solve novel WDP instances:

in our experiments most instances were predicted very accurately, and few

instances were dramatically mispredicted. Overall, our results show that our

linear model would be able to do a good job of classifying instances into the

bins shown in Figure 14 in Chapter 18, even without knowledge of the

distribution from which each instance was drawn: 93% of the time the log

running times of the data instances in our test set were predicted to the

correct order of magnitude (i.e., with an absolute error of less than 1.0).

Our experimental results with linear models are summarized in Table

19.1 and Figures 19.3 and 19.4. In Table 19.1 we report both RMSE and

16

Data point Mean Abs Err RMSE Adj-R2

1000 Bids/256 Goods 0.399 0.543 0.938
1000 Bids/144 Goods 0.437 0.579 0.909
2000 Bids/64 Goods 0.254 0.368 0.912

Table 19.1: Linear Regression: Test Set Error and Adjusted R2

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 19.3: Linear Regression:
Test Set Root Mean Squared
Error

-3
-2
-1
0
1
2
3
4
5
6

-3 -1 1 3 5
log(Actual Runtime)

Pr
edi
cte
d l
og(

Ru
nti
me
)

Figure 19.4: Linear Regression:
Error Scatterplot

mean absolute error, since the latter is often more intuitive. A third

measure, adjusted R2, is the fraction of the original variance in the response

variable that is explained by the model, with an adjustment penalizing more

complex models. Despite this penalty, adjusted R2 is a measure of fit to the

training set and cannot entirely correct for overfitting; nevertheless, it can be

an informative measure when presented along with test set error. Figure 19.3

shows a histogram of the RMS error, with bin width 0.1. Figure 19.4 shows a

scatterplot of predicted log runtime vs. actual log runtime.

17

Nonlinear models

Although our linear model was quite effective, we expected nonlinear

interactions between our features to be important and therefore looked to

nonlinear models. A simple way of performing nonlinear regression is to

compute new features based on nonlinear interactions between the original

features and then to perform linear regression on the union of both sets of

features. We added all products of pairs of features to our linear model,

including squares of individual features, which gave us a total of 350 features.

This meant that we chose our model from the space of all second-degree

polynomials in our 25-dimensional feature space, rather than from the space

of all hyperplanes in that space as in Section 19.2.6. For all three of our

datasets this model gave considerably better error measurements on the test

set and also explained nearly all the variance in the training set, as shown in

Table 19.2. As above, Figures 19.5 and 19.6 show a histogram of root mean

squared error and a scatterplot of predicted log runtime vs. actual log

runtime. Comparing these figures to Figures 19.3 and 19.4 confirms our

judgment that the quadratic model is substantially better overall.

18

Data point Mean Abs. Err. RMSE R2

1000 Bids/256 Goods 0.183 0.297 0.987
1000 Bids/144 Goods 0.272 0.475 0.974
2000 Bids/64 Goods 0.163 0.272 0.981

Table 19.2: Quadratic Regression: Test Set Errors and Adjusted R2

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 19.5: Quadratic Re-
gression: Test Set Root Mean
Squared Error

-3
-2
-1
0
1
2
3
4
5
6

-3 -1 1 3 5
log(Actual Runtime)

Pr
edi
cte
d l
og(

Ru
nti
me
)

Figure 19.6: Quadratic Regres-
sion: Error Scatterplot

19.3 Analyzing hardness models

The results summarized above demonstrate that it is possible to learn a

model of our features that very accurately predicts the log of CPLEX

running time on novel WDP instances. For some applications

(e.g., predicting the time it will take for an auction to clear; building an

algorithm portfolio) accurate prediction is all that is required. In some other

cases, however, we are interested in understanding what makes an instance

empirically hard. In this section we discuss the interpretation of our models.

19

19.3.1 Cost of omission

It is tempting to interpret a model by comparing the coefficients assigned to

the different features; since all features have the same mean and standard

deviations, more important features should tend to have larger coefficients.

Indeed, this will often be the case. However, this simplistic analysis

technique ignores the effects of correlation between features. For example,

two perfectly correlated but entirely unimportant features can have large

coefficients with opposite signs in a linear model. In practice, since imperfect

correlation and correlations among larger sets of variables are common, it is

difficult to untangle the effects of correlation and importance in explaining a

given coefficient’s magnitude. One solution is to force the model to have

smaller coefficients and/or to contain fewer variables. Requiring smaller

coefficients reduces interactions between correlated variables; two popular

techniques are ridge regression and lasso regression. We evaluated these

techniques—using cross-validation5 to estimate good values for the shrinkage

parameters—and found no significant improvement on either accuracy or on

interpretability of the model. Thus we do not discuss these results further.

Another family of techniques allows interpretation without the

consideration of coefficient magnitudes. These techniques attempt to select

good subsets of the features, with the number of features in the subset given

20

as a parameter. Small models are desirable for our goal of analyzing hardness

models because they are easier to interpret directly and because a small,

optimal subset will tend to contain fewer highly covariant features than a

larger model. (Intuitively, when subsets get small enough then the optimal

model will not be able to afford to spend its feature choices on a

highly-correlated set of features.) If the number of original features is

relatively small, it is possible to determine the optimal subset by

exhaustively enumerating all feature subsets of the desired size and

evaluating the quality of each corresponding model. However, most of the

time such an exhaustive enumeration is infeasible and some incomplete

optimization approach must be used instead.

In order to choose the size of the subset to analyze, we plotted subset size

(from 1 to the total number of variables) versus the RMSE of the best model

involving a subset of that size. We then analyzed the smallest subset size at

which there was little incremental benefit gained by moving to the next

larger subset size. We examined the features in the model, and also

measured each variable’s cost of omission—the (normalized) difference

between the RMSE of the model on the original subset and a model omitting

the given variable. It is very important to note that our technique identifies

a set of features which is sufficient to achieve a particular level of accuracy,

21

not a set of features which is necessary for this degree of performance. It is

entirely possible that many different subsets will achieve nearly the same

RMSE—when many correlations exist between features, as in our WDP

dataset, this is quite likely. Thus, we must be careful not to draw overly

general conclusions from the particular variables appearing in the best subset

of a given size, and even more careful about reasoning about the absence of a

particular feature. The strength of our approach is in providing a conceptual

picture of the sorts of features that are important for predicting empirical

hardness; the substitution of one feature for another covariant feature is

irrelevant when the inclusion of either feature in the model has the same

intuitive meaning. It is also worth noting that subset selection and cost of

omission were both evaluated using the test set, but that all model selection

was evaluated using cross-validation, and all analysis was performed after our

models had been learned.

19.3.2 Experimental results

Figure 19.7 shows the RMSE of the best subset containing between 1 and 25

features for linear models; since we had only 25 features in total we selected

the best subsets by exhaustive comparison. We chose to examine the model

with seven features because it was the first for which adding another feature

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

Subset size 7
Complete model

Figure 19.7: Linear Regression:
Subset size vs. RMSE.

0 20 40 60 80 100

BGG minimum bid
degree

BG degree deviation

Integer slack L1 norm

BGG min good
degree

BGG average good
degree

Clustering coefficient

BG edge density

Figure 19.8: Linear Regression:
Cost of omission for subset size
7.

did not cause a large decrease in RMSE, which suggested that the features in

the eight-feature model were more highly correlated. Figure 19.8 shows the

seven features in this model and their respective costs of omission (scaled to

100).

The most overarching conclusion we can draw from this data is that

structural features are the most important. Edge density of BG is essentially

a measure of the constrainedness of the problem, so it is not surprising to

find that this feature is the most costly to omit. Clustering coefficient, the

second feature, is a measure of average cliquiness of BG; this feature gives an

indication of how local the problem’s constraints are. All but one of the

remaining features concern node degrees in BG or BGG; the final feature is

the `1 norm of the linear programming slack vector.

We now consider second-order models, where we had 350 features and

23

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Subset Size

R
o

o
t

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

RMSE with all features

Subset size 6

Figure 19.9: Quadratic Regres-
sion: Subset size vs. RMSE.

0 20 40 60 80 100

Clustering coefficient
* Average minimum

path length

BGG min good
degree * BGG max

bid degree

Clustering deviation *
Integer slack L1

norm

BGG min good
degree * Clustering

coefficient

Integer slack L1
norm

BG edge density *
Integer slack L1

norm

Figure 19.10: Quadratic Re-
gression: Cost of omission for
subset size 6.

thus exhaustive exploration of feature subsets was impossible. Instead, we

used three different greedy subset selection methods (forward selection;

backward selection; sequential replacement) and at each size chose the best

subset among the three. Figure 19.9 describes the best subsets containing

between 1 and 60 features for second-order models. Due to our use of greedy

subset selection techniques, the subsets shown in Figure 19.9 are likely not

the RMSE-minimizing subsets of the given sizes; nevertheless, we can still

conclude that subsets of these sizes are sufficient to achieve the accuracies

shown here. We observe that allowing interactions between features

dramatically improved the accuracy of our very small-subset models; indeed,

our 5-feature quadratic model outperformed our 25-feature linear model.

Figure 19.10 shows the costs of omission for the variables from the best

six-feature subset. As in the case of our linear model, we observe that the

24

most critical features are structural: edge density of BG, the clustering

coefficient and node degrees. Overall many second-order features were

selected. The `1 norm becomes more important than in the linear model

when it is allowed to interact with other features; in the second-order model

it is also sufficiently important to be kept as the only first-order feature.

We can look at the features that were important to our quadratic and

linear models in order to gain understanding about how our models work.

The importance of the `1 norm is quite intuitive: the easiest problems can be

completely solved by LP, yielding an `1 norm of 0; the norm is close to 0 for

problems that are almost completely solved by LP (and hence usually do not

require much search to resolve), and larger for more difficult problems. The

BG edge density feature describes the overall constrainedness of the problem.

Generally, we would expect that very highly constrained problems would be

easy, since more constraints imply a smaller search space; however, our

experimental results show that CPLEX takes a long time on such problems.

It seems that either CPLEX’s calculation of the LP bound at each node

becomes much more expensive when the number of constraints in the LP

increases substantially, or the accuracy of the LP relaxation decreases (along

with the number of nodes that can be pruned); in either case this cost

overwhelms the savings that come from searching in a smaller space. Some

25

other important features are intuitively similar to BG edge density. For

example, the node degree statistics describe the max, min, average and

standard deviation of the number of constraints in which each variable is

involved; they indicate how quickly the search space can be expected to

narrow as variables are given values (i.e., as bids are assigned to or excluded

from the allocation). Similarly, the clustering coefficient features measure the

extent to which variables that conflict with a given variable also conflict with

each other, another indication of the speed with which the search space will

narrow as variables are assigned. Finally, we can now understand the

importance of the feature which was by far the most important in our

6-feature quadratic model: the product of the BG edge density and the

integer slack `1 norm. Note that this feature takes a large value only when

both BG edge density and `1 norm are large; the explanations above show

that problems are easy for CPLEX whenever either of these features has a

small value. Since BG edge density and `1 norm are relatively uncorrelated

on our data, their product gives a powerful prediction of an instance’s

hardness.

It is also interesting to notice which features were consistently excluded

by subset selection. In particular, it is striking that no price features were

important in either our first- or second-order models (except implicitly, as

26

part of LP relaxation features). Although price-based features do appear in

larger models, they seem not to be as critically important as structural or

LP-based features. This may be partially explained by the fact that the

removal of dominated bids eliminates the bids that deviate most

substantially on price (indeed, it led us to eliminate the “uniform random”

(L1) distribution in which average price per good varied most dramatically

across bids). Another group of features that were generally not chosen for

small subsets were path length features: graph radius, diameter, average

minimum path length, etc. It seems that statistics derived from neighbor

relations in constraint graphs are much more meaningful for predicting

hardness than other graph-theoretic statistics derived from notions of

proximity or connectedness.

19.4 Using hardness models to build algorithm

portfolios

When algorithms exhibit high runtime variance, one is faced with the

problem of deciding which algorithm to use for solving a given instance. In

1976 Rice dubbed this the “algorithm selection problem” (Rice 1976).

Though Rice offered few concrete techniques, all subsequent work on

algorithm selection (e.g., (Gomes and Selman 2001; Lagoudakis and Littman

27

2000; Lagoudakis and Littman 2001; Lobjois and Lemâıtre 1998)) can be

seen as falling into his framework. Despite this literature, however, the

overwhelmingly most common approach to algorithm selection remains

measuring different algorithms’ performance on a given problem distribution,

and then always selecting the algorithm with the lowest average runtime.

This approach, which we dub “winner-take-all”, has driven recent advances

in algorithm design and refinement, but has resulted in the neglect of many

algorithms that, while uncompetitive on average, offer excellent performance

on particular problem instances. Our consideration of the algorithm selection

literature, and our dissatisfaction with the winner-take-all approach, has led

us to ask the following two questions. First, what general techniques can we

use to perform per-instance (rather than per-distribution) algorithm

selection? Second, once we have rejected the notion of winner-take-all

algorithm evaluation, how should we evaluate novel algorithms? We address

the first question here, and the second question in Section 19.5.

Given our existing technique for predicting runtime, we propose the

following simple approach for the construction of algorithm portfolios:

1. Train a model for each algorithm, as described above.

2. Given an instance:

28

(a) Compute feature values

(b) Predict each algorithm’s running time using runtime models

(c) Run the algorithm predicted to be fastest

19.4.1 Experimental results

In order to build an algorithm portfolio, we needed more algorithms for

solving the WDP. In addition to CPLEX we considered two special-purpose

algorithms from the combinatorial auctions literature for which a public

implementation was available: GL (Gonen-Lehmann) (Gonen and Lehmann

2001), a simple branch-and-bound algorithm with CPLEX’s LP solver as its

heuristic and CASS (Fujishima et al. 1999), a more complex

branch-and-bound algorithm with a non-LP heuristic. We used the

methodology described in Section 19.1.1 to build regression models for GL

and CASS; for the results in this section all models were learned using simple

linear regression, without a log transformation on the response variable.6

Figure 19.11 compares the average runtimes of our three algorithms

(CPLEX, CASS, GL) to that of the portfolio (note the change of scale on the

graph, and the repeated CPLEX bar). Note that CPLEX would be chosen

under winner-take-all algorithm selection. The “optimal” bar shows the

performance of an ideal portfolio where algorithm selection is performed

29

0

100

200

300

400

500

600

700

800

CPLEX Portfolio Optimal
0

100

200

300

400

500

600

700

800

CPLEX Portfolio Optimal
0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

Figure 19.11: Algorithm and Portfolio Runtimes

CASS
GL
CPLEX

Figure 19.12: Optimal

CASS
GL
CPLEX

Figure 19.13: Selected

perfectly and with no overhead. The portfolio bar shows the time taken to

compute features (light portion) and the time taken to run the selected

algorithm (dark portion). Despite the fact that CASS and GL are much

slower than CPLEX on average, the portfolio outperforms CPLEX by

roughly a factor of 3. Moreover, neglecting the cost of computing features,

our portfolio’s selections take only 5% longer to run than the optimal

selections.

Figures 19.12 and 19.13 show the frequency with which each algorithm is

30

selected in the ideal portfolio and in our portfolio. They illustrate the quality

of our algorithm selection and the relative value of the three algorithms.

Observe that our portfolio does not always make the right choice (in

particular, it selects GL much more often than it should). However, most of

the mistakes made by our models occur when both algorithms have very

similar running times; these mistakes are not very costly, explaining why our

portfolio’s choices have a running time so close to optimal.

Observe that our variable importance analysis from Section 19.3.2 gives

us some insight about why an algorithm like CASS is able to provide such

large gains over algorithms like CPLEX and GL on a significant fraction of

instances.7 Unlike CASS, both GL and CPLEX use an LP relaxation

heuristic. It is possible that when the number of constraints (and thus the

bid graph edge density feature) increases, such heuristics become less

accurate, or larger LP input size incurs substantially higher per-node costs.

On the other hand, additional constraints reduce feasible search space size.

Like many search algorithms, CASS often benefits whenever the search space

becomes smaller; thus, CASS can achieve better overall performance on

problems with a very large number of constraints.

We can also compare the performance of our portfolio to an alternative

portfolio that task-swaps among its constituent algorithms, described for

31

example in Gomes and Selman (2001). Portfolios built using this approach

always take time equal to the number of algorithms in the portfolio times the

runtime of the optimal portfolio. Thus, on this dataset running the

alternative portfolio would have been only very slightly faster than running

CPLEX alone. If we observe that GL is rarely chosen by the optimal

portfolio and that it contributes little over CPLEX when it is chosen, we can

conclude that GL should be dropped from the task-swapping portfolio. Even

if we do so, however, the alternate portfolio still takes nearly twice as long to

run as the portfolio built using our techniques.

19.5 Using hardness models to induce hard

distributions

Once we have recognized the value of selecting among existing WDP

algorithms using a portfolio approach, it is necessary to reexamine the data

we use to design and evaluate our algorithms. When the purpose of

designing new algorithms is to reduce the time that our portfolio will take to

solve problems, we should aim to produce new algorithms that complement

that existing portfolio. First, it is essential to choose a distribution D that

reflects the problems that will be encountered in practice. Given a portfolio,

the greatest opportunity for improvement is on instances that are hard for

32

that portfolio, very common in D, or both. More precisely, the importance of

a region of problem space is proportional to the amount of time the current

portfolio spends working on instances in that region. (For previous work on

generating hard test data on a different problem domain, see e.g., Selman

et al. (1996).)

19.5.1 Inducing harder distributions

Let Hf be a model of portfolio runtime based on instance features,

constructed as the minimum of the models that constitute the portfolio. By

normalizing, we can reinterpret this model as a density function hf . By the

argument above, we should generate instances from the product of this

distribution and our original distribution, D. However, it is problematic to

sample from D · hf : D may be non-analytic (an instance generator), while hf

depends on features and so can only be evaluated after an instance has been

created.

One way to sample from D · hf is rejection sampling (Doucet et al. 2001):

generate problems from D and keep them with probability proportional to

hf . Furthermore, if there exists a second distribution that is able to guide

the sampling process towards hard instances, rejection sampling can use it to

reduce the expected number of rejections before an accepted sample. This is

33

indeed the case for parameterized instance generators: e.g., all of the CATS

(and legacy) distributions have some tunable parameters −→p , and although

the hardness of instances generated with the same parameter values can vary

widely, −→p is (weakly) predictive of hardness. We can generate instances from

D · hf in the following way:8

1. Create a hardness model Hp with features −→p , and normalize it to

create a pdf, hp.

2. Generate a large number of instances from D · hp.

3. Construct a distribution over instances by assigning each instance s

probability proportional to
Hf (s)

hp(s)
, and select an instance by sampling

from this distribution.

Observe that if hp turns out to be helpful, hard instances from D · hf will

be encountered quickly. Even in the worst case where hp directs the search

away from hard instances, observe that we still sample from the correct

distribution because the weights are divided by hp(s) in step 3.

In our case, D is factored as Dg ·Dpi
, where Dg is a uniform distribution

over the CATS and legacy instance generators in our dataset, each having a

different parameter space, and Dpi
is a distribution over the parameters of

the chosen instance generator i. In this case it is difficult to learn a single Hp.

34

A good solution is to factor hp as hg · hpi
, where hg is a hardness model using

only the choice of instance generator as a feature, and hpi
is a hardness model

in instance generator i’s parameter space. Likewise, instead of using a single

feature-space hardness model Hf , we can train a separate model for each

generator Hf,i and normalize each to a pdf hf,i.
9 The goal is now to generate

instances from the distribution Dg ·Dpi
· hf,i, which can be done as follows:

1. For every instance generator i, create a hardness model Hpi
with

features −→pi , and normalize it to create a pdf, hpi
.

2. Construct a distribution over instance generators hg, where the

probability of each generator i is proportional to the average hardness

of instances generated by i.

3. Generate a large number of instances from (Dg · hg) · (Dpi
· hpi

)

(a) select a generator i by sampling from Dg · hg

(b) select parameters for the generator by sampling from Dpi
· hpi

(c) run generator i with the chosen parameters to generate an

instance.

4. Construct a distribution over instances by assigning each instance s

from generator i probability proportional to
Hf,i(s)

hg(s)·hpi (s)
, and select an

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

-1 0 1 2 3 4 5
Log Runtime (s)

Original
Harder

10

Figure 19.14: Inducing Harder Dis-
tributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10
Runtime (s)

Original
Harder

Figure 19.15: Matching

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5 31
Runtime (s)

Original
Harder

Figure 19.16: Scheduling

instance by sampling from this distribution.

19.5.2 Experimental results

Due to the wide spread of runtimes in our composite distribution D (7 orders

of magnitude) and the high accuracy of our model hf , it is quite easy for our

technique to generate harder instances. These results are presented in Figure

19.14. Because our runtime data was capped, there is no way to know if the

hardest instances in the new distribution are harder than the hardest

instances in the original distribution; note, however, that very few easy

36

instances are generated. Instances in the induced distribution came

predominantly from the CATS “arbitrary” distribution, with most of the rest

from “L3”.

To demonstrate that our technique also works in more challenging

settings, we sought a different distribution with small runtime variance. As

described in Chapter 18, there has been ongoing discussion in the WDP

literature about whether those CATS distributions that are relatively easy

could be configured to be harder. We consider two easy distributions with

low variance from CATS, matching and scheduling, and show that they can

indeed be made much harder than originally proposed. Figures 19.15 and

19.16 show the histograms of the runtimes of the ideal portfolio before and

after our technique was applied. In fact, for these two distributions we

generated instances that were (respectively) 100 and 50 times harder than

anything we had previously seen! Moreover, the average runtime for the new

distributions was greater than the observed maximum running time on the

original distribution.

19.6 Conclusion

In this chapter we showed how to build models of the empirical hardness of

WDP, and discussed various applications for these models. First, we

37

identified structural, distribution-independent features of WDP instances

and showed that they contain enough information to predict CPLEX running

time with high accuracy. Next, we showed that these models can be effective

for straightforward prediction of running time, gaining deeper insight into

empirical hardness through the analysis of learned models, the construction

of algorithm portfolios, and tuning distributions for hardness.

Acknowledgments

This chapter is based on work first presented in Leyton-Brown et al. (2002),

Leyton-Brown et al. (2003b) and Leyton-Brown et al. (2003a). We would

therefore like to acknowledge the contributions of Galen Andrew and James

McFadden, who were coauthors on Leyton-Brown et al. (2003b) and

Leyton-Brown et al. (2003a).

Notes

1We must note that CPLEX is constantly being improved. Unfortunately,

it is not easy to rerun 3 CPU-years worth of experiments. The results pre-

sented here are specific to version 7.1, and might change in future versions. We

emphasize, however, that both the techniques and features that we introduce

here are quite general, and can be applied to any WDP solver. Furthermore,

limited experiments with CPLEX 8.0 suggest that the qualitative runtime dis-

38

tribution and our models’ accuracy remain very similar to the results presented

here, at least for our WDP benchmark distributions.

2The attentive reader will notice the omission of the CATS Paths generator

from this list. Indeed, we did initially include instances from this generator

in our experiments. However, the definition of this generator changed sub-

stantially from version 1.0 of the CATS software (Leyton-Brown et al. 2000)

to version 2.0 (Chapter 18). To avoid confusion we dropped these instances,

though we note that the change did not make a significant difference to our

experimental results.

3We thank Rámon Béjar for providing code for calculating the clustering

coefficient.

4It would have been desirable to include some measure of the size of the

(unpruned) search space. For some problems branching factor and search

depth are used; for WDP neither is easily estimated. A related measure is

the number of maximal independent sets of BG, which corresponds to the

number of feasible solutions. However, this counting problem is hard, and to

our knowledge does not have a polynomial-time approximation.

5Cross-validation is a standard machine learning technique which provides

an unbiased estimate of test set error using only the training set. First, the

training set is split into k different subsets. Validation set errors are then

computed by performing learning in turn on each of k−1 of those subsets and

evaluating resulting model on the remaining subset. The average of these k

39

validation set errors is then used as an approximation of model’s performance

on test data.

6We argued above that applying a log transform to the response variable

leads to regression models that minimize relative rather than absolute error.

This is useful when building models with the goal of understanding why in-

stances vary in empirical hardness. In this section, on the other hand, we care

about building portfolios that will outperform their constituent algorithms in

terms of average runtime. This implies that we are concerned with absolute

error, and so we do not perform a log transform in this case.

7Observe that, in order to maintain continuity with other parts of the chap-

ter such as this variable importance analysis, we have described the construc-

tion of algorithm portfolios optimized for fixed-size inputs. We have observed

(both with combinatorial auctions and in other domains like SAT) that it is

possible to build accurate runtime models with variable-size data and hence

that our portfolio approach is not restricted in any way to fixed-size inputs. It

is therefore worth emphasizing that our methodology for building both empir-

ical hardness models and algorithm portfolios can be applied directly to the

construction of models for variable-size data.

8In true rejection sampling step 2 would generate a single instance that

would be then accepted or rejected in step 3. Our technique approximates

this process, but doesn’t require us to normalize Hf and guarantees that we

will output an instance after generating a constant number of samples.

40

9However, the experimental results presented in Figures 19.14–19.16 use

hardness models Hf trained on the whole dataset rather than using models

trained on individual distributions. Learning new models would probably yield

even better results.

References

Achlioptas, Dimitris, Carla P. Gomes, Henry A. Kautz and Bart Selman

(2000). Generating satisfiable problem instances. AAAI.

Cheeseman, Peter, Bob Kanefsky and William M. Taylor (1991). Where the

Really Hard Problems Are. IJCAI-91.

Doucet, Arnaud, Nando de Freitas and Neil Gordon (ed.) (2001). Sequential

Monte Carlo methods in practice. Springer-Verlag.

Fujishima, Yuzo, Kevin Leyton-Brown and Yoav Shoham (1999). Taming the

computational complexity of combinatorial auctions: Optimal and

approximate approaches. IJCAI.

Gomes, Carla P. and Bart Selman (1997). Problem structure in the presence

of perturbations. AAAI/IAAI.

Gomes, Carla P. and Bart Selman (2001). Algorithm portfolios. Artificial

Intelligence, 126(1-2), 43–62.

41

Gonen, Rica and Daniel Lehmann (2000). Optimal solutions for multi-unit

combinatorial auctions: Branch and bound heuristics. ACM Conference on

Electronic Commerce.

Gonen, Rica and Daniel Lehmann (2001). Linear programming helps solving

large multi-unit combinatorial auctions (Technical Report TR-2001-8).

Leibniz Center for Research in Computer Science.

Hastie, Trevor, Robert Tibshirani and Jerome Friedman (2001). Elements of

statistical learning. Springer.

Horvitz, Eric, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart

Selman and David M. Chickering (2001). A Bayesian approach to tackling

hard computational problems. UAI.

Korf, Richard E. and Michael Reid (1998). Complexity analysis of admissible

heuristic search. AAAI-98.

Lagoudakis, Michail and Michael Littman (2000). Algorithm selection using

reinforcement learning. ICML.

Lagoudakis, Michail and Michael Littman (2001). Learning to select

branching rules in the DPLL procedure for satisfiability. LICS/SAT.

Leyton-Brown, Kevin, Eugene Nudelman, Galen Andrew, James McFadden

42

and Yoav Shoham (2003a). Boosting as a metaphor for algorithm design.

Constraint Programming.

Leyton-Brown, Kevin, Eugene Nudelman, Galen Andrew, James McFadden

and Yoav Shoham (2003b). A portfolio approach to algorithm selection.

IJCAI-03.

Leyton-Brown, Kevin, Eugene Nudelman and Yoav Shoham (2002). Learning

the empirical hardness of optimization problems: The case of combinatorial

auctions. CP.

Leyton-Brown, Kevin, Mark Pearson and Yoav Shoham (2000). Towards a

universal test suite for combinatorial auction algorithms. ACM EC.

Lobjois, Lionel and Michel Lemâıtre (1998). Branch and bound algorithm

selection by performance prediction. AAAI.

Monasson, Rémi, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman and

Lidror Troyansky (1998). Determining computational complexity for

characteristic ‘phase transitions’. Nature, 400.

Rice, John R. (1976). The algorithm selection problem. Advances in

Computers, 15, 65–118.

43

Ruan, Yongshao, Eric Horvitz and Henry Kautz (2002). Restart policies with

dependence among runs: A dynamic programming approach. CP.

Sandholm, Tuomas (2002). Algorithm for optimal winner determination in

combinatorial auctions. Artificial Intelligence, 135, 1–54.

Selman, Bart, David G. Mitchell and Hector J. Levesque (1996). Generating

hard satisfiability problems. Artificial Intelligence, 81(1-2), 17–29.

Slaney, John and Toby Walsh (2001). Backbones in optimization and

approximation. IJCAI-01.

Zhang, Weixiong (1999). State-space search: Algorithms, complexity,

extensions, and applications. Springer.

44

