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Abstract

We offer a new formal criterion for agent-centric learning in multi-agent
systems, that is, learning that maximizes one’s rewards in the presence of
other agents who might also be learning (using the same or other learn-
ing algorithms). This new criterion takes in as a parameter the class of
opponents. We then provide a modular approach for achieving effective
agent-centric learning; the approach consists of a number of basic algorith-
mic building blocks, which can be instantiated and composed differently
depending on the environment setting (for example, 2- versus n-player
games) as well as the target class of opponents. We then provide several
specific instances of the approach: an algorithm for stationary opponents,
and two algorithms for adaptive opponents with bounded memory, one
algorithm for the n-player case and another optimized for the 2-player
case. We prove our algorithms correct with respect to the formal crite-
rion, and furthermore show the algorithms to be experimentally effective
via comprehensive computer testing.

1 Introduction

The past few years have seen a rapidly growing interest in multi-agent systems,
and in particular in learning algorithms for such systems. This interest has
driven proposals for a growing body of algorithms, and various arguments about
their relative merits and domains of applicability (for example, [29] and [32]). In
previous work [30] we surveyed this literature, and defined five different coherent
agendas one could adopt when concerned with learning in multi-agent systems.
We will not repeat the list in this paper, but instead we offer a contribution to
one of the learning agendas which we singled out as particularly relevant from
the computer science point of view.

The term ‘learning’ bears some discussion in the context of multi-agent sys-
tems. First, let us be precise about the setting in which we will discuss learning,
which is known, fully observable (finitely or infinitely) repeated games. We give

1



the formal definition in Section 2, but, intuitively speaking, these consist of re-
peating some known matrix game (the ‘stage game’), with each agent getting
a reward after each play and observing the actions of the other agent(s). We
furthermore assume the agents are attempting to maximize average rewards (or
limit average in the case of infinite repetition), meaning that each agent’s overall
reward is the average of the stage-game rewards. While it would certainly be
interesting to relax these assumptions, most of the key issues arise already in the
current setting. In the final section we discuss possible extensions to unknown
games, partially observable games, stochastic games, and discounted rewards,
and the additional challenges posed by each of these settings.

Note that even in the relatively simple environment of repeated games, the
agent’s strategy space is huge, encompassing all mappings from play histories
to actions. Many of these strategies are naturally viewed as incorporating a
learning element. For example, in rational learning [20] an agent starts with
some prior probability distribution over its opponent’s repeated-game strate-
gies, plays the (stage-game) best response, observes the play of the opponents,
updates the probability distribution, and repeats.

And so learning is inherent in repeated games. But it is also qualitatively
more complex than in single-agent learning, not the least because one cannot
separate the process of learning from the process of teaching. Consider what
may happen when playing the Stackelberg game of Figure 1 repeatedly. Notice
that Up is a strictly dominated strategy, so regardless of what the opponent
chooses the row agent would prefer to play Down. However, if the opponent is
also learning, this would presumably prompt it to learn to play Left, resulting
in a payoff of 2 for the row agent. If the row agent instead played the seemingly
suboptimal action of Up, the opponent may learn to instead play Right, giving
the row agent the higher payoff of 3. We can see that in this instance, teaching
can play as much of a role in achieving a desirable outcome as learning.

Left Right

Up 1, 0 3, 2

Down 2, 1 4, 0

Figure 1: The Stackelberg Game

So how does one think about learning (or, more precisely, learning and teach-
ing) in this setting? This is where we must be very precise about our goals in
such learning. In this paper we focus on what we termed the ‘agent-centric’
agenda in previous work. The agent-centric learning agenda is a prescriptive one
and asks how an agent should act in order to maximize its reward in an environ-
ment containing other independent agents, who may also be learning (possibly
using a different algorithm). The intuition driving agent-centric learning is the
following. One cannot learn effectively against arbitrarily complex and strange
opponents (we use the term ‘opponent’ neutrally; we allow for competitive el-
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ements, but also cooperative ones). In order to make any headway, one must
make some informed guess against the target class and optimize for it. At the
same time, one cannot ignore the possibility that one’s guess was wrong about
the target class, and should protect oneself against such a error. Finally, one
should allow for the fact that other agents may be using the same learning algo-
rithm, and should exploit this fact to coordinate with them when advantageous.
The question is how to effectively weave these three elements together.

We do this in two steps. First, in Section 3 we survey previous literature
(from both AI and game theory) that has provided formal criteria for agent-
centric learning, including its strengthes and limitations. Then in Section 4 we
provide our own criterion, which we believe strengthens and extends previous
criteria (it also unifies and generalizes criteria we ourselves proposed in the
past [28]). Despite a number of subtle technical details, the new criterion is
conceptually simple and applies broadly (in particular, to any n-player repeated
game). After presenting the criterion we discuss some of its properties, including
some potential concerns and its special properties in the 2-player case.

In Section 5 we begin to tackle the algorithmic question of how to meet
our criterion. In this section we set out an abstract modular system for agent-
centric learning. The system consists of several modules including a teaching
module, a learning module, a coordination module, and a security module.
These modules can then be specialized and composed differently, depending
on the setting (2- versus n-player games) and class of opponents. Next we
proceed to give two concrete instantiations of the framework. In Section 6 we
target the class of stationary opponents, while Section 7 provides two algorithms
for a class of adaptive opponents with known memory bounds. In each case
we start by proving that the resulting algorithm is correct against our formal
criterion. However, we believe that all formal requirements – including our
own – are merely baseline guarantees, and any proposed algorithm must be
subjected to empirical tests. We think it is fair to say that our level of empirical
validation is unprecedented in the literature. We show the results of tests of our
new algorithms with a number of major existing algorithms, using a recently-
developed game theoretic test-bed called GAMUT [26] to systematically sample
a very large space of games.

We conclude in Section 8 with a summary of our main messages, and a brief
discussion of some of the additional research avenues awaiting exploration.

2 The environment

In order to formally define the setting considered within this paper, we start
with the standard definition of a finite stage game (aka normal form game):

Definition 1. A stage game is a tuple G = (N,A1, ..., An, u1, ..., u2), where

• N is a finite set of players, with n = |N |

• Ai is a finite set of actions available to player i

• ui : A1 ×A2 × ...×An → ℜ is a utility function for player i
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Dare Y ield

Dare 0, 0 4, 1

Y ield 1, 4 2, 2

(a) Chicken

Cooperate Defect

Cooperate 3, 3 0, 4

Defect 4, 0 1, 1

(b) Prisoner’s Dilemma

Figure 2: Example stage games. The payoff for the row player is given first in
each cell, with the payoff for the column player following.

Figure 2 shows two well-known games from the literature, to which we’ll
refer again later.

In a repeated game the stage game is repeated, finitely or infinitely. After
each round, each player is informed of the joint set of actions played by all the
players and receives its own reward. Each player is assumed to be interested in
maximizing its average reward for finitely repeated games and the limit average
for infinite games (we ignore the subtlety that arises when the limit does not
exist, but this case does not present an essential problem). We will restrict
attention to games in which all of the payoffs in the game are within a finite
bounded range, [-b, b]. For our purposes, we assume all players have full knowl-
edge about the structure and payoffs of the game at all times, but are unaware
of the strategies employed by the other players.

Throughout this paper we will occasionally make reference to some terms
and concepts from game theory. For those readers wishing an introduction or
refresher, we will devote the rest of this section to defining those concepts used
in the rest of this paper as well as clarifying the notation used in our formal
definitions.

In general, a strategy in a repeated game is a mapping from the history
of the game to a distribution over actions. In our setting, where the game
structure is known and the opponents’ actions are observable, the full history
can be captured by recording the outcomes of each stage game played by the
players. A stage game outcome, o, is denoted as the single action played by
each player: o =< a1, ..., an >, where ai ∈ Ai. A repeated game outcome, O,
is a sequence (finite or infinite) of stage game outcomes: O =< o1, o2, ... >.
The value of the outcome for player i, Vi(O), is then the average of the rewards
the player received from each stage game outcome in O. A history, h, of the
game is a sequence of outcomes: h =< o1, ..., ot >, where t is the number of
stage games the players have played so far in the repeated game. A strategy,
πi, for the repeated game is then a function mapping each possible history to
a distribution over actions for the given player, i, to play in the next time
period: πi : H → ∆Ai, where H is the set of possible histories and ∆Ai is the
space of probability distributions over the set Ai. If a player chooses its actions
according to the same distribution regardless of the history it is said to be using
a ‘stationary strategy’, πi ∈ ∆Ai.

Using π to indicate the joint strategies for all the players, we can define the
expected reward a player, i, would receive for a given set of strategies as Vi(π).
For simplicity in later definitions we can also introduce π−i to indicate the
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strategies for all players except player i and Vi(πi, π−i) for the expected value
to player i for playing strategy πi if all the other players are playing according to
π−i. Πi will represent the space of possible strategies for player i. One subtlety
we need to be aware of is the question of whether the opponents must choose
their actions independently or can coordinate to randomize over joint actions.
For this paper we will assume the worst and define the opponents’ joint strategy
space as Π−i : H → ∆(A1 × ...×Ai−1 ×Ai+1 × ...×An).

We can now introduce the idea of the best response for a player given the
strategies used by the other players, BRi(π−i) = argmaxπi∈Πi

V (πi, π−i). Note
that the best response is technically a set of strategies since the above equation
may have multiple solutions in many games. A Nash equilibrium, π, is then a
set of strategies such that they are all a mutual best response to one another,
∀iπi ∈ BRi(π−i).

Note that calculating a best-response requires that a player know the actual
strategies used by all the other players. Often however we’re concerned with
what to do if the other players’ policies are unknown. We then can define a
security value (aka minimax value) for our player which is the maximum reward
it can guarantee regardless of what policies its opponents are using:

SVi = maxπ∈Πi
minπ−i∈Π−i

Vi(πi, π−i) (1)

A policy that is guaranteed to achieve this value on expectation is called a
security policy or maxmin policy.

Another situation that will be relevant for our work is the case in which
multiple players are attempting to cooperate in selecting a joint vector of payoffs.
For our purposes we will define a player to be ‘individually rational’ if it only
considers accepting outcomes in which its payoff is at least its security value.
Given a set of possible outcomes, an individual outcome (joint action profile),
is considered Pareto efficient(PE) over that set if there is no other outcome in
the set that dominates it. In this context, one outcome dominates another if
it is at least as high for all players and strictly higher for at least one player.
Formally, for a set of players, X, and outcomes, O:

PEX(O) = (o ∈ O|¬∃o′∈O(∃i∈XVi(o
′) > Vi(o) ∧ ∀j∈XVj(o

′) ≥ Vj(o))) (2)

3 Previous criteria for multi-agent learning

To our knowledge, Bowling and Veloso [5] were the first in the AI community to
explicitly put forth formal requirements. Specifically they proposed two criteria:

Rationality: If the other players’ policies converge to stationary policies
then the learning algorithm will converge to a stationary policy that is a best-
response (in the stage game) to the other players’ policies.

Convergence: The learner will necessarily converge to a stationary policy.
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At first glance these criteria are reasonable, but a deeper look is less satis-
fying. First, note that the property of convergence cannot be applied uncon-
ditionally, since one cannot ensure that a learning procedure converges against
all possible opponents in finite time without sacrificing rationality. So implicit
in that requirement is some limitation on the class of opponents. And indeed
Bowling and Veloso acknowledge this and choose to concentrate on the case of
self-play, that is, on opponents that are identical to the agent in question. Note
that when combined with the rationality criterion this is equivalent to requiring
that an algorithm converge to a Nash equilibrium in self-play. Given this con-
straint, Bowling and Veloso then proposed an algorithm satisfying their criteria
for the class of known repeated games with two players and two actions per
player. Later work by Conitzer and Sandholm [12] proposed a new algorithm
meeting both criteria for arbitrary known repeated games.

Additionally, while it is fine to consider opponents playing stationary poli-
cies, there are other classes of opponents that might be as relevant or even more
relevant; this should be a degree of freedom in the definition of the problem.
For instance, one might be interested in the classes of opponents that can be
modelled by finite automata with at most k states; these include both station-
ary and non-stationary strategies. Also these first proposals only apply in very
limited scenarios. The rationality criterion is only required when all the op-
ponents converge to stationary policies and the convergence criterion is only
applicable when all the agents are using the same algorithm. No guarantee at
all is required if even one opponent is using a non-stationary strategy or if there
are a mix of agents with some using the proposed algorithm and others using
stationary strategies. The danger of lacking such a guarantee is that it leaves
the algorithm vulnerable to potential exploitation by a clever opponent, such as
one using the approach shown by Chang and Kaelbling [9] which capitalizes on
algorithms designed around policy hill-climbing.

We also find the property of requiring convergence to a stationary strategy
particularly hard to justify. Consider the Prisoner’s Dilemma game in Figure 2.
Prisoner’s Dilemma has been extensively studied [1] and numerous algorithms
proposed that allow two agents to cooperate on the advantageous cooperation
outcome without being exploited. The simplest but perhaps most effective of
these is the Tit-for-Tat algorithm. Tit-for-Tat starts by cooperating and there-
after repeats whatever action the opponent played last. Note that any approach
that considers only stationary opponents must always play Defect, since this
is the unique best response to any stationary opponent. Against Tit-for-Tat
this results in a payoff of 1, but the strategy of always playing Cooperate would
yield a payoff of 3. Similarly, in the game of Chicken, also shown in Figure 2,
strategies that alternate daring while its opponent yields and yielding while its
opponent dares achieve higher expected payoffs in self-play than any stationary
policy could guarantee. This limitation of using stage game equilibria was di-
rectly addressed by Brafman and Tennenholtz [6] and a counter-proposal made
for how to consider equilibria in repeated games.

Our final point regarding these two criteria is that they express properties
that hold in the limit, with no requirements on the algorithm’s performance in
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any finite period.
While relatively new to the AI community, these issues have been addressed

numerous times in game theory, under the names of universal consistency, no-
regret learning, and the Bayes envelope, dating back to at least the work of
Hannan [17] (see a paper by Foster and Vohra [14] for an overview of this his-
tory). There is a fundamental similarity in approach throughout, and we will
take the two criteria proposed by Fudenberg and Levine [15] as being represen-
tative.

Safety: The learning rule must guarantee at least the minimax payoff of the
game.

Consistency: The learning rule must guarantee that it does at least as well
as the best response (in the stage game) to the empirical distribution of play
when playing against an opponent whose play is governed by independent draws
from any fixed distribution.

Fudenberg and Levine then define universal consistency as the requirement
that a learning rule do at least as well as the best response to the empirical
distribution of play regardless of the actual strategy the opponent is employing
(this implies both safety and consistency) and show that a modification of the
fictitious play algorithm [7] achieves this requirement. Fudenberg and Levine
later strengthened their requirement by requiring that the learning rule also
adapt to simple patterns in the play of its opponent [16].

An equivalent requirement used by other researchers is that an algorithm
should achieve no regret in the limit against any opponent. The regret, rt

i(aj , si),
of agent i for playing the sequence of actions si instead of playing action aj ,
given that the opponents played the sequence s−i is defined as follows.

rt
i(aj , si|s−i) =

t
∑

k=1

R(aj , s
k
−i)−R(sk

i , sk
−i)

The total regret for the agent is then the maximum regret for any action.
Hart and Mas-Colell proposed a regret matching algorithm [18] that provably
achieves at most zero regret in the limit (note that an algorithm could have
negative regret against some opponents).

Recently, these ideas have also been adopted by researchers in the artifi-
cial intelligence community (e.g., [19] and [34]). In recent work [3], Bowling
attempted to combine these criteria by proposing that an agent should both
guarantee a no-regret payoff and achieve convergence in self-play. He then put
forth GIGA-WoLF, a no-regret algorithm that provably achieves convergence in
self-play for games with two players and two actions per player.

In recent work, Banerjee and Peng [2] have addressed our concern about
only requiring guarantees about the behavior in the limit. Their algorithm
is guaranteed to achieve ǫ-no-regret payoff guarantees with small polynomial
bounds on initial exploration time and uses only the agent’s ability to observe
what payoff it receives for each action.
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A limitation common to all these approaches is that the game theoretic basis
they’re derived from was initially focused on large-population games and there-
fore ignores the effect of the agent’s play on the future play of the opponent.
This can pose problems in smaller games. Let us again consider the game of
Prisoner’s Dilemma with a Tit-for-Tat opponent. The only universally consis-
tent strategy would be to defect at every time step, ruling out the higher payoff
achievable by cooperating. Clearly, a universally consistent (or no-regret) policy
is not the best response in this richer strategy space.

In principle it would be possible to derive a more powerful notion of regret
in which one calculates the regret against a richer strategy space than the set
of pure stage-game strategies. By including non-stationary strategies it would
become possible to allow strategies that would respond appropriately in a situa-
tion like that described above when facing a Tit-for-Tat opponent. While there
are a number of challenges involved in making this transition, the first steps
towards this stronger notion have been taken recently in both game theory and
artificial intelligence [22, 13, 8].

4 A New Criterion

One thing to notice about most of the previous proposals is that they tend to
enforce a constraint on how the agent should play. This constraint can either
be direct, such as requiring convergence to an equilibrium, or more subtle, such
as the requirement in universal consistency to never play an action that is dom-
inated in the stage game. Going back to our original statement of the problem
for learning in multi-agent systems, we are really most concerned with creating
agents that receive a high payoff in their environment. The question then be-
comes how high a payoff we can reasonably require. Notice that the payoff that
can be achieved varies with the strategies of the other agents. Intuitively, the
criterion we are after is rather straightforward: Given a target set of opponents,
we would like all agents using our algorithm to achieve at least the value of a
joint best response against any opponents in the target set, assuming the other
opponents are colluding to lower their payoffs.

It turns out that capturing this condition precisely raises a number of sub-
tleties. For instance, note that while we would ideally like to require that an
agent achieve the highest possible value given the actual strategies of the oppo-
nents in a given game, this is clearly impossible if we allow arbitrarily complex
opponent agents. If the opponents can choose different actions for every pos-
sible past history of the game, we may never be able to learn how to optimize
our agent’s action to account for the opponent’s strategy since past observations
about the opponent may have no correlation with its future play. We propose to
instead require that the agents achieve a jointly optimal best response against
a predefined “target” set of possible opponent strategies while still maintaining
a security value guarantee against any possible opponent.

Besides the problem of opponents with arbitrary complexity, we can have an
additional problem when requiring best-response against any possible opponent
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from a set. If we assume that the agent may only play a single repeated game
against an opponent, the agent may be forced to play actions with irrecoverable
consequences before it has any chance to learn the true best response. As an
example, consider the prisoner’s dilemma game again, only this time the agent
is faced with one of two possible opponents. One opponent plays cooperate until
the agent defects even once and then plays defect forever (the so-called ‘grim
trigger’ strategy), while the other plays cooperate until the agent cooperates
even once and then plays defect forever. No agent could achieve the best possible
payoff against both opponents. We propose to address this by only requiring
that an agent achieve the value of the best-response that is possible after an
initial period of exploration at the beginning of the game.

We also need to consider the issues of coordination between the agents when
selecting random actions. Although other researchers may find different as-
sumptions appropriate for particular settings, we have chosen to focus on the
most pessimistic/conservative assumptions:

• All agents using the algorithms under consideration select their action
independently from one another.

• There may exist opponents that are capable of selecting actions according
to a distribution over joint actions.

To assemble these requirements and intuitions into a formal criterion we need
the following definitions in which the set of players is partitioned into three sets:

• The set of “designed players”, denoted by X, who adopt the learning
algorithm under consideration.

• The set of opponents in the target set, denoted by Y.

• The set of opponents playing in an unconstrained fashion, denoted by Z.

Definition 2. Given:

• an n-player repeated game G

• a history H

• a 3-way partition (X,Y,Z) of the n players

• a specification C of repeated-game strategy for each player in Y

The set of payoff profiles enforceable by X given C and H consist of all P ∈ R
|X|,

such that:

• ∀i∈XPi ≥ SVi, where SVi is the security value for the ith player in X given
history H and the assumption that players in Y play according to C.

• There exist a set of strategies for the players in X that have an expected
payoff, over all outcomes with an initial history of H, of at least Pi for
all players, i, in X regardless of what strategy players in Z use as long as
players in Y play according to C.

The set of such payoff profiles is denoted by ENF(X,C,H)
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Definition 3. Given G, H, (X,Y,Z), and C as indicated above, an outcome
O of the repeated game is said to be ǫ-Pareto-efficient enforceable for X given
C and H if there is no profile p ∈ENF(X,C,H) such that p minus ǫ dominates
VX(O), where VX(O) is the vector of payoffs to players in X for outcome O.

We combine these definitions to specify a property for a given learning al-
gorithm and set of target opponent strategies.

Definition 4. Given an n-player repeated game G and a set of target opponent
strategies S, an algorithm A is said to be (ǫ, δ)-guardedly optimal for G given
S if there exists a t such that for any partition (X,Y,Z) of the n players, any
specification C:Y→S, and any set of strategies for Z, if players in X play ac-
cording to A, after any initial history H of length t (the “initial experimentation
period”), the outcome of the game is ǫ-Pareto-efficient enforceable for X given
C and H with probability at least 1− δ.

With these definitions we can specify our formal criterion for a learning
algorithm A(S), where S is the target set of opponent strategies:

Definition 5 (Guarded Optimality). Given a class S of possible opponent
strategies, an algorithm is guardedly optimal if for any choice of ǫ > 0, δ > 0,
and any n-player repeated game G, the algorithm is (ǫ, δ)-guardedly optimal for
G given S.

As mentioned earlier, this criterion is somewhat complex because of the
various subtleties involved. And so it is instructive to look at it in the special
case of two player games. In this case it simplifies to the set of criteria shown
below. Note that these are similar to criteria we’ve previously proposed for
two-player games [28], although the new Auto-Compatibility criteria is stronger
since it now applies to the joint payoffs of the two agents.

Definition 6 (Targeted Optimality). When the opponent is a member of the
target set, the average payoff is at least VBR−ǫ, where VBR is the expected value
of the best response in terms of average payoff against the actual opponent.

Definition 7 (Auto-Compatibility). During self-play, the average payoff is
Pareto efficient over the set of outcomes in the game.

Definition 8 (Safety). Against any opponent, the average payoff is at least
SV − ǫ.

Remark 1. For any two-player repeated game, an algorithm is guardedly opti-
mal if and only if it satisfies targeted optimality, auto-compatibility, and safety.

Finally, let us step back and see how this proposal compares with the past
criteria discussed in Section 3. Considering universal consistency, we can see
that our criterion implies the safety condition and the consistency condition for
any target class that includes all stationary opponents, but is incomparable with
the general concept of universal consistency (or, equivalently, no-regret). Note
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that while no-regret is a strictly stronger requirement than security value for a
single player, it can be incompatible with other desirable requirements (such as
best-response to adaptive opponents or Pareto-efficient self-play) as described
in the previous section. While it would be possible to address these conflicts as
special cases in a combined criterion, there may exist additional incompatible
properties one would want to require for particular applications. Another pos-
sible way of reconciling these properties would be to consider stronger notions
of regret as discussed at the end of the last section. Requiring that a player
instead attain a payoff at least as high as any strategy in a broader set of adap-
tive strategies would require additional constraints on the play of the agent, but
could resolve the inconsistencies between no-regret guarantees and some of the
desirable properties referenced earlier. We leave this for future work.

A possible complaint about our approach would be that by specifying our
target set of opponents, we leave ourselves open to exploitation by other algo-
rithms outside the target set. While it is true that by knowing the details of
our approach it might be possible to craft algorithms that do well in response,
this is not necessarily disadvantageous. In many games where cooperation is
possible this could encourage the hypothetical algorithm to coordinate in order
to achieve a desirable joint outcome. At the same time, in more adversarial
games, we still have the default guarantee of the security value for the game to
avoid getting taken advantage of arbitrarily.

Another issue that has been raised about the guarded-optimality criterion
involves our focus on requiring that multiple agents using the same algorithm
collude with one another to achieve a PE outcome. In particular, if an agent
knows that other agents are using an algorithm meeting this criterion, would
it also wish to adopt such an algorithm? A tempting solution to this question
would be to add an additional criterion requiring that the proposed learning
algorithms form a learning equilibrium [6] with one another in self-play. Unfor-
tunately this requirement is incompatible with having a security value guarantee
against any opponent. To see this, let’s once again consider an agent playing a
repeated game of Chicken from Figure 2. If the agent knows its opponent must
secure at least its security value against any player, then the agent’s optimal
strategy is to always play “Dare”, guaranteeing the agent the highest possible
payoff. Therefore two algorithms satisfying the safety criterion could never form
a learning equilibrium with one another in this repeated game.

5 Algorithmic Framework

Besides proposing a novel criterion, we also want to provide algorithms that
can provably achieve the criterion for particular target sets and perform well in
practice against other opponents. One of the main challenges we face is that
the algorithm needs to behave differently depending on the types of opponents
it is dealing with. In order to deal with this in a general fashion, we propose a
modular design based on general building blocks. The key is determining the
types of the opponent players (members of the target set, other players using the
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same algorithm, or unconstrained players) and then selecting the appropriate
algorithm to use.

We propose five main building blocks for various settings:

• Learn Best Response: Using observations about the opponents’ play,
estimate the actual strategies of the opponents and play a best-response
strategy.

• Coordinate: Select a single, common joint strategy for all the self-play
players from among a set of Pareto-efficient possibilities.

• Secure Value: Play a strategy that ensures that the player receives at
least the security value against any possible set of opponents.

• Signal: In some settings it may be necessary to play such as to explicitly
signal that the player is a member of a certain class or not a member of
another possible class.

• Teach: Play so as to produce a particular desired behavior in the actions
of an adaptive player.

Additionally, the algorithm will need to observe the opponents’ play in order
to choose an appropriate component. Depending on the exact implementation
of each of these blocks, this may require an additional component for explicit
observation and sampling.

In order to create an algorithm for a given target class, we need to follow a
number of steps:

1. Choose an appropriate set of building blocks for the setting.

2. Decide on an instantiation for each building block (e.g., determine how to
calculate the best-response against a member of the target class).

3. Design the flow of control for calling each building block at the appropriate
time given the observations in the game.

In the next section we use this framework to build an algorithm that prov-
ably meets the guarded optimality criterion for the target class of stationary
opponents. The following section then extends and alters the algorithm to meet
the criterion for a class of adaptive strategies with bounded recall.

6 First Instantiation: Stationary Opponents

Even though stationary opponents constitute one of the simplest target classes,
there are still many subtleties and complexities involved. While stationary op-
ponents have been dealt with frequently in the literature, relatively little work
has addressed situations in which there is a mixture of stationary opponents
and other non-stationary players. In this section, we address these cases by
discussing the construction of a new algorithm that satisfies guarded optimality
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by instantiating the building blocks put forth in the previous section. We will
call this algorithm PCM(S) (Partition, Coordinate, and Monitor for the target
class of stationary opponents (S)). All the players conforming to the designed
algorithm will be called cooperating players (coop players), while other play-
ers that do not belong to the target set will be called non-cooperating players
(non-coop players). Note that a coop player does not have to use the designed
algorithm but only needs to follow the protocol for cooperating.

6.1 Algorithm Description

FalseFalse

True

with prob. γ

True

False

True

False

True
Signal/Explore
for τ1 rounds

All Opp. in 
Target Set Learn BR

Payoffs
as Expected

Secure Value

Detect Unconstrained 
Agents

More than one 
Coop Agent

Solve Opt. 
Problem

Join Largest 
Group Over τ2 rounds

Coordinating

Play Strategy in Optimal 
Sequence for T rounds

Payoffs
as Expected

Coordinate

False

True

Figure 3: Flow of control for PCM(S) algorithm.

Our main goal is to design as simple an algorithm as possible that can achieve
the guarded optimality criterion for the target class of stationary opponents. For
our purpose, the four modules “Signal”, “Learn Best Response”, “Coordinate”,
and “Secure Value” will suffice to achieve this. In Figure 3, we show how these
four blocks can be put together. The four bolded rectangles represent these four
blocks. To preserve clarity, the figure only shows a detailed view of the most
complex block, “Coordinate”. The full pseudocode for the algorithm is provided
in Appendix A.
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Within the “Signal” block, the coop players will play a pure strategy for τ1

rounds and then switch to a different pure strategy for another τ1 rounds. By
the end of this block, the coop players will be able to correctly partition all coop
players and stationary opponents into two different sets with high probability
(the probability that a stationary opponent, i, would generate the two sequences
of pure strategies goes to zero at the rate ( 1

|Ai|
)τ1).

Each coop player can now essentially reduce the current game to a smaller
game by removing all stationary opponents and using the expected payoffs for
each of the remaining outcomes instead. If there is only one remaining player
in the reduced game, it can make the transition to the “Learn Best Response”
block to find the best response to the stationary opponents. Using the reduced
game, finding a BR strategy against stationary opponents is straightforward,
since the player can simply choose the action that gives the highest expected
payoff.

If there are multiple non-stationary players left in the reduced game, the
PCM(S) players will tentatively mark other players as coop and switch to the
“Coordinate” block to synchronize with each other on a joint profile that they
should adopt to achieve the guarded optimality criterion. This joint profile max-
imizes the sum of the rewards for the coop players among enforceable outcomes
while still guaranteeing individual rationality for each of them. This Pareto-
efficient enforceable outcome is the solution of the optimization problem:

maxπX∈ΠX
(minπZ∈ΠZ

Σi∈XVi(πX , πZ)) (3)

In the above equation X is the set of players using PCM(S), and ΠX = ΠX1
×

...×ΠXm
, for all Xi ∈ X, subject to the constraint that ∀i(∀πZ∈ΠZ

Vi(πX , πZ) ≥
SVi). Z are the other players, with ΠZ = H → ∆(AZ1

× ... × AZp
), with

Z = {Z1, ..., Zp}. SVi is the maxmin value of coop player i in the reduced game
as defined in Section 2.

The coop players can approximate this outcome by limiting the ΠX in the
equation above to be sequences of mixed strategies of length L. The solution of
the corresponding optimization problem is then a cycle of length L specifying a
mixed strategy for each player in X to follow at each step. For any given ǫ′ > 0
and feasible payoff profile in the infinitely repeated game, we can find a sequence
of length L polynomial in n and 1

ǫ′
such that this sequence approximates the

target payoff profile within ǫ′. We give the proof for this in a later section.
Since there are possibly many different correlated sequences that can satisfy

the guarded optimality criterion, the coop players need to agree on the same
sequence. The “Coordinate” block consists of several coordinating processes
between the coop players. Each process will last for τ2 rounds in which the
coop players try to converge to the same sequence. Each coop player will pick
one such sequence at the beginning of the process and then with probability
γ switch to a different sequence that is being used by more coop players. At
the end of each process, they will either succeed by achieving a payoff profile at
most ǫ away from the expected payoffs for all the coop players or they will be
able to detect at least one non-coop player. In the later case, they will mark
the detected player as non-coop and restart the coordinating process.
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If all other players are marked as non-coop, the remaining coop player can
now make the transition to the “Secure Value” block. Within this block, the
player will calculate the maxmin strategy as defined in Section 2 by solving the
corresponding linear program for the reduced game with the strategies of the
stationary opponents fixed. This is the best payoff the player can guarantee
for itself since the non-coop players could force its payoff arbitrarily close to its
security value for the reduced game.

For any given ǫ > 0 and δ > 0, we can choose appropriate values for τ1, τ2,
γ, and ǫ′ that allow the player to guarantee it achieves the guarded optimality
criterion with probability at least 1− δ. We give a formal proof of this fact in
the following section.

6.2 Formal Properties

Theorem 1. For any given ǫ > 0 and δ > 0, PCM(S) is (ǫ, δ)-guardedly optimal
for the class of stationary opponents given an initial experimentation period with
length polynomial in M,n, 1

ǫ
, and 1

δ
.

The above theorem holds for repeated games where n is the number of players
and each player has at most M actions. Since we are only considering games
with bounded payoffs, we can assume, without loss of generality, that all the
payoffs are normalized to lie between 0 and 1.

Proof. The proof can be constructed naturally from the following lemmas which
are proved in appendix B:

Lemma 1. For any given δ1 > 0, 0.5 > ǫ1 > 0, there exists a τ1 polynomial
in n,M, 1

ǫ1
, and 1

δ1

such that if a player uses a full action history of length at
least 2τ1, and a recent action history of length τ1, the probability for all coop
players to correctly partition stationary and coop players into two different sets
is at least 1− δ1.

Lemma 2. Within the “Coordinate” block, for any given ǫ2 > 0 and δ2 > 0
there exists a τ2 polynomial in n,M, 1

ǫ2
, and 1

δ2

such that with probability at least
1 − δ2, after at most τ2 rounds, either all cooperating players will converge to
an ǫ2-Pareto-efficient enforceable outcome or a new non-cooperating player will
be identified.

From Lemma 1, by the end of the “Signal” block, after 2τ1 rounds, the coop
players have correctly partitioned stationary players and coop players into two
different sets with probability at least 1− δ1. From Lemma 2, after each coordi-
nating process of τ2 rounds, the players will either achieve an ǫ2-Pareto-efficient
enforceable outcome or identify a new non-coop player with probability at least
1− δ2. Thus they only need to repeat the coordinating process at most n times.
The probability that they will correctly partition all coop players and non-coop
players into two different sets and converge to an ǫ2-Pareto-efficient enforceable
outcome after at most n∗τ2 rounds is at least 1−nδ2. Therefore the agents will
converge to an ǫ2-Pareto-efficient enforceable outcome with probability at least
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1 − δ1 − nδ2. Setting ǫ1 = ǫ2 = ǫ, δ1 = δ
2 , δ2 = δ

2n
we can guarantee that the

players will achieve the guarded optimality criterion with probability at least
1− δ after a learning period, τ , that is polynomial in M,n, 1

ǫ
, and 1

δ
.

Moreover, note that before converging to an ǫ-Pareto-efficient enforceable
outcome, a coop player might suffer loss of payoff during the experimentation
period. However, since the payoff is bounded between [0,1], the total loss over
this period is at most τ . To take this into account, we can set ǫ2 = ǫ

2 and allow
an additional 2τ

ǫ
rounds to pass. The actual payoffs of the coop players after

this period will be at most τ
2τ
ǫ

= ǫ
2 away from an ǫ

2 -Pareto-efficient enforceable

outcome.

Theorem 1 provides the bound on the number of iterations required by the
algorithm for the initial experimentation period before the desired outcome is
achieved. This leaves open the question of how much computation is required
by the algorithm at each iteration of the game. The answer is given by the
following proposition:

Proposition 2. For any n-player repeated game G, let T be the complexity of
solving the optimization problem defined in equation 3 in Section 6.1 and τ3 be
the length of the test for non-cooperative agents. The computational complexity
of PCM(S) for one iteration of G is O(Mn ∗max(T, τ3)) in the worst case.

Proof. Let M be the maximum number of actions for one player. To find the
worst case complexity for one iteration, we can calculate the complexity for each
block of the algorithm as presented in Figure 3:

• Within the “Signal” block, each step can be done in constant time.

• Within the “Learn Best Response” block, the worst step can be done in
O(Mn).

• Within the “Secure Value” block, the worst step can be done in O(Mn).

• Within the “Coordinate” block, in the worst step the agent has to find
the largest group to join and then tries to detect non-coop opponents. To
find the largest group, it has to go through all different subsets of coop
players and solve the optimization problem in equation 3 for each subset.
The complexity of this operation is O(2n ∗ T ).

• The operation to detect non-coop opponents may need to check all subsets
for τ3 steps each taking total time proportional to O(2n ∗ τ3).

Since the agent can only be executing one block at a time the complexity for
one iteration in the worst case is O(Mn ∗ max(T, τ3)), where τ3 is polynomial
in M,n, 1

ǫ
, 1

δ

Even though PCM(S) has an exponential worst-case complexity, it is efficient
in practice since for most of the iterations, PCM(S) requires only computation
that is linear in M ∗ n and T is usually relatively small. In our experiments, on
a 2.4Ghz machine, PCM(S) takes under 1 second when playing a 4-player game
for 200,000 iterations with 3 actions for each player.
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6.3 Empirical Validation and Discussion

Even though our algorithm has been theoretically proven to correctly achieve
our formal criterion, we want to demonstrate empirically that the algorithm
performs well against a variety of opponents, including those outside the target
class. We will use the testing environment first described in prior work [28] by
testing against a number of existing approaches from the multi-agent learning
literature over a wide variety of repeated games from GAMUT [26]. GAMUT is
the result of a project to develop a comprehensive collection of game theoretic
matrix games that have been described by researchers in either game theory or
artificial intelligence. It contains generators for creating random instances of 34
individual base game classes as well as numerous additional variants and spe-
cialized parameter settings (more information and downloads are available at
gamut.stanford.edu). The existing algorithms we tested against include Local
Q-learning [33], a stochastic version of IGA [31], WoLF-PHC [4], JointQ-Max
[11], GIGA [34], GIGA-WoLF [3], a version of NoRA [2] using GIGA as its base
class, and smooth fictitious play [15]. We also tested all the algorithms against
random stationary strategies (Random), the security value strategy (MiniMax),
and random strategies that condition their actions on the past outcome (Cond-
Strat).
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Figure 4: 2 vs. 2: Percent of best reward for last 20K rounds (of 200K) averaged
across all opponents for selected games in GAMUT. The rewards were divided
by the maximum reward achieved by any player.

We want to focus our attention on settings with more than two players.
As the first test we measured the average performance of one pair of players
playing against another pair of players. The players in each pair use the same
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Figure 5: 2 vs. 1: The performance of PCM(S) is even stronger when it out-
numbers its opponents.

algorithm though it can be different from the one used by the other pair. In
figure 4, we show the average payoffs achieved by each player averaged across
the set of possible opponents for a selection of games in GAMUT listed across
the x-axis. The y-axis shows the payoff for each algorithm as a percentage of the
highest average payoff achieved by any algorithm for the selected game. In order
to preserve clarity, we only show the results for four algorithms representative
of those with the best performance. PCM(S) achieves the highest or close to
the highest payoffs in every game. Unlike other algorithms, PCM(S) has no
pitfalls in which its payoffs are significantly worse than those achievable by
other approaches in a given game. This is at least partly due to the fact that
two players using PCM(S) can cooperate with each other against other players
to possibly achieve a higher security value than each individual player could
achieve alone.

To further demonstrate this advantage of PCM(S), we slightly adjusted the
setting of the experiments to show two players using the same algorithm playing
against another algorithm (can be the same or not) and we show the results in
figure 5. In this setting, PCM(S) shows an even greater advantage over the other
algorithms. The reasons behind the difference in the performance of PCM(S)
in the two different settings are the generosity and cooperativeness of PCM(S).
PCM(S) will be more likely to cooperate as long as the outcome is PE for all
players it considers cooperating. Thus when there are more players using other
different algorithms, there are more situations in which PCM(S) will compromise
its payoff.
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Figure 6: 1 vs. 2: The performance of PCM(S) is weakened by the lack of
cooperation opportunities.

We also measure the performance of PCM(S) when playing against two op-
ponents using an identical algorithm. We show the result in figure 6. In this
setting, PCM(S) has two disadvantages. The first disadvantage was mentioned
above: PCM(S) will be more likely to compromise its payoff if there are more
opponents. The second disadvantage is that PCM(S) was designed exclusively
to satisfy the criterion for stationary opponents. It does not have the capability
to take advantage of adaptive players. When the other two players do not coop-
erate, PCM(S) will have to resort to the security strategy. In this setting of 1 vs.
2, there is no other player using PCM(S) that it can cooperate with to increase
its security values. However, PCM(S) is still able to achieve high payoffs in
several games in which there exists a beneficial cooperative outcome due to its
flexibility in cooperating with players using other algorithms as long as it still
achieves its security guarantee. Note that in this setup, PCM(S) is regularly
forced to play its individual security strategy. Given the modular nature of our
design, we can easily substitute a different algorithm, such as GIGA, for the
security portion that attains the same guarantees for the single PCM(S) agent
case. Although we achieve only moderate gains from this augmentation, as seen
in figure 7, this simple change rarely hurts the performance. One could extend
this approach to add different default behaviors for individual games and then
use the methods proposed by McCracken and Bowling [23] to guarantee that
the security value is always achieved.

In Table 1 we show the payoff for different algorithms in self-play, that is,
when all players use the same algorithm. With an explicit mechanism for sig-
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Figure 7: 1 vs. 2: Some empirical gains can be gained by replacing the default
security strategy.

naling and coordinating, players using PCM(S) are able to achieve a payoff sig-
nificantly higher than any other algorithm. As the number of players increases,
the gap between the performance of PCM(S) and other algorithms grows larger
since those players are much less likely to come across a cooperative beneficial
outcome by chance.

N=2 N=3 N=4
PCM(S) 0.496 0.675 0.559
LocalQ 0.400 0.550 0.340

WoLF-PHC 0.389 0.449 0.292
StochIGA 0.385 0.422 0.257

GIGA-WoLF 0.374 0.411 0.255
SmoothFP 0.118 0.254 0.027

MiniMax 0.103 0.111 0.023

Table 1: Average payoff in self-play by algorithm, as a function of the number
of players.

A final analysis we conducted was to address the question of how dependent
the empirical performance of the algorithm was on having a long initial train-
ing period. While we have formal guarantees that only a polynomial amount
of training is necessary, this can still be a long period in practice if we wish
small values for ǫ and δ. For instance, selecting an ǫ of 1% will impose a mul-
tiple of 10,000 on the amount of training required. In table 2 we compare the

20



performance given various lengths of training for PCM(S) with GIGA-WoLF.
The numbers shown are the average value attained during the last 10% of the
rounds. We can see that the performance of PCM(S) degrades gracefully at
least down to a range of 10,000 rounds and maintains a significant margin over
GIGA-WoLF throughout. Note that the variance is inherently higher for the
smallest training periods, so significance becomes harder to estimate.

5K 10K 25K 50K 100K 200K
PCM(S) 0.259 0.266 0.266 0.268 0.269 0.272

GIGA-WoLF 0.223 0.227 0.228 0.227 0.229 0.230

Table 2: Average payoff over all 4-player environments and opponents as a
function of the number of total rounds.

7 Second Instantiation: Adaptive Opponents

Although the PCM(s) algorithm demonstrates desirable formal properties and
promising empirical performance, it still fails to address our concerns about
the focus in prior work on stationary opponents, since PCM(s) has only weak
security-level guarantees for its payoff against opponents whose strategy can
depend on the past history of the games. We are aware of very little work to date
that deals with adaptive opponents explicitly, although de Farias and Megiddo
[13] address it in the design of their experts algorithm and the rational learning
approach of Kalai and Lehrer [20] can in principle handle adaptive algorithms
of arbitrary complexity as long as they are assigned positive probability in the
prior.

One way we could attain better performance against adaptive opponents
would be to expand the target set against which we can guarantee a best-
response. Note however that we still need to limit the capabilities of the op-
ponents in some way. If we were to consider opponents whose future behavior
could depend arbitrarily on the entire history of play, we would lose the ability
to learn anything about them in a single repeated game, since we would only
ever see a given history once and an opponent’s past strategy may have no
relation to its future play.

We therefore assume a limit on each opponent’s ability to condition on the
history. We propose directly limiting the amount of history available, by requir-
ing that each opponent play a conditional strategy (aka bounded recall strategy)
where its distribution over actions can only depend on the most recent k periods
of past history, Fi : o−1 × ... × o−k → ∆Ai, where o−t is the outcome of the
game t periods ago. Additionally, the opponents have a default past history
they assume at the start of the game. Note that even this simple model allows
us to capture many methods, such as Tit-for-Tat, that most current approaches
are unable to properly handle.
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7.1 The PCM(A) algorithm

By capitalizing on the modular design of PCM(S), we can design a variant,
PCM(A), that achieves our Guarded Optimality criterion against this new class
of opponents with only minor conceptual modifications. We will be able to use
the same flow of control and modules shown in Figure 3 except for the following
changes:

• We have replaced the instantiation of the Learn BR module with a new
strategy, MemBR, which calculates a best response against conditional
strategies. This approach maintains counts of the opponent’s actions after
each history of length k, which it uses to calculate the optimal set of
conditional strategies for each coop player to use.1 This lets us guarantee
that we achieve an ǫ-best response against any members of our target
opponent set given that the algorithm observes each length k history a
sufficient number of times. This will be satisfied as long as the initial
exploration phase continues for a length of time exponential in k. This
exponential exploration period is unavoidable since we need to consider
the possibility of opponents that only play a desirable action distribution
for a single one of the exponentially many possible histories.

• In order to tell if an opponent is a member of the target class we can now
calculate the probability that each opponent’s play is consistent with our
target set by comparing the observed distribution of play for each history
at separate times and measuring the deviation in action profiles.

• When there are multiple coop agents and opponents in both the target and
unconstrained class, the optimization problem in the coordinate module
needs to take into account the distribution over histories generated by the
coop and non-coop agents when calculating the achievable payoff profiles.

Theorem 3. PCM(A) satisfies guarded optimality for the target class of con-
ditional strategies with bounded memory k.

The outline for the proof of this theorem is included in Appendix C. The
initial experimentation period required in satisfying guarded optimality could

unfortunately now depend on ( 1
λ
)(M

nk), where λ is the minimum probability
the opponent assigns to any action (λ = 1 for opponents that condition only on
the coop player’s actions). Note that our worst case time complexity also grows
similarly as we may now need to solve an optimization problem with up to Mnk

variables. This has caused us to focus on two-player games in our empirical
results, although both of these bounds (computational complexity and amount
of training) are based on extremely pessimistic assumptions and are likely to be
tractable in practice for larger games with small values of k.

1Note that if the opponents condition only on the coop players’ actions, we can instead just
choose the optimal cycle of player actions with the highest expected reward out of all possible
unique player action sequences (those that don’t contain a length k repeated subsequence).

22



7.2 TPCM(A): A teaching algorithm
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Figure 8: Flow of control for TPCM(A) algorithm.

While the basic modifications described in PCM(A) achieve our formal guar-
antees against the set of conditional strategies it ignores our intuitions in regards
to the importance of teaching as part of an effective strategy against adaptive
players. In order to incorporate this idea, notice that we have significant free-
dom both in how we conduct our initial exploration period and also what default
strategy to employ against opponents outside our target class. By restricting
our attention to the class of two player games, we can define a new algorithm:
Teach, Partition, Coordinate, and Monitor (TPCM(A)), shown in Figure 8. It
is based on the PCM(A) algorithm but we have added a new initial block before
the signalling step that uses a teaching strategy based on the Godfather algo-
rithm first proposed by Littman and Stone [21]. Godfather selects an outcome
in the game matrix which maximizes its own payoff and gives the opponent
player at least its security value. Godfather then plays its portion of the target
outcome. If the opponent ever plays an action other than the matching action
for the target outcome, the player plays a strategy that forces the opponent
to achieve no more than its security value until the opponent again plays its
target action. TPCM(A) uses a stochastic variation of Godfather that selects
a mixed strategy for the player and a target action for the opponent such that
the joint strategy gives the opponent a higher expected value than its security
value. The stochastic version has two advantages over the deterministic origi-
nal. First, it can sometimes attain strictly higher payoffs by considering a larger
set of outcomes. Secondly, if we additionally require that each action is played
with some minimal probability in the player’s mixed strategy, we can attain our
observation requirements for MemBR while teaching the opponent. After this
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Figure 9: 2 player games: The value of teaching.

initial phase of teaching, TPCM(A) behaves identically to PCM(A) unless it
detects that the other agent is not cooperating. When PCM(A) would play the
Secure Value module, TPCM(A) instead adopts either MemBR or Godfather
as a default strategy depending on its payoff in the initial teaching period. If
this payoff was close to the target payoff for the outcome Godfather selected it
reverts to Godfather, otherwise it plays MemBR. In either case, it continues to
observe its own payoffs and reverts to the security policy if its average payoffs
drop below its security value.

Since the only modification has been to add an initial step of fixed length and
replace the Secure Value module with a new module with the same guarantees,
it is easy to see that TPCM(A) still satisfies guarded optimality for the class of
conditional strategies. Note however that the algorithm is restricted to the set
of environments with only two players.

7.3 Experimental Results

In addition to a selection of the opponents that were used for testing PCM(S),
we also include random conditional strategies (CondStrat), MemBR, and an
implementation of the Godfather algorithm [21]. In Figure 9, we can see that
our new algorithm TCPM(A) achieves consistently higher performance than
any of the other algorithms in nearly every game. The particular versions of
PCM(A) and TCPM(A) shown in the graph take conditional opponents with
memory of length 1 as their targets. Results showed a slight improvement when
considering opponents with a memory of 2, but training time grows significantly.

In order to understand the source of this performance, let’s consider the
results against individual opponents. Figure 10 shows results for all three of our
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Figure 10: Average value for last 20K rounds (of 200K) by opponent across
2-player games in GAMUT. Game payoffs range from -1 to 1.

new algorithms and two of the most successful previous algorithms for the class
of two-player games.

We can see that both PCM(A) and TPCM(A) are able to achieve significant
gains in average reward against the non-stationary opponents in their target
set, CondStrat and Godfather. Moreover, TPCM(A) shows significantly better
performance against the opponents outside its target set. The combination
of this improved performance against out of target class opponents and the
strong performance in self-play common to all the PCM variants results in the
uniformly strong performance we saw in Figure 9.

8 Conclusions and Future Work

We have argued for a new criterion for agent-centric learning in multi-agent
systems, one that is more goal oriented than previous proposals, emphasizing
high return for the players with fewer constraints on their actual behavior. The
criterion also offers the advantage of allowing designers to specify a particular
opponent class that an algorithm should perform especially well against.

In order to aid in designing algorithms that meet this criterion, we put forth
a general algorithmic framework. The modular nature of our approach allows
easy adaptation of successful algorithms to different environments and sets of
opponents. Using the framework as a basis we offered three concrete instanti-
ations. The first is optimized to perform well against stationary opponents in
n-player repeated games, while the other two focus on opponents whose distribu-
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tion of play is a function of the recent history of the game. One of these applies
generally in n-player repeated games, while the other is specialized for games
with two players. All three of these algorithms meet our formal guarantees and
fare well in different environments against a wide variety of opponents.

Going forward, there are many promising areas for future work. One fairly
straightforward extension would be to consider other models of adaptive oppo-
nents. A common approach used in the literature on bounded rationality [24, 27]
is to assume the players can be modeled by finite automata with k states. Note
that the automata model is more comprehensive than the set of conditional
strategies since any conditional strategy opponent with bounded memory can
be modeled by an automata with Mk states if we allow stochastic outputs, but
there exist automata that cannot be modeled by any function on a finite fixed
history. In the case of automata with deterministic transitions, we can modify
our PCM(A) and TPCM(A) algorithms to handle this new class by replacing
the best response function. Note that learning a best response to an opponent
modeled by an unknown finite automata is equivalent to finding the best policy
for an unknown Partially Observable Markov Decision Process, investigated in
several papers [10, 25]. While it is a difficult computational problem, we should
be able to achieve the same theoretical properties for this alternate set of oppo-
nents given similar concerns and caveats to those we encountered in the proof
for PCM(A) when ensuring that we get enough observations of the entire state
space to calculate an accurate best-response.

Another interesting question to address going forward is whether there is a
disciplined way to extend the concept of teaching an opponent to the situation
in which there may be multiple opponents. A more general teaching algorithm
would allow the TPCM(A) algorithm to be extended to environments with more
than two players.

Finally, we are also looking at several ways to expand the set of environments
these algorithms can be employed within. Of particular concern is looking
for ways to weaken the requirement of full prior knowledge about the payoffs
of the game. The major challenge seems to lie in creating the capability to
cooperate without knowing or being able to observe the space of payoffs available
to the other players. An additional area for further consideration would be the
assumption of perfect observability. How could one design an effective algorithm
when the players receive only partial information about the past actions of
their opponents? Other possible extensions include extending the algorithms to
handle stochastic games with multiple states and considering games in which
the players care about the discounted sum of the stage game rewards instead of
the average.
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A PCM(S) Implementation Details

∀i oppType[i] ← STATIONARY

for τ1 time steps: Play one action

for τ1 time steps: Play another action

while (∀i oppType[i] = STATIONARY )

Play BR strategy to all other agents

For each opponent i, if player i’s action distribution for

the last τ1 rounds deviates by more than ǫ1 from their

distribution for the full history

oppType[i]← COOP

For all stationary opponents i, stat(i)← observed distribution

Loop

Use a plug-in solver to solve equation 3 in Section 4

seq ← the sequence of mixed strategies in solution

Vsum ← sum of the payoffs

for τ2 time steps: \* Coordinating process *\
Play next mixed strategy in seq

With probability γ

For each subset X ′ of coop agents by decreasing size

V ′
sum ← recalculate the optimal solution with the

distributions of agents in X ′ set to the observed

distributions over the last H ∗ L periods

seq ← the sequence of mixed strategies in new solution

If Vsum − V ′
sum ≤ ǫ2 then this is a valid group

Vsum ← V ′
sum; break

If any coop player i switched to the wrong group during above

oppType[i]← NON − COOP; foundNonCoop← TRUE

For all coop players i

V (i)← expected payoff for i if all coop players follow seq

For τ3 rounds, play according to seq, recording payoffs in V̂

While (¬foundNonCoop) \* Monitor for non coop players *\

If ∃ coop player i such that V̂ (i) < V (i)− ǫ then

foundNonCoop← TRUE

For each subset, Y , of coop and stationary players

ordered by increasing size

V ′ ← Recalculate payoffs for last τ3 periods using the

target distribution (seq or stat) for players in Y

If ∃ coop player i such that V̂ (i) < V ′(i)− ǫ|Y |
n

then

For all j ∈ Y , oppType(j)← NON − COOP

Else play next mixed strategy in seq, update V̂

While (# coop players = 1) play secure value strategy
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B Supporting Proofs for PCM(S)

Proof of Lemma 1. Since all coop agents have the same perfect observation of
other agents’ actions, the probability for all coop agents to correctly partition
stationary and coop agents into two sets is equal to the probability for one agent
to achieve it. Let df be the distribution of the actions of an agent calculated
from the full history, dr be the distribution from the recent history, and dt

be the true distribution of the actions. Let d(k) be the distribution of action
k in d. An opponent is assumed to be stationary if ‖df , dr‖∞ ≤ ǫ1, where
‖d1, d2‖∞ = maxi=1..M |d1(i)− d2(i)|. For a stationary opponent we have:

Prob(‖df , dr‖∞ ≤ ǫ1) ≥ Prob
(

‖df , dt‖∞ ≤
ǫ1

2
& ‖dr, dt‖∞ ≤

ǫ1

2

)

≥ Prob
(

‖df , dt‖∞ ≤
ǫ1

2

)

∗ Prob
(

‖dr, dt‖∞ ≤
ǫ1

2

)

Using the Hoeffding inequality we know,

Prob(|dt(i)− df (i)| > ǫ1) ≤ 2 exp(−4(
ǫ1

2
)2τ1)

Prob(|dt(i)− dr(i)| > ǫ1) ≤ 2 exp(−2(
ǫ1

2
)2τ1)

From the Union Bound Axiom, we get,

Prob(∀i, |dt(i)− df (i)| < ǫ1) ≥ 1− 2M exp(−4(
ǫ1

2
)2τ1)

Prob(∀i, |dt(i)− dr(i)| < ǫ1) ≥ 1− 2M exp(−2(
ǫ1

2
)2τ1)

And therefore,

Prob(‖df , dr‖∞ ≤ ǫ1) ≥
(

1− 2M exp(−4(
ǫ1

2
)2τ1)

) (

1− 2M exp(−2(
ǫ1

2
)2τ1)

)

≥ 1− 4M exp(−2(
ǫ1

2
)2τ1)

From the result for one agent, we again apply the union bound to obtain a lower-
bound for the probability of checking multiple stationary agents correctly:

Prob(∃k : Agent k stationary, ‖df (k), dr(k)‖∞ ≥ ǫ1) ≤ n ∗ 4M exp(−
ǫ21τ1

2
)

Prob(∀k : Agent k stationary, ‖df (k), dr(k)‖∞ ≤ ǫ1) ≥ 1− 4Mn exp(−
ǫ21τ1

2
)

For any τ1 ≥
2
ǫ2
1

log 4Mn
δ1

,

Prob(∀k : Agent k stationary, ‖df (k), dr(k)‖∞ ≤ ǫ1) ≥ 1− δ1

For coop agents, ‖df , dr‖∞ = 1
2 from the algorithm description. So for all

ǫ1 < 1
2 , no coop agents will be assumed to be stationary and all stationary

agents will be correctly identified with probability at least 1− δ3.
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Before giving the proof for Lemma 2, we need to prove four more lemmas.

Lemma 3. For any given ǫ3 > 0 and δ3 > 0 there exists an H polynomial in
M, 1

ǫ3
, and 1

δ3

such that if the opponent plays according to a stationary strategy
the observed distribution of a sequence of at least H actions will be within ǫ3 of
the true distribution for each action with probability at least 1−δ3. This implies
that the expected payoff for a strategy will be within Mǫ3 of the actual payoff
with probability at least 1− δ3.

Proof. Let d̂ be the observed distribution of actions for an agent observed using
a history of length H, and d be the true distribution of actions. Let d(k) be the
probability for action k in distribution d.

Using Hoeffding’s inequality we obtain the result:

∀i ∈ [1,M ], P rob(|d̂(i)− d(i)| ≥ ǫ3) ≤ 2 exp(−2(ǫ3)
2H)

Prob(∃i ∈ [1,M ] : |d̂(i)− d(i)| ≥ ǫ3) = Prob(∪i=1..M : |d̂(i)− d(i)| ≥ ǫ3)

≤
M
∑

i=1

Prob(|d̂(i)− d(i)| ≥ ǫ3)

≤ 2M exp(−2(ǫ3)
2H)

Prob(∀i ∈ [1,M ], |d̂(i)− d(i)| ≤ ǫ3) ≥ 1− 2M exp(−2(ǫ3)
2H)

Setting H = 1
2(ǫ3)2

ln 2M
δ3

we obtain:

Prob(∀i ∈ [1,M ], |d̂(i)− d(i)| ≤ ǫ3) ≥ 1− δ3

Since the payoff of the agents is bounded by 0 and 1, the difference between
actual and expected payoff is at most

∑M
i=1 |po(i) − pt(i)|. Therefore expected

payoffs will be within Mǫ3 of actual payoffs with probability at least 1− δ3.

Lemma 4. For any given ǫ4 > 0, δ4 > 0, and subset of players, X, any
feasible payoff profile, p, in the infinitely repeated game can be approximated by
a sequence S, with length L, of joint mixed strategies such that with probability
at least 1 − δ4, the difference between p and the actual average payoff achieved
by each player using S repeatedly for at least H times is at most ǫ4. L and H

are both polynomial in M,n, 1
ǫ4

, and 1
δ4

.

Proof. Any feasible payoff profile, p, in an infinite repeated game can be thought
of as the expected payoff profile from a distribution, d, over feasible payoff
profiles in the stage game. We will now show the existence of a polynomial-
length sequence, S, with expected payoff profile approximating that of d. We
generate S by taking L random draws from the distribution d. Let pi be the
expected payoff to player i from playing d and p̂i be the actual payoff achieved
after L draws from d. For any given ǫ′ > 0 we can use Hoeffding’s inequality to
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bound the probability that the difference in payoffs exceeds ǫ′:

∀i ∈ X,Prob(|p̂i − pi| ≥ ǫ′) ≤ 2 exp(−2(ǫ′)2L)

Prob(∃i ∈ X : |p̂i − pi| ≥ ǫ′) = Prob(∪i∈X |p̂i − pi| ≥ ǫ′)

≤
∑

i∈X

Prob(|p̂i − pi| ≥ ǫ′)

≤ 2n exp(−2(ǫ′)2L)

Prob(∀i ∈ X, |p̂i − pi| ≤ ǫ′) ≥ 1− 2n exp(−2(ǫ′)2L)

Prob(∀i ∈ X, |p̂i − pi| ≤ ǫ′) ≥ 1− δ′

when L is at least 1
2(ǫ′)2 (ln 2n

δ′
).

If we let ǫ′ = ǫ4
2 and δ′ = δ4

2 , the expected payoff of S will be within ǫ4
4 of p

with probability at least 1− δ4

2 . Using Lemma 3, with ǫ3 = ǫ4
2M

and δ3 = δ4

2L
, we

can show that the actual payoff achieved for each step in S after H repetitions is
within ǫ4

2 of the expected payoff with probability at least δ4

2L
. Thus the payoffs

achieved from using S for H times will be at most ǫ4 from p with probability
at least 1− δ4

2 − L ∗ δ3 = 1− δ4.
Substituting in the new values for ǫ′, δ′, ǫ3, and δ3 we have:

L =
2

ǫ24
ln

4n

δ4
,H ≥

2M2

ǫ24
ln

4ML

δ4

Thus L and H are polynomial in M,n, 1
ǫ4

, and 1
δ4

.

Lemma 5. Let K be the number of times the players change their distributions
of actions. Within the “Coordinate” block, for any given δ5 > 0, T > 0, and
γ ≤ 1−(1−δ5)

1

KnT , if each cooperating player attempts to change its distribution
of actions on each round with probability γ, the probability that no two players
will make the attempt within T rounds of each other is at least 1− δ5.

Proof.

Prob(No agent changes within T turns after another) ≥ (1− γ)nT

Prob(No agent changes within T turns after K changes) ≥ (1− γ)KnT

Solving for γ given (1− γ)KnT ≥ 1− δ5 we obtain: γ ≤ 1− (1− δ5)
1

KnT .

Lemma 6. Within the “Coordinate” block, for any given δ6 > 0, and the same
δ5, T, γ, and K as in Lemma 5, there exists a τ ′ polynomial in n,K, T, 1

δ5

and
1
δ6

such that if each cooperating player tries to change the distribution of its
actions with probability γ, the probability for all players to do so at least once
after τ ′ rounds is at least 1− δ6.
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Proof.

Prob(One agent has not tried by τ ′) = (1− γ)τ ′

Prob(∃i ∈ [1, n] : Agent i has not tried by τ ′) ≤ n(1− γ)τ ′

≤ n(1− (1− (1− δ5)
1

KnT ))τ ′

≤ n(1− δ5)
τ′

KnT

Setting τ ′ = KnT log1−δ5
( δ6

n
) we have,

Prob(All agents have tried by τ ′) ≥ 1− n(1− δ5)
τ′

KnT

≥ 1− n(1− δ5)
log

1−δ5
(

δ6
n

)

≥ 1− δ6

Moreover,

τ ′ = KnT log1−δ5
(
δ6

n
) = KnT

log( δ6

n
)

log(1− δ5)

= KnT
log( n

δ6

)

log( 1
1−δ5

)
= KnT

log(n) + log( 1
δ6

)

log(1 + δ5

1−δ5

)

We can assume w.l.o.g. that δ5 < 1
2 , and that therefore δ5

1−δ5

< 1. Performing
a power series expansion, with |x| < 1, we have:

log(1 + x) = x−
x2

2
+

x3

3
−

x4

4
+ ...

≥ x−
x2

2

log(1 +
δ5

1− δ5
) ≥

δ5

1− δ5
−

δ2
5

2(1− δ5)2

τ ′ ≤ KnT (log(n) + log(
1

δ6
))

1
δ5

1−δ5

−
δ2

5

2(1−δ5)2

τ ′ ≤ KnT (log(n) + log(
1

δ6
))

2(1− δ5)
2

2δ5 − 2δ2
5 − δ2

5

τ ′ ≤ 2KnT (log(n) + log(
1

δ6
))

(1− 1
δ5

)2

2
δ5

− 3

τ ′ ≤ 2KnT (log(n) + log(
1

δ6
))(1−

1

δ5
)2

Thus τ ′ is polynomial in n,K, T, 1
δ5

and 1
δ6

.

With the additional lemmas above, we can now prove Lemma 2.
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Proof of Lemma 2. Let’s consider first the case in which all agents are parti-
tioned correctly into three sets: target agents, coop agents, and non-coop agents.
All coop agents have the same partitions since they all have the same perfect
observation of the actions of the agents. From Lemma 6, we can find τ ′ such
that all coop agents will attempt to switch group at least once with probability
at least 1−δ6 after τ ′ rounds. Every time an agent attempts to switch group, it
will either join another group of the same or larger size (thereby increasing the
size of that group) or remain in the current group if all the others are smaller.

When an agent joins a new group, it has to recalculate the optimal solution
to the optimization problem shown in equation 3 in Section 4 given the observed
distributions the actions for the other agents in the group. If we choose ǫ4 in
Lemma 4 to be ǫ2

2n
, then H ∗ L periods later, after going through the sequence

S for H times, the actual payoff each agent received can only be at most ǫ2
2n

away from the targeted Pareto-efficient enforceable outcome. This lets us derive
two things. First, if a player is thought to be within the largest group at the
time another player switches to that group, then setting T = H ∗ L and using
Lemma 5 we can show that T periods later no other agents have switched and
the payoff will have changed by less than ǫ2

n
so the player will still be observed

to be within the largest group (since the allowable error for determining the
largest group is ǫ2

n
times the number of players in the group). Since once a

player switches groups it will remain in the largest group, no player will change
groups more than once, and thus the value of K in Lemma 6 will be bounded
by n. Second, since an error of at most ǫ2

2n
is introduced each time an agent

switches groups, once all agents have switched the total error from the optimal
Pareto-efficient enforceable outcome is less than ǫ2

2 . Finally we need to show
that the observed payoffs of all coop agents, X, are within ǫ2

2 of the expected
payoffs for all periods after τ3.

∀i ∈ X,Prob(∃t > τ3 : |V̂ (i)− V (i)| ≥
ǫ2

2
) ≤

∞
∑

t=τ3

2 exp(−2(
ǫ2

2
)2t)

∀i ∈ X,Prob(∃t > τ3 : |V̂ (i)− V (i)| ≥
ǫ2

2
) ≤ 2 exp(−

ǫ22
2

)
∞
∑

t=τ3

(
1

e
)t

∀i ∈ X,Prob(∃t > τ3 : |V̂ (i)− V (i)| ≥
ǫ2

2
) ≤ 2 exp(−

ǫ22
2

τ3)
e

e− 1

Prob(∃i ∈ X, t > τ3 : |V̂ (i)− V (i)| ≥
ǫ2

2
) ≤ 4n exp(−

ǫ22
2

τ3)

Prob(∀i ∈ X, t > τ3 : |V̂ (i)− V (i)| ≤
ǫ

2
) ≤ 1− 4n exp(−

ǫ22
2

τ3)

Prob(∀i ∈ X, t > τ3 : |V̂ (i)− V (i)| ≤
ǫ

2
) ≥ 1− δ′

In the equation above τ3 has been set to 2
ǫ2
2

ln(2n
δ′

).

We have now shown that the agents will converge for all time when the
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conditions in Lemmas 4, 5, and 6 hold for all coop agents. Therefore:

Prob(All coop-agents have converged by τ ′) ≥

Prob((No two agents changed distribution within T) &

(All agents attempted to switch groups) &

(∀ players i : when i switches groups, all other agents

observed play is within
ǫ2

2n
of their actual distributions)

(All payoffs stay within
ǫ2

2
of expected payoffs for all time t past τ3))

≥ 1− δ5 − δ6 − n ∗ δ4 − δ′

We can assign δ4 = δ2

4n
, δ5 = δ2

4 , δ6 = δ2

4 , and δ′ = δ2

4 so that the above hold with
probability at least 1 − δ2. Thus τ ′ is the value for τ2 that we are looking for
and τ ′ is polynomial in M,n, 1

ǫ2
, and 1

δ2

since we know from Lemma 6 that τ ′

is polynomial in n,K, T, 1
δ5

, and 1
δ6

, and we know from Lemma 4 that T = L∗H

is polynomial in M,n, 1
ǫ4

, and 1
δ4

.
Now let us consider the case in which there are non-cooperating agents. In

order to alter the payoffs they will need to pretend to be either coop or stationary
agents. If they conform to the coordination process in PCM(S), then the payoff
constraints will be satisfied and the lemma will hold regardless. PCM(S) checks
to make sure all agents it thinks are cooperating followed the switching policy
by switched at most once and only to the largest group. So any non-cooperating
agents will need to make it appear that all agents have coordinated on a single
group in order to avoid giving themselves away. They can still change the other
agent’s payoffs by either altering their distribution later or correlating in a way
that influences the payoffs while leaving each individual distribution the same.
However, whenever the payoffs vary by more than ǫ from the expected values,
PCM(S) tries recalculating payoffs using the target distributions instead of the
actual plays. Clearly if a group, Y , containing all the non-cooperating agents

is checked the payoffs must deviate by more than ǫ|Y |
n

, since for τ3 greater than
H ∗L, we know that the cooperating and stationary agents contribute no more

than ǫ|Y |
n

error each. Similarly we don’t need to worry about finding a group
with both non-cooperating agents and a coop or stationary one. If the group

had a deviation of at least ǫ|Y |
n

, the group without the coop or stationary agent

must have had an error of at least ǫ|Y |−1
n

at would have been detected first.
Therefore whenever the payoff is more than ǫ below the target profile at least
one non-cooperating agent will be found and no coop or stationary agents will
be misclassified.

C Proof Outline for PCM(A)

The proof of theorem 3 follows from the proof framework of theorem 1 with only
a few modifications. First, we will need to observe the opponents for a longer
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period of time. We now need to show that after a period of H, the observed
distribution for a conditional strategy player is within ǫ′ of the true distribution
for all actions and all possible histories. To show this, we can use the proof
for Lemma 3, but with the number of different probability distributions set to
M ∗Mnk instead of M , giving us:

H ≥
1

2ǫ′2
log

2Mnk+1

δ1

ǫ′ =
ǫ

4nMnk+1

H ≥
8n2M2nk+2

ǫ2
log

2Mnk+1

δ1

An additional complexity arises if the opponents play can depend on their
own past actions. In this case we don’t have the ability to take samples at will
for the different histories, but may instead need to follow a chain of different
histories in order to manipulate the opponent’s play so that we can observe
a particular outcome. In the worst case the length of this chain of histories
may approach the size of the full set of unique histories, Mnk and each desired
transition may occur with a probability as small as λ, where λ is the minimum
non-zero probability any opponent in our target class assigns to any action in
some history. Therefore, the average amount of exploration to get even one

observation of a particular history could require time proportional to ( 1
λ
)Mnk

.
We can think of this term as the mixing time of agents’ exploration policy in
the stochastic game defined by letting each k-length history be a state with the
opponents’ conditional strategies as their policies.

Unfortunately this factor for the time to achieve a desired history can also
affect the maximum length, L, of the sequence we need to approximate any pos-
sible PE solution of the repeated game. To see this, consider an environment
in which the players can only achieve a Pareto-efficient enforceable outcome by
mixing over the outcomes of playing a particular strategy for two different start-
ing histories. In order to approximate the mix, the player may need to spend
an exponential amount of time moving between the two histories. In particular
we can replace the proof of lemma 4 with a symmetric proof approximating the
feasible payoff profile by a distribution over conditional strategies with bounded
memory k. However, since the short-term payoff of a conditional strategy is de-
pendent on the starting history, in order to get a guarantee that the empirical
payoffs are near the expected payoff, we will need to play each strategy for a
time proportional to its mixing time in the stochastic game formed by the play
of the opponents in the target class. Therefore in the worst-case the T in the

proof of lemma 4 will also include a factor of ( 1
λ
)Mnk

.
Finally, we need to address the issue that unconstrained opponents can po-

tentially prevent the agents from observing particular histories. However, the
self-play agents can safely assume the most advantageous member from their
payoff point of view out of the set of target opponents consistent with the other
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observations. In order to prove this assumption wrong and negatively affect the
payoffs, the unconstrained agents would need to allow this history to be played
with positive probability, thereby allowing it be observed. Once it has been ob-
served sufficiently often, the agents can replan. This can happen at most once
for each history so the agents would need to coordinate at most Mnk times.
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