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Abstract

We define the notion of social conventions in a standard game-theoretic framework, and identify
various criteria of consistency of such conventions with the principle of individual rationality. We
then investigate the emergence of such conventions in a stochastic setting; we do so within a
stylized framework currently popular in economic circles, namely that of stochastic games. This
framework comes in several forms; in our setting agents interact with each other through a random
process, and accumulate information about the system. As they do so, they continually reevaluate
their current choice of strategy in light of the accumulated information. We introduce a simple
and natural strategy-selection rule, called highest cumulative reward (HCR). We show a class of
games in which HCR guarantees eventual convergence to a rationally acceptable social convention.
Most importantly, we investigate the efficiency with which such social conventions are achieved.
We give an analytic lower bound on this rate, and then present results about how HCR works out
in practice. Specifically. we pick one of the most basic games, namely a basic coordination game
(as defined by Lewis). and through extensive computer simulations determine not only the effect
of applying HCR, but also the subtle effects of various system parameters, such as the amount of
memory and the frequency of update performed by all agents. © 1997 Elsevier Science B.V.
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1. Introduction

In multi-agent systems, be they human societies or distributed computing systems,
different agents (people in the one case, programs or processes in the other) aim to
achieve different goals, and yet these agents must interact either directly by sharing
information and services, or indirectly by sharing system resources. In such distributed
systems it is crucial that the agents agree on certain rules, in order to decrease conflicts
among them and promote cooperative behavior. Without such rules even the simplest
goals might become unattainable by any of the agents, or at least not efficiently attainable
(Just imagine driving in the absence of traffic rules). These rules strike a balance between
allowing agents sufficient freedom to achieve their goals, and restricting them so that
they do not interfere too much with one another,

We have been investigating social rules as a design tool. Some of these rules are
designed and agreed upon ahead of time (traffic laws are an example); in previous work
[21,25] we investigated some aspects of this off-line design of social laws. However,
not all rules can be agreed upon in advance. This is either because the characteristics of
the society are unknown, or because they change over time. In addition, the design of all
rules in advance might be computationally hard. In such cases, it is often important that
the society converge on a convention in a dynamic fashion. In human societies this is
common; this is how (e.g., software) standards emerge long before they are enshrined
in official regulations.

How do such conventions emerge? Roughly speaking, the process we aim to study is
one in which individual agents occasionally interact with one another, and as a result
gain some new information. Based on its personal accumulated information, each agent
updates its behavior over time. The complexity of this process derives from its concurrent
nature: As one agent adapts to the behavior of the agents it has encountered, these
agents update their behavior in a similar fashion. This tends to result in complex system
dynamics, reminiscent of those encountered in particle physics, population genetics, and
other areas. Each of these areas has developed stylized settings in which to carry out
the investigations; we ourselves will adopt the framework of stochastic games from the
economics literature.

In general terms, we will be asking two types of question:

(1) Under what conditions do conventions eventually emerge? and

(2) How efficiently are these conventions achieved?

As it turns out, our results on eventual convergence will be primarily analytic, whereas
the results on efficiency include both analytic lower bounds and empirical results of
extensive computer simulations.

Here is the structure of our articie, explained at two levels of granularity: a brief,
Jargon-free description, followed by a more detailed description that appeals to game-
theoretic terminology.

The brief description of the article is as follows:

e We give a formal definition of social laws and conventions, which are essentially

the restriction of choices available to agents.

e We identify those laws and conventions that might be deemed rational from an

individual standpoint.
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e We define a stochastic setting in which agents interact with one another and update
their behavior as a result. We define a particular update rule, and show that in
certain circumstances it is guaranteed to lead all agents to accept a rational social
convention.

e We then investigate how fast such rational conventions might emerge. We first give
an analytic lower bound, and then investigate the actual rate of convergence in a
particular case through extensive computer simulations.

Here is a more detailed overview of the article, which makes reference to game-
theoretic terms. The reader unfamiliar with game theory should just skim the following,
and perhaps refer back to it once all the terms have been defined in subsequent sec-
tions.

e We adopt without change the notions of games, payoff matrices, and rationality
as utility maximization. We also make reference to the notions of maximin values,
Nash equilibria, and Pareto optimality. We make no novel contribution in this part.

e Next we consider the possibility of limiting the agents to a subset of the original
strategies of a given game, thus inducing a sub-game of the original one. We call
such a restriction a social constraint; if the restriction leaves only one strategy to
each agent, it is called a (social) convention. Some social constraints are consistent
with the principle of individual rationality, in the sense that it is rational for agents
to accept those (assuming all others do as well). In fact, we identify several senses
of “rational social behavior”. Some constraints are not rational in any reasonable
sense. Both rational and irrational types of constraints may be of interest from
a design standpoint, but we will pay special attention to the former. As social
constraints fall within the general area of cooperative games in economics, whatever
contribution we make in this part takes the form of added concreteness, a somewhat
new perspective, and the attendant new terminology.

e Classical results in game theory make strong assumptions; in particular, they rely
on the game being common knowledge. Much recent work in economics is devoted
to investigating more realistic models. One important strand of recent work in
economics, which has been strongly inspired by models of population genetics
(e.g., [9,12]), tends to relax not only the assumption that the game is common
knowledge, but sometimes even that the game is known at all. Specifically, a
number of models have been proposed in which agents engage in some process
of (typically pairwise) interactions through which they gain information about
the system (specifically, about how well each of their strategies has fared so far,
perhaps about the strategies used by other agents, and, if the game is not known in
advance, about the game). The agents may then use that information to update their
choice of strategy, and the process repeats. It is then sometimes possible to show
that the system will converge to a particular global state as if the players in fact
had complete information and were acting rationally. The models within economics
vary widely on how agents accumulate information, and how they update their
choice of strategy. One important model is that of stochastic games and the notion
of evolutionary stable strategies (ess’s), where it is shown that under certain
conditions the iterated process will converge to a Nash equilibrium. We make no
novel contribution to this work as such.
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The items below constitute the core of our article, and are all novel.

e We ask, in an analogous fashion, how desirable social conventions might emerge
through a stochastic process. These social conventions are not necessarily Nash-
Equilibria.? We adopt the framework of stochastic games mentioned above. How-
ever, that framework allows quite a few variants, and our particular setting has
unique features (we will explain and motivate these features later). Most impor-
tantly, we define a simple and natural strategy-selection rule called highest cumu-
lative reward (HCR). (Again, for the reader familiar with ess’s, we remark that
this rule replaces the best response rule.)

{ We show a class of stochastic games in which the HCR rule is guaranteed to
I converge to a rational social convention.

;- e We then ask how fast such social conventions might be achieved; most of our
|

article is in fact devoted to this last topic. We first give an analytic lower bound
on how fast it can be expected to be reached given any strategy-selection rule
(we use a coupon-collector-style argument). We then investigate how fast such
conventions evolve in practice. We do so by picking the simple coordination game,
as defined by Lewis,? and through extensive computer simulations determine not
only the effect of applying HCR, but also the subtle effects of various systems
parameters, such as the amount of memory and frequency of update performed by
all agents.

2. Games, social laws, and conventions

; In this section we lay out the static framework, starting with the standard game-
theoretic notions, and overlaying those with the notions of social laws and conventions.

2.1. Games

All definitions in this section are standard and, in fact, very basic, in game theory.
We include this section to make the article self-contained for those not familiar with
game theory, and also to be clear about just how much we are taking from game
theory (although we will take a bit more when we get to stochastic games). We start
by defining the standard notion of a (one-shot) game. Intuitively, a game involves a
number of players, each of which has available to it a number of possible strategies. 4
Depending on the strategies selected by each agent, they each receive a certain payoff.*
The payofts of the different agents are in general independent of one another, and are
captured in a payoff matrix. Formally:

2 Although in some cases they may be. Our study will differ from the related studies in economics on various
other dimensions as well.

*In fact, we choose the perhaps most simple coordination game.

*Some work in Al uses the term ‘action’ rather than the term “strategy”; we will use both terms
interchangeably.

3 Some work in Al uses the term “reward” instead; again, we will use both terms.
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Definition 1 (k-person game). A k-person game is defined by a k-dimensional matrix
M, the entries of which are each a k-long vector of real numbers.

Intuitively, each dimension of the matrix represents the possible actions of the k

players of the game. The jth element of the vector M(iy,iy,...,i;) represents the
feedback to the jth player if the actions taken by all the players are iy, i, ..., i,
respectively.

In this article we will be concerned exclusively with symmetric games. Intuitively, in
symmetric games all players have the same strategies available, and the feedback they
get does not depend on their roles or identities. More precisely:

Definition 2 (Symmetric game). A payoff matrix M defines a symmetric game iff the
following hold:
(1) All dimensions of M are of equal length, /. (Intuitively: The agents all have the
same strategies available.)
(2) Foralliy,....ix (1 <i;j<Il,wherel <j<k)and ! < m,n<k,if i, =i, then

the mth and nth elements of the vector M(ij,...,i;) are identical. (Intuitively:
Two players who play identically get the same payoff.)
(3) If (iy,iz,....i) is a permutation of (ji,j2,...,ji) then the vectors M (i), i,

«..»ix) and M(jy, j2,. .., ji) are the corresponding permutations of one another.
(Intuitively: The payoff to the players does not depend on their roles in the
game.)

In addition to the restriction to symmetric games, throughout most of the paper we
will concentrate on 2-person-2-choice games (i.e., M will be a 2 x 2 matrix with k =2).
In the remainder of the article, and unless specified otherwise, a game will be understood
to be a symmetric 2-person-2-choice game, and thus will have a matrix of the following
form:

X, X u,r
o v,y

Here are two examples of games. These two games, which are well known in the
literature, capture the phenomena of coordination and cooperation, respectively. Intu-
itively, the first game describes a situation in which the goal is to reach homogeneity in
the society: it is an instance of the class of coordination games as defined by Lewis in
his study of conventions [18].

Example 3 (A coordination game).

1,1 —1,-1
—-1,-1 1,1

The second game we will consider is an instance of the well known prisoners dilemma
setting, of the sort studied, for example, by Axelrod [2]. This game is a basic game in
the study of cooperation.
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Example 4 (A cooperation game, also known as prisoners’ dilemma®).

1,1 -3,3
(3, -3 -2, —2)

(In the cooperation game we call the first strategy available to each player “cooperate”
(or “c” for short), and the second “defect” (or “d™).)

The general question asked is, given a game, what strategies might the various players
select. The combination of strategies selected by all the agents is called their joint
strategy (or joint action). A basic assumption of game theory, which underlies many
of its famous theorems, is that individuals are rational in the sense of being utility
maximizers; that is, they will pick strategies that guarantee them the highest payoff. A
number of important notions arise as a result; here are three.

(1) If an agent knows what game is being played, but cannot assume that the other
players do (or alternatively that they are rational), he might consider taking
those actions that guarantee him the highest minimal payoff, no matter what the
other agents do. The amount of this payoff is called maximin value. An action
that guarantees the maximin value is called a maximin strategy.

(2) If the game the agents play is common-knowledge then the maximin strategy may
not be the best choice; the worst-case scenario for a given agent might be also
a non-optimal case for the other agent(s), and therefore can be assumed not to
arise. A more appropriate notion in such setting is that of a Nash equilibrium; this
is any joint strategy that is stable in the sense that no single agent benefits from
switching to another strategy if all others remain unchanged. Nash equilibrium
is among the most influential notions in game theory.

(3) Another influential notion is that of Pareto optimality. A joint action is Pareto
optimal if there does not exist another joint action that increases the payoff to
one agent without decreasing the payoff to another.

Example 3 (continued). In the coordination game the maximin value obtained is —1:
both strategies are maximin strategies. There are two Nash equilibria, namely the two
joint strategies on the main diagonal, and in both the payoff to each player is 1. These
Nash equilibria happen to also be the two Pareto-optimal joint strategies in the game.

Example 4 (continued). In the cooperation game the (unique) maximin strategy is
“defect”, with a maximin value of —2; this is also the strategy that will be performed
in the (unique) Nash equilibrium. Nevertheless, this Nash equilibrium is the only joint
strategy that is not Pareto optimal.

2.2. Social laws and conventions

Notions such as Nash equilibria make sense in a competitive setting that is devoid of
any central control. In such a setting one can reasonably argue, for example, that in the

¢ The reason we prefer the term “cooperation game” to “prisoners’ dilemma” is that in cooperative. or
bargaining, situations, which are the sort that we will consider, there is no dilemma associated with the game.

R
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cooperation game it is irrational for an agent to do anything but defect (and hence the
paradox, since the agents are better off if they both cooperate).

However, consider a setting in which there does exist some central authority, be it a h
government in a human society or a system administrator in an electronic society. In
this case, the authority may step in and dictate constraints. In general, it may dictate
any constraint at all, in a way that is independent of the individual payoffs. This is an
interesting possibility from a design standpoint, since there may be design goals that
are not reflected in the individual payoffs. Indeed, our own primary motivation lies in
using social laws as a tool for designing effective distributed systems. Nevertheless,
in this article we will concentrate on constraints that serve the goals of the individual
agents. Specifically, we consider the following scenario. Each agent is presented with the
opportunity to accept constraints on his actions, conditional on all other agents accepting
similar constraints. The constraints will be imposed if and only if all agents accept them,
and in that case compliance with the constraints is guaranteed by the central authority.
The question is what sort of social constraints are rational for the agent to accept under
these conditions.

- e e —— e

Definition 5 (Social law). A social law is a restriction on the set of actions available
to the agents. A game g and a social law s/ induce a sub-game gy of g that is the
restriction of g to actions that are not prohibited by sl. *

We may now define criteria according to which a social law may or may not be
deemed rational. The tool we have at our disposal consists of the various variables
defined on games, such as the three already mentioned—the maximin value, the set
of values of the various Nash equilibria, and the set of values of the Pareto-optimal
strategies. For any such variable V, let V(g) denote the value of that variable in the
game g.7 At this point in the article we remain agnostic about the choice of game
variables; we will be less vague about it when we discuss the evolution of social
conventions.

Definition 6 (Rational social law). Let g be a game, V a game variable, and < an
ordering on the possible values of this variable. A social law sl is rational with respect
to gand V if V(g) < V(gy).?

[ The reader should notice that rationality here does not imply optimality. We view the i
acceptance of a suggestion made by the designer as rational if it improves upon what *
could be obtained without such suggestion.’

7 Recall that in this article we are restricting the discussion to symmetric games, and so we need not worry
about different players attaching different values to a game variable.

% |n a case that the game variable refers to a set of elements (such as the set of Nash Equilibria) we take
< 10 be an ordering over sets. In the case of maximin, the meaning of < is straightforward.

Y This does not imply of course that we view an agent who accepts a suggestion which does not improve
upon its situation as irrational. However. we are especially interested (given our interest in symmetric games)
in social laws which enable the agents to improve upon their situation.
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Of special interest are social laws that restrict the agents’ behavior to a particular
action:

Definition 7 (Social convention). A social law that restricts the agents’ behavior to
one particular strategy is called a (social) convention.

In most of this paper we will be concerned with simple games where each agent
has to decide from among two actions; hence, we will be mostly interested in social
conventions.

Example 3 (continued). In the coordination game, there are two rational social con-
ventions with respect to the maximin value, namely restriction to the first strategy and
restriction to the second.

Example 4 (continued). In the cooperation game there is one social convention that is
rational with respect to the maximin value, namely restriction to “cooperate”. '0

3. Stochastic games and emergent conventions

As was mentioned in the Introduction, classical results in game theory make strong
assumptions; in particular, they rely on the game being common knowledge. Much re-
cent work in economics is devoted to investigating more realistic models. One important
strand of recent work in economics, which has been strongly inspired by models of
population genetics, tends to relax not only the assumption that the game is common
knowledge, but sometimes even that the game is known at all. Specifically, a number of
models have been proposed in which agents engage in some process of (typically pair-
wise) interactions through which they gain information about the system (specifically,
about how well each of their strategies has fared so far, perhaps about the strategies
used by other agents, and, if the game is not known in advance, about the game).
The agents may then use that information to update their choice of strategy, and the
process repeats. It is then sometimes possible to show that the system will converge to a
particular global state as if the players in fact had complete information and were acting
rationally.

The models within economics vary widely on how agents accumulate information, and
how they update their choice of strategy. One important model is that of stochastic games
and the notion of evolutionary stable strategies (ess's), where it is shown that under
certain conditions the iterated process will converge to a Nash equilibrium. Kandori et
al. [12] show that by gathering detailed statistics about the relative success of different
strategies in a symmetric game that is played stochastically, and adopting a rule which
says the society moves in the direction of the more successful strategies, subject to

10 By showing that cooperation is a rational convention we do not mean to imply that there are not other
settings that sanction cooperation; see [2].

Ly g
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certain mutations, the system converges to Nash equilibrium. In [13], Kandori and Rob
extend some of the results of [12]; they use the best response update rule, where a
player selects the strategy that is the best strategy assuming other agents keep using
their strategies (which are assumed to be learned by stochastic interactions). The best
response update rule is also adopted in the work of Gilboa and Matsui [9], as well
as in additional related work [15]. The main feature of the above-mentioned work is
characterized by the fact it uses a model of global interactions where any agent interacts
stochastically with all other agents, until gathering almost full information either on the
strategies adopted by other agents or on the success of various strategies. This is quite
different from models of local interactions where the agents are assumed to interact
only with certain neighbors and to update their behavior in a more frequent manner. A
detailed discussion on global and local models of interactions appear in [15]. We will
return to this point later in the end of Section 3.1, when we discuss a novel aspect of
the model we use.

In the above discussion we mentioned some results on the emergence of Nash equi-
libria. We are interested in obtaining similar results for social laws and conventions.
After all, the process we described for adopting a social law (the one in which agents
were presented with the opportunity to voluntarily give up some options) made the
same strong assumptions as classical work in game theory; in particular, it relied on
the game being known (though not necessarily commonly known), and on agents be-
ing rational. We now ask whether social conventions, and perhaps even rational ones,
might emerge also without these strong presuppositions. Specifically, we ask whether
they might emerge through a stochastic process similar to the framework of stochastic
games mentioned above. However, that framework allows quite a few variants, and our
particular setting has somewhat unique features.

3.1. From static to stochastic games

Definition 8 (n-k-g stochastic social game). An n-k-g stochastic social game consists
of a set of n agents, a k-person game g, and an unbounded sequence of ordered tuples
of k agents selected from a uniform distribution over the n given agents. !

Intuitively, a stochastic social game describes a process in which, repeatedly, random
k agents meet and play the particular game. In each iteration the actions are selected
by the agents who participate in the game in a synchronous fashion. When agent i is
selected to play in the game g in one of the rounds of n-k-g, i must select an action
from among the actions available for it in the game g. An important question is what
freedom we have in defining the action-selection function (which we will also call the
update rule). We adopt two principles in this regard:

e Obliviousness. The selection function cannot be based on the identities of agents

or the names of actions.

! The uniform-distribution assumption is made to simplify the discussion, but it can be relaxed and the results
in the paper can be generalized suitably.

p————




148 Y. Shoham. M. Tennenholiz/Artificial Intelligence 94 (1997) 139-166

® Locality. The selection function is purely a function of the agent’s personal history;
in particular, it is not a function of global system properties.
We capture these principles in the following definition:

Definition 9. A selection function is local if it is a function of the history of actions
taken by the agent and the corresponding payoffs received. A selection function is semi-
local if it is a function of the history of actions taken, the corresponding actions taken
by the other agents encountered by the agent, and the corresponding payoffs. In both
cases it is required that a permutation of the names of actions in the history lead to a
corresponding permutation of the actions selected.

Notice that a local selection function obeys both the locality and the obliviousness
principles. A semi-local selection function is oblivious, but allows to refer to the ac-
tions performed by the agents encountered. The intuition behind the above principles is
perhaps more important that its mathematical definition. We are interested in emergent
rational social conventions in cases in which we cannot anticipate in advance the games
that will be played. For example, if we know that the coordination problem will be that
of deciding whether to drive on the left of the road or on the right, we can very well use
the names “left” and “right” in the update rule; in particular, we can admit the trivial
update rule which has all agents drive on the right immediately. Instead, the type of
coordination problem we are concerned with is better typified by the following example.
Consider a collection of manufacturing robots that have been operating at a plant for
five years. at which time a new collection of parts arrive that must be assembled. The
assembly requires using one of two available attachment widgets. which were introduced
three years ago (and hence were unknown to the designer of the robots five years ago).
Either of the widgets will do, but if two robots use different ones then they incur the
high cost of conversion when it is time for them to mate their respective parts. Our goal
i1s that the robots learn to use the same kind of widget. The point to emphasize about
this example is that five years ago the designer could have stated rules of the general
form “if in the future you have several choices, each of which has been tried this many
times and has yielded this much payoff, then next time make the following choice™; the
designer could not, however, have referred to the specific choices of widget, since those
were only invented two years later,

This explains why we do not want the update rules to rely on action names. The
prohibition on using agent identities in the rules (e.g.. “if you see Robot 17 use a
widget of a certain type then do the same. but if you see¢ Robot 5 do it then never
mind”) is similarly motivated by the dynamic nature of the society; agents drop in and
out of the society, denying the designer the ability to anticipate membership in advance.
We definitely acknowledge that it is often useful to single out certain agents (such as
Head Robot), and have them be treated in a special manner. We are very interested in
the role of agents with special identities (and in particular in the role of organization
structure [29] ), but even with those it is still the case in a rich selting most of the agents
will not be distinguishable in this fashion. In this article we investigate the emergence
of successful joint actions only in such “faceless masses”, and completely ignore the
role of personal identities.
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The above discussion concentrated mainly on the obliviousness requirement. Finally
we need to motivate the requirement of locality. Interestingly, this requirement is not
met by most dynamic systems put forward in similar settings. In particular, the work
in economics discussed above, assumes that agents participate in sufficiently many
interactions so as to have reliable global statistics about the system. This bias has its
roots in the biological framework which inspired the economic model, and in particular in
the global fitness function encountered in population genetics [ 1]. This global character
of the update rule is even more blatant in the area of mathematical sociology [30], and
in the work on computational ecologies [10]. It is not our claim that global information
is never available to an individual in a society; counter-examples abound. However, it
is clear that much of individual decision making is made in the absence of this global
information, and our aim is to home in on this element. We will return to this topic when
we compare our setting to dynamic system models in other fields, and, in particular,
€Cconomics.

3.2. The Highest Cumulative Reward rule

We are now ready to start investigating useful action-selection rules. In [24] we
reported on preliminary results of experiments with a number of such rules. Here we
will concentrate on one particular local update rule, called Highest Cumulative Reward.
There are a few reasons we concentrate on this rule. First, it is a very natural one. Second,
past experiments have shown it to be particularly effective in stochastic settings. Finally,
we will see that, despite its simplicity, this rule gives rise to nontrivial phenomena. (In
the following definition, recall that in this article games are by default 2-person-2-choice
games. )

Definition 10 (HCR). According to the Highest Cumulative Reward update rule (or
HCR), an agent switches to a new action iff the total payoft obtained from that action
in the latest m iterations is greater than the payoff obtained from the currently-chosen
action in the same time period.

The parameter m in the above definition denotes a finite bound, but the bound may
vary. As we mentioned, HCR is a simple and natural update rule. It is, however, clearly
not the only such rule. In particular, it would be natural to consider update rules that use
a weighted accumulation of feedback rather than simple accumulation. Indeed, we have
experimented with such rules as well. However, the results obtained, both analytic and
experimental, were not qualitatively different from those obtained for HCR, and hence
we stick with the simpler rule. A more detailed discussion of other update rules can be
found in [24].

Clearly, HCR is a local update rule. (For the reader familiar with the relevant literature
in economics, we remark that HCR stands in contrast to the best response update rule, in
which the agent applies its best response to the sect of strategies adopted by, essentially.
all other agents.) We now would like to understand how HCR affects the emergence of
rational social conventions, and, in particular, its effects on the evolution of coordination
and cooperation. In fact, we are able to show a result that applies to a somewhat broader

S e
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class of games, which include the coordination and cooperation games. We call these
games social agreement games.

Definition 11. A social agreement game is a symmetric game g with matrix

X, X u,v

tu yy
in which x, y,u,v # 0, either x > 0 or y > 0 and either u < 0 or v < 0; if both x > 0
and y > O then x = y. 12

It is easy to see that the cooperation game and the coordination game are both social
agreement games.

The theorems below that refer to HCR assume that the parameter (memory bound)
m is much larger than the entries in the payoff matrix of the game. We also assume
that m > n > 4, and that the payoffs in g have finite decimal representation. With these
assumptions, we have:

Theorem 12. '* Given an n-2-g stochastic social agreement game, placing no con-
straints on the initial choices of action by all agents, and assuming that all agents
employ the HCR rule, the following holds:

e For every € > O there exists a bounded number M such that if the system runs
Jor M iterations then the probability that a social convention will be reached is
greater than | — .

® Once the convention is reached, it will never be left.

e [f a social convention is reached then it guarantees to the agent a payoff which is
no less than the maximin value that was initially guaranteed.

o Furthermore, if a social convention exists for g that is rational with respect to the
maximin value, then the social convention reached will be rational with respect to
maximin.

The above theorem shows that stable conventions can emerge using the a purely local
update rule. In addition, it discusses also the evolution of stable conventions which are
not Nash-Equilibria. In particular, our results show that using a purely local update rule
a rational stable convention (with respect to maximin) would emerge in the coordination
and cooperation games:

Corollary 13. The HCR update rule guarantees eventual emergence of coordination
and of cooperation, that is, rational conventions in the respective games.

121t will be perhaps a bit jarring to some readers to see a formulation that depends on notions of “positive”
and “negative” rewards, and thus one that does not allow a constant offset of all numbers. It is debatable
whether the notions of “positive” and “negative™ rewards are defensible: we believe that at the very least they
are not trivially dismissed. Furthermore, even if one wished to do away with an objective notion of zero.
one could perhaps synthesize one dynamically based (for example) on average payoffs encountered so far
(related ideas appear. for example, in | 23]). However, this discussion is beyond the scope of our paper.

13 Proofs appear in Appendix A.
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3.3. The efficiency of evolution: a lower bound

The above results shed light on the eventual emergence of social behavior, but they
say nothing about the efficiency with which this behavior is attained; the remainder
of this article is devoted to this question. Our study of the efficiency of convention
evolution will refer to the number of iterations required for obtaining a desired behavior.
This measure of efficiency is different from the one which has been studied in models
of stochastic global interactions. The measure of efficiency in that work has been the
number of interaction periods which is required to reach a Nash-equilibrium. Each such
interaction period consists of a huge number of iterations (in our terminology) where
the agents gather information about each other. We start by presenting a general lower
bound on the efficiency of convention evolution. This will be obtained by the following
definition and theorem.

Definition 14. Let g be a social agreement game. Consider iteration f of an n-2-g
stochastic social game, and the n- (n — 1) games (possible agent interactions) that
might be played at that iteration. Define X,(?) to be a random variable that contains
the number of games that might be played in iteration ¢ and that result in a payoff
for a player that is less than the one obtained by a rational social convention. Let
T(n) be a function that associates with each n a number (of iterations). Given a local
update rule R, and some distribution on the initial actions of the agents, we will say
that R guarantees the emergence of a rational social convention after T(n) iterations, if
E[ X, (T(n))] converges to O.

Roughly speaking, we measure how far the system is from reaching a rational social
convention. We would like this distance to be as close to 0 as possible in a minimal
number of iterations.

Theorem 15. Let g be a social agreement game, and let R be a local update rule. 14
Assume there is some non-zero constant probability for starting with any particular
action by any particular agent. If R guarantees the emergence of a rational social
convention in the related n-2-g games in T(n) iterations, then T(n) =Q(n-log(m).

4. The evolution of coordination: Experimental results

At this point we seem to be converging on an understanding of the dynamics brought
about by HCR; at least for social agreement games, we have a guarantee of eventual
emergence to a rational social convention (if one exists), as well as a cautionary lower
bound on how fast we can expect to arrive at such a happy occasion. It would be natural
to expect that subsequent investigations would provide finer and finer lower and upper
bounds. increasing our understanding of HCR.

!4 Similar results hold for semi-local rules.
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Unfortunately. this has not been our experience. What we found instead was that
rather specific properties of the particular games being played flavor the dynamics so
strongly that it appears extremely difficult to arrive at general results at the level of the
update function. We arrived at this conclusion through extensive computer simulations,
which yielded results that not only had not been anticipated. but in fact have not yet
been (fully) explained mathematically even after the fact.

Let us illustrate the point with the two games highlighted above, the coordination and
cooperation games. Both are instances of social agreement games, and hence subject
to the upper and lower bounds presented in the previous section, and yet the practical
experience with the two has been radically different. In the case of the coordination
game, the HCR rule not only led to the emergence of convention, but it did so at a
rate that approaches the theoretical lower bound. In contrast, in the cooperation game
the HCR rule proved to be very inefficient, rendering it useless for most practical
applications.

In the remainder of this article we restrict our attention 1o the coordination game,
and explore various aspects of the efficiency with which coordination evolves. !5 Unless
stated otherwise, when we refer to convention evolution, we will refer to the emergence
of rational social convention in an n-2-g stochastic social game, where g is the coordi-
nation game. More specifically, when we say that a set of agents reached a convention,
we mean that the agents in that set adopt the same strategy. All of our discussion and
results remain valid when we replace the constant | in the coordination game, by any
other constant x > 0. In this section we take the default value of m (in the definition of
HCR) to be greater than the number of iterations (i.e., agents refer to their full history);
we will be explicit when we depart from this default.

Unless stated otherwise, the experimental results appearing in this section refer to
experiments with 100 agents starting with random initial strategies. Each experiment
consists of many trials, each of which consists of a run of the stochastic game for a
given number of iterations.

4.1. The effect of update frequency

The first parameter and modification we consider concern update frequency. In the
previous scction we assumed that each agent updates '® its hehavior at each iteration,
What happens if agents update their behavior less frequently? This condition mighl
be imposed by internal limitations of the system, or alternatively might be selected
voluntarily to impose greater stability on the system.

A plausible a priori intuition about the effect of delaying the application of the update
function might be as follows. If one does not delay at all, agenis may react on the basis
of insufficient information, leading to a lot of thrashing in the system. If one delays oo
much, agents may be preventing from updating even when appropriate. So perhaps there
is some optimal, middle-of-the-road course of action,

5 The efficiency of cooperation evolution is discussed further in |26].
'6 By “update” we mean the application of the update function; the result need not be a change in action.
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Fig. 1. The effects of update frequency.

Particularly, in this setting this intuition is not born out. We found that when the
frequency of update decreases, then the efficiency of convention evolution decreases.
Our results are illustrated by Fig. 1. In this figure, the x coordinate describes the distance
between iterations in which update is performed, while the y coordinate describes the
number of trials from among 4000 trials of 1600 iterations each in which more than
95% of the agents reached a convention.

4.2. The effect of memory restarts

We investigated the effects of memory size on the efficiency of convention evolution.
We consider two forms of limited memory; one is treated in this section, and the other
one will be treated in Section 4.4. One type of limited memory is a memory that is
restarted from time to time. When the memory is restarted, the agents’ current strategies
(the ones they will now start with) are not forgotten, but previous history is. This might
be in particular interesting in systems which stop operating for a short while from time
to time. For example, a society might be interested in a particular coordination only in
some periods of the year, where agents are assumed to forget what they have exactly
seen in the previous periods although they still remember their current (latest) strategy.
We investigated the efficiency of convention evolution as a function of the frequency of
memory restarts. We found that when the distance between iterations where the memory
is restarted decreases, then the efficiency of convention evolution decreases. This is
illustrated in Fig. 2. The x coordinate of this graph corresponds to the distance between
iterations where the memory is restarted. The y coordinate describes the number of trials
from among 4000 trials of 800 iterations each, in which more than 85% of the agents
reached a convention.

The reader may be tempted to treat this as an “obvious” result; however, full memory
is not always an advantage. Sections 4.3 and 4.4 will provide some examples; here is
another example. We ran an experiment in which agents restarted their memory always
and only after changing their strategy. In that case the evolution of convention was even
more efficient than in the case of full memory; in 3298 from among 4000 trials of 800
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Fig. 2. The effects of memory restarts.

iterations each, more than 85% of the agents reached a convention (while with complete
information this was true of only 3010 of the trials.) We will explain why full memory
is not always an advantage in the following sections.

4.3. Co-varying memory size and update frequency

We have so far varied update frequency and memory independently; we now show
that these two parameters interact. Consider the results from Section 4.1, where we
showed that the rate of convention evolution is a monotonic increasing function of
update frequency. We now show that decreasing memory blocks the degradation of
convergence with the decrease in update frequency. Specifically, in this experiment we
adopted the memory-restart model, and varied together the memory-restart frequency
and the update frequency; that is, at the end of each window each agent updated its
choice according to HCR for that window. The general result we obtained is that when
update becomes infrequent (there is a long delay between strategy updates), then it
is better to restart the memory from time to time than to rely on the whole memory.
Our results are illustrated in Fig. 3. The x coordinate of this figure corresponds to
the update frequency, which is equal to the number of iterations between consecutive
memory restarts. That is, in this case, we had a single interval which served both as
the update frequency and the memory restart frequency. The y coordinate corresponds
to the number of trials from among 4000 trials of 1600 iterations each in which 95% of
the agents reached a convention. It is illuminating to compare Fig. 3 to Fig. 1 (where
full memory is assumed); when the update frequency drops below about 100 iterations,
it becomes better to use the statistics of only the last window than to rely on the entire
history.

The rationale of the above result may be explained as follows. When agents have
update delays they start relying on unreliable old information. By restarting its memory
the agent succeeds in getting rid of some of this unreliable information.

One of the implications of the above result, from a design perspective, is that in
systems where there are update delays the designer may wish to tell the agents to restart
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Fig. 3. The case in which update frequency = memory restart frequency.

their memory from time to time in order to speedup the evolution of conventions. In
the next section we will see that when there are no update delays even a more concrete
kind of advice/result can be supplied/obtained.

4.4. Limited memory windows

A more continuous form of limited memory is one in which each agent at each time
keeps a limited window into its past experience, and bases the HCR rule on only that
window. We have considered two forms of windows, one in which an agent remembers
the last m iterations in which it participated in a meeting, and another in which the
agent remembers the last m iterations, regardless of whether it participated in a meeting
in those.

Our results of these two experiments are illustrated in Figs. 4 and 5, respectively. In
both of these figures the x coordinate describes the size of the memory window, and
the y coordinate corresponds to the number of trials from among 4000 trials of 800
iterations each, in which more than 85% of the agents reached a convention. Note that,
somewhat surprisingly, in both cases it pays to forget, though some minimal memory is
essential (in the first case this minimum is in fact equal to 2 iterations, and therefore
this can be seen more easily in the second case).

The rationale of this result is that the old history of the agents is less adequate than
the relatively new information, and as a result it may be better not to rely on old
information as part of the data a decision refers to. On the other had, too short memory
may not enable the agents enough sampling of what is going on in the system, and may
lead to inefficient behavior.

A good choice of the memory window while applying HCR will give us in fact an
update rule whose behavior is close to optimal. The case in which the memory size
is between 2n to 3n (where n is the number of agents) gives us the above-mentioned
close to optimal behavior, which is in fact a speed of convergence of O(n - log(n)).
More specifically, given that there are n agents who adopt HCR with a memory window
3n (where this number refers to the overall number of iterations, as in Fig. 5), we
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observed that all of the agents reach a convention after less than 37 - log(n) iterations
i (when we vary the number of agents.) The optimality stems from the above fact and
1 from Theorem 15. The important point is that HCR with an appropriate limited memory
1i window can be supplied to the agents as an update rule that will enable an efficient
convention evolution in a system where there are no update delays.

One implication of this result is that it enables the designer to supply the agents with
a concrete useful update rule which will enable conventions to evolve rapidly when there
are no update delays. This may be of course most useful in situations where conventions
HEh are essential but can not be determined in advance.

e ——

'f ! 4.5. Further discussion of HCR
i

The previous sections have discussed several results about the efficiency of convention
: evolution. Our measure of efficiency has been the number of agents which adopt a
i convention after a given number of iterations. In particular, our graphs show the number
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Fig. 6. The shape of convention evolution.

of trials in which, after a particular number of iterations, the number of agents who
adopt a similar (most popular) strategy is greater than a particular threshold. Our
qualitative results do not change when different thresholds and numbers of iterations are
used.

In addition to the above, one may be interested also in the dynamics of HCR for fixed
assignments of the parameters. As it turns out, the dynamics are quite simple for any
selection of the parameters. The number of agents who adopt the more popular strategy
may have little fluctuations in the beginning of the process; then, this number increases
until a convention is obtained; the speed in which this number increases, decreases
along time. The explanation of these phenomena is as follows. The fluctuation appears
mostly when the numbers of agents adopting different strategies are equally divided,
and it is simply a result of the random selection of agents. The fact that the increase
in the number of conforming agents is more modest towards the end of the process is
explained by the fact that it takes time to a non-conforming agent to be selected by the
process. We illustrate this by Fig. 6, in which HCR is used by an agent with memory of
3000 (i.e., greater than the maximal number of iterations), and with no update delays.
We consider the case where the strategies are equally divided among the agents in the
beginning of the process. The x coordinate corresponds to the number of iterations, and
the y coordinate corresponds to the number of agents conforming to the most popular
strategy in that point.

4.6. More complicated decisions

The coordination game captures a situation where a selection among a pair of rational
social conventions has to be made. This can also be considered as a selection of an
option from among two possible options, without an a-priori agreement about which
option should be chosen. What happens if the agents have to agree on an option from
among more than two available options, that is, on something more complicated than
a bit? How does the number of options (potential conventions) affect the efficiency of
convention evolution?
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In order to answer the above question we use the following observation: whenever an
agent performs a particular strategy and gets a particular feedback in a 2-person-2-choice
coordination game, it can interpret it as an observation of the strategy used by the agent
it encountered. For example, if the agent performs strategy a and gets a feedback of
1, we can say that the agent observed that another agent used the strategy a as well.
Having the above interpretation for the feedback, and assuming we restrict ourselves to
quasi-local update rules only, we can define:

Definition 16. The External Majority (EM) update rule is an update rule which says:
Adopt strategy i if so far it was observed in other agents more often than any other
strategy and remain with your current strategy in a case no other strategy has been
observed in other agents more often than it.

We can show:

Lemma 17. EM coincides with HCR in an n-2-g stochastic social game, where gis
the coordination game.

Given the above lemma, HCR and EM are isomorphic in the context of 2-person-
2-choice coordination games. Hence, although EM and HCR do not coincide when
there are more than two choices in the coordination game, a natural extension of
our study would be to discuss EM in the context of 2-person-s-choice coordination
games.

Notice that the coordination game makes perfect sense, and it is of major interest,
when agents are able to observe the behavior of agents they encounter. Moreover, even
if the agents know the payoff matrix of the game, as well as are able to observe the
behavior of agents they encounter, but do not have agreement on the names of strategies
(i.e., the designer can not just tell them which strategy they should adopt) we still get
a most interesting and fundamental problem. This is due to the full symmetry we have
here. For example, the example we presented in Section 3 will still be valid in this case,
as well as many other examples in the study of coordination {18]. In the sequel we
will therefore assume a restriction only to quasi-local update rules, where the agents can
observe the behavior of agents they encounter.

We would like to mention that by allowing quasi-local update rules, some of the
power of our setting is lost. We will still be interested in local adaptation of the agents,
in the sense that they may update their behavior at each iteration (and not in periods, in
each of which the agent learns the strategies of the other agents, as in case of the best
response update rule discussed in the economics literature), but the update rules may
now refer to the strategies executed by the other agents in the past.

As mentioned, we would like to discuss the case in which the number of potential
conventions is greater than 2:

Definition 18. An extended coordination game is a symmetric 2-person-s-choice game,
where the payoff for both agents is x > 0 if and only if they perform similar actions,
and it is —x otherwise,
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Fig. 7. The effects of the number of potential conventions.

Our general results are as follows. What we find is that adding more potential conven-
tions decreases the efficiency of convention evolution in a less than logarithmic fashion.
In addition we find that the absolute amount of success in convention evolution decreases
in less than logarithmic fashion: For the number of successes of convention evolution
to decrease by factor of 2, we need to increase the number of potential conventions by
a factor of more than 4; for them to decrease by a factor of 3 we need to increase the
number of potential conventions by a factor of more than 8.7 Intuitively speaking, our
results point to the following encouraging fact: the efficiency of convention evolution is
not affected too badly by an increase in the number of potential conventions.

Some specific results are illustrated in Fig. 7. The x coordinate describes on a loga-
rithmic scale the number of potential conventions, while the y coordinate describes the
number of successful trials (more than 85% reached a convention) from among 4000
trials of 800 iterations each.

The message of this result from a designer’s perspective is that, by supplying an
appropriate rule, the emergence of useful conventions is not hopeless also for complex
systems where the number of potential conventions is more than two. Naturally, the
emergence of more complex kind of conventions (e.g., where the convention itself is
some structured strategy) may be an interesting subject for future research.

5. Discussion and related work

Several lines of research are related to our work. These include work in population
genetics, statistical mechanics, computational ecologies, quantitative sociology, machine
learning, and mathematical economics.

Recent work in mathematical economics is the one most related to our work, and
was discussed in some detail in the previous sections. We would like to re-emphasize
some of the major differences between our study and the related work in mathematical

17 We have verified these basic results also in the case of limited memory.
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