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Abstract

The Gibbs classifier is a simple approxima-
tion to the Bayesian optimal classifier in
which one samples from the posterior for the
parameter 0, and then classifies using the
single classifier indexed by that parameter
vector. In this paper, we study the Voting
Gibbs classifier, which is the extension of this
scheme to the full Monte Carlo setting, in
which N samples are drawn from the poste-
rior and new inputs are classified by voting
the N resulting classifiers. We show that the
error of Voting Gibbs converges rapidly to the
Bayes optimal rate; in particular the relative
error decays at a rapid O(1/N) rate. We also
discuss the feature selection problem in the
Voting Gibbs context. We show that there is
a choice of prior for Voting Gibbs such that
the algorithm has high tolerance to the pres-
ence of irrelevant features. In particular, the
algorithm has sample complexity that is log-
arithmic in the number of irrelevant features.

1. Introduction

Bayesian methods for reasoning about uncertainty
have a natural appeal, and the increasing availability
of approximation algorithms has played an important
role in making these methods practical. Some of these
approximation methods are, however, poorly under-
stood. In this paper, we consider an elementary, yet
foundational, question regarding the performance of
sampling-based approximation methods in the setting
of Bayesian classification.

Consider a setting in which we have a family of dis-
criminative classifiers parameterized by 6. After ob-
serving some number of training examples, we obtain
a posterior distribution on 8. When asked to classify a

new example, exact Bayesian inference demands that
we integrate over 6 to determine the posterior distribu-
tion of the class label y. But this integral is often dif-
ficult to perform. A simple approximation is provided
by the Gibbs classifier, which draws a single sample y
from the posterior distribution of the class label, and
uses that y as its prediction. It is well known that
the Gibbs classifier has error at most twice that of the
Bayesian optimal classifier.

In this paper, we consider the generalization of the
Gibbs classifier to the full Monte Carlo setting, in
which we instead draw N samples y',...,y" from
the posterior distribution, and take a majority vote
of these samples to obtain the final prediction. We re-
fer to this as the Voting Gibbs algorithm (cf. Green,
1995; Sykacek, 2000; Denison and Mallick, 2000). We
ask the elementary yet important question of how it
performs relative to the Bayesian optimal classifier.
We show that (under mild assumptions) the relative
error of Voting Gibbs compared to the Bayesian opti-
mal classifier decays at the rapid rate of O(1/N).

We also address the case in which our learning algo-
rithm may use a prior over 6 that is different from the
“true” prior. There are several reasons that we believe
that this case of “misspecified priors” is an important
aspect of our analysis: (1) it can be costly to elicit
a prior from experts, and simplified “textbook” pri-
ors are often substituted; (2) even if a realistic prior
is available, it can be computationally intractable to
implement this prior; (3) simplified priors can be eas-
ier to understand. Moreover, there is an interesting
and somewhat surprising application of our results on
misspecified priors to the problem of feature selection.
In particular, we show that a Voting Gibbs algorithm
that uses a particular misspecified prior has sample
complexity that is logarithmic in the number of irrel-
evant features, a result that matches the best known
results for feature selection problems in a frequentist



1 relevant feature
0.5

0351 b

error

0.3F —

,
02 , E

0.15

Number of features

Figure 1. Plot of error vs. total number of features for an
optimal classifier that knows which feature is relevant to a
classification decision (solid), and Voting Gibbs algorithms
using different priors (dash and dash-dot). Details are pro-
vided in Section 5.

setting (Ng, 1998; Littlestone, 1988; Kivinen and War-
muth, 1994). That this result is not merely of theoret-
ical interest is demonstrated by the empirical results
shown in Figure 1. These results, which are described
in more detail in Section 5, show classification error
rates in an experiment in which one feature is rele-
vant to a classification decision. The solid curve plots
the error rate for an algorithm that is told in advance
which feature is relevant. The other two curves show
the error rates for Voting Gibbs algorithms which are
not told which feature is relevant and which make use
of different priors. The high degree of insensitivity
to irrelevant features exhibited by the lower (dashed)
curve is surprising and noteworthy.

The remainder of this paper is structured as follows.
Section 2 provides a formal introduction to the prob-
lem and the algorithms. Section 3 then presents our
main results on the quality of the Voting Gibbs classi-
fier in the case of a correctly specified prior, and Sec-
tion 4 goes on to discuss Voting Gibbs in the context of
misspecified priors, with application to feature selec-
tion. Lastly, Section 5 presents experimental results,
and Section 6 closes with our conclusions.

2. Problem definition and notation
2.1 Bayesian classification

We are concerned with the problem of Bayesian clas-
sification in the discriminative setting, where given an
input x € X, we wish to predict the corresponding la-
bel y € {0,1}. Formally, we assume a family of prob-
abilistic binary predictors {fs : X — [0,1] | § € O}

parameterized by 6§ € O, where fy(x) is interpreted
as the probability that y is 1 given z. For exam-
ple, for Bayesian logistic regression, we would use
fo(z) = 1/(1 + exp(—~wTz — B)), parameterized by
0 = (w, 8). Since we are in a Bayesian setting, we also
have a prior distribution peg(-) over 6.

We also assume a fixed distribution D over X from
which training examples are drawn iid. We are given
a training set S = {(=;,y;)}~, of m examples, gen-
erated by first sampling 6* according to the prior pg,
then sampling z; iid according to D, and finally set-
ting each y; independently to 1 or 0 according to the
probabilities Pr[y; = 1|z;,0*] = fop«(x;). Finally, let
pe(0|S) denote the posterior distribution of 6 given
the dataset S. We explicitly allow the case of m =0
training examples, in which case the posterior reduces
to the prior.

A classifier is any (possibly stochastic) map h: X +—
{0,1}. For example, the familiar Bayesian optimal
classifier hp is obtained by calculating

Prfy = 1z, 5] = /9 fl@pe@S)ds (1)

and then predicting hg(z|S) = hp(z) = 1 if Prly =
1|z, S] > 0.5, and predicting 0 otherwise.

2.2 The Voting Gibbs classifier

We let pe denote a prior used by a learning procedure.
When pe # peo, we say pe is a misspecified prior. Note
that when we refer to the “Bayesian optimal classifier,”
we always mean the classifier that uses pg.

When a Gibbs classifier hg using pe is required to
classify x, it first samples 6 according to the (possibly
misspecified) posterior distribution pe(:|S), then fur-
ther samples § so that § = 1 with probability f;(x)
and § = 0 with probability 1 — f;(x). Finally, its pre-
diction is hg(z|S) = hg(z) = §.

We are interested in the performance of the extension
of Gibbs classifiers to the full Monte Carlo setting, in
which multiple samples are taken from the posterior.
We call this the Voting Gibbs (VG) classifier. When
asked to predict a label for an input z, the Voting
Gibbs classifier VG(N) first draws N (a parameter)
iid samples #',...,8" according to the posterior dis-
tribution pe(-|S). Then, it further samples y', ...y~
independently, setting y¢ = 1 with probability fg:(x),
and y* = 0 with probability 1 — fy: (x). Finally it picks
its output by taking a majority-vote of the y*, predict-
ing 1if § = (1/N)XN, 4* > 0.5, and 0 otherwise.
(Alternatively, one may also skip the second stage of
sampling and predict hyg(n)(2]S) = hygu)(z) =1



when (1/N)>Y" fei(z) > 0.5, and 0 otherwise. This
algorithm, which skips one step of randomization, is
probably more appealing to many, and is also be used
in some of our experiments. All of our analyses and
results also apply to it.)

Voting Gibbs uses a Monte Carlo approximation to the
Bayesian optimal classifier, and VG(1) is the Gibbs
classifier. Voting Gibbs should be thought of as using
samples to obtain a Monte Carlo estimate of Pr[y =
1|S,z], and then thresholding its estimate at 0.5 to
make its prediction. Folk wisdom suggests that only
a small number of Monte Carlo samples are needed in
order to do well in the Bayesian classification setting.
We seek to investigate the degree to which this is true.

An important feature of the Voting Gibbs classifier is
that it can draw its samples 8',...,0" off-line before
the new input vector is presented. When expensive
methods such as Markov chain Monte Carlo (Gilks
et al., 1996) or rejection sampling (Ripley, 1987) are re-
quired to draw the samples, this enables us to perform
the expensive sampling offline, making the algorithm
subsequently able to classify individual inputs quickly.

2.3 Error metrics

Given a training set S, the expected generalization
error of hypothesis h on a particular input =z €
X is e,(h) = Pr[h(z) # ylz,S] = [,Pr[h(z) #
ylz, 0]pe (8|S)df, where the probability is over any ran-
domization in h and in the uncertainty in y given S.
Note that this is the Bayesian expected error and is
averaged over 6, which differs from the PAC notion of
error in which misclassification is measured with re-
spect to a single “true” @ (Valiant, 1984).

In some cases it may be appropriate to view the test
set as generated from a distribution that is different
from the training distribution. We assume a testing
distribution D’ over the input space X. We then define
the generalization error of a classifier h to be

e(h) = epr,s(h) = Eonpr [Prh(z) #ylz, S]] (2)

where the subscript £ ~ D' means the expectation is
with respect to z distributed according to D', and we
have again used a Bayesian notion of error.

In this paper, we are concerned with how well the Vot-
ing Gibbs classifier approximates the Bayesian optimal
classifier hg. There are two standard ways to quan-
tify this. Given a classifier h, we define its additional
absolute error (compared to the Bayesian optimal clas-
sifier) to be

ep,s(h) —ep,s(hB). (3)

We also define its additional relative error to be

ep,s(h) —ep,s(hB)
epr,s(hB) - @

Note that these two measures of error are closely re-
lated. For example, an upper bound on additional rel-
ative error immediately implies a bound on additional
absolute error,! and an upper bound on additional ab-
solute error with a lower bound on the Bayes error
similarly implies a bound on additional relative error.

It seems likely that, at least in the case of correct pri-
ors, the performance of VG(N) will improve as N be-
comes large, approaching the Bayes error in the limit
of N — oo. Since the running time of VG(XV) is lin-
ear in N, it is important for practical applications to
quantify exactly how quickly this happens. The next
section will study the rate at which the performance of
VG(N) approaches the Bayes error, for several learn-
ing and non-learning scenarios.

3. Voting Gibbs with correct priors

This section presents our results on the rate at which
the error of Voting Gibbs approaches the Bayesian er-
ror. For now, we treat only the case of “correct” pri-
ors, Ppe = pe- The case of misspecified priors is left to
Section 4.

When pg = pe, training does not play a significant
role, since identical priors give identical posteriors, and
so if we can prove a bound for an arbitrary prior (when
there is no training data), then we may define that
prior to be the “posterior” pe(-|S), and thereby also
obtain a bound for the case of learning from data. This
will turn out to be more complicated when we begin
to consider misspecified priors in the next section.

For the case of correctly specified priors, we have the
theorem below, given in two parts. The first part
states that even in the worst case, the additional rela-
tive error of Voting Gibbs is at most O(1/v/N). (The
full paper (Ng & Jordan, 2001) shows that this is tight
if we make no additional assumptions.) The intu-
ition behind this result is that, since VG(N) is aver-
aging over N random samples to estimate Pr[y = 1|z],
the standard deviation of these estimates is at most
O(1/V/N), and hence so is the additional error. The
second part of the theorem shows that, under an addi-
tional (and fairly mild) technical assumption, the ad-
ditional relative error of Voting Gibbs can be shown
to decay at the much faster rate of O(1/N).

'To see this, note that e(h) — e(hg) < (e(h) —
e(hg))/2e(hB), since e(hp) < 0.5.



Theorem 1 Let X, D', S be fized, and suppose pg =
pe. Then the additional relative error of Voting Gibbs

(compared to the Bayes optimal classifier) is upper-
bounded by

€D',S(hVG(N)) —ep,s(hp) _ L
epr,s(hm) =0 ( ) ®)

VN

where the big-O does not hide any terms that depend
on X,D',S, or po. Now suppose we further assume
that D', S, and pe are such that the random variable
y(z) = Prly = 1|z, S] (whose distribution is induced
by x ~ D') has a density p(y), so that within some
small interval [0.5 — 0,0.5 + 6], p(y) does not vary too
much: That there is some constant B > 0 so that
SUPge(0.5-6,0.5+06) P(¥) < Binfyeio5-50.5+5 PF). Then
the additional relative error of Voting Gibbs is upper-
bounded by

ep,s(hvany) —€pr,s(hs) ( 1 )
’ S _o(<),
6D’,S(hB) N ( )

where the big-O notation hides constants only depend-
ing on B and §.

Proof (Sketch). Due to space constraints, we only
prove here that the additional absolute (rather than
relative) error epr s(hyg(n)) — €pr,s5(hp) is bounded
by these O(1/+/N) and O(1/N) quantities. The proofs
for additional relative error are given in the full version
of this paper (Ng & Jordan, 2001).

To prove the 1/+/N bound, we show that the ad-
ditional absolute error on any particular input z is
bounded by

1

(7)

Ez(hVG(N)) —&z(hp) <

B

By relabeling outputs if necessary, we may assume
without loss of generality that § = y(z) = Prly =
1|z, S] < 0.5 for all z. Let any z € X be fixed, and
assume hp(z) = 0. Note that the Bayesian expected
error on z is just ,(hg) = ¥ (since hp predicts 0,
and there is a ¥ = y(z) chance the label is 1). The
expected error of hyg(n) is

(1 =g Prlhygmy(z) =1]
+7(1 = Prlhy gy (z) =1

= 7+ (1 -29)Prlhygmn (@)

< 7+ (1-25)Pr[j > 0.5]

ez(hvamy)
)
= 1]

where § = (1/N) Zfil y' is the average of the N sam-
ples drawn by VG(N).2 Note § has expectation 7.

= (1/N) > foi () also works.

Thus,
ez(hvamy)) —€z(hs) < Y+ (1 -2yPr[§>0.5]-7y
= (1-29)Pr[g > (0.5 -7) +7]
< (1—27) exp(—2(0.5 - 7)*N)
= (1-2y)exp(—(1-2y)°N/2)
< sup yexp(—y*N/2)
vERF
e=1/2
- VN

where for the second inequality, we used the Hoeffd-
ing inequality (also referred to as the additive form
of the Chernoff bound; see, e.g., Kearns and Vazi-
rani, 1994), which bounds the chance of the mean of
N iid random variables being far from the expected
value. This proves Equation (7). Taking expecta-
tions on both sides with respect to z ~ D' gives
eps(hvany)—ep,s(hp) < 1/v/eN, which completes
the first part of the proof.

For the O(1/N) bound, assume as before that y(z) =
Prly = 1|2, 5] < 0.5 for all z. Also assume without
loss of generality that § < 0.25. Showing an O(1/N)
additional absolute (rather than relative) error bound
actually requires weaker assumptions on g’s density
than stated in the theorem; we require only that there
exists a constant B' so that supyeio.5-5,0.515PT) <
B'. (It is easily verified that this is satisfied by picking
B' = 2B/4, since otherwise the density pgy) would
integrate to greater than 1, a contradiction.) We can
write the additional absolute error as

0.5
/0 (Prlhy oo (@) # 317 — Dp@)dy

< / @+ (1—29)Pelg > 0.57] — Pp(@)dg

0.5
/0 (1 — 29)Plg > 0.5(7p(m)dy

INA

0.5—6
/ Prj > 0.5/71p(7)dy
0

0.5
+ [ = 2mpey = 05070
If we can show that each of the above two integrals is
O(1/N), then we are done. The first is easy. For 7 <
0.5 — 4, Pr[§ > 0.5]7] < exp(—282N) (by the Hoeffd-
ing inequality again) so f00'5_6 Pr[g > 0.57)p(7)dy <
exp(—202N) = O(1/N). For the second integral, we
can again apply the Hoeffding inequality, to get:

0.5
/ (1 — 25)Prlg > 0.5[7)p(@)dy
0.5—§

0.5
<)
0.5—¢

2(0.5 — 7) exp(—2(0.5 — )>N)B'dy
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/ " 2(0.5 — §) exp(—2(0.5 — 5)2N)B'dy

—00

o0
/ 2t exp(—2t* N)B'dt
0

BI
2N

(k)

This completes the proof. O

Remark (non-triviality conditions for relative
error). Additional relative error is just additional ab-
solute error divided by (hg). So once X, D, S and pe
are fixed, a O(-)-statement on additional relative error
would seem no more interesting than one on additional
absolute error. However, the notes in the theorem on
the big-O notation make it clear that we are showing
something stronger than this, and in particular that we
are not absorbing a 1/¢(hg) term into the big-O nota-
tion; in this sense, these are indeed “honest” bounds
on relative and not just absolute error.

Note also that these bounds on the number of samples
N needed have no dependence on quantities such as
the dimension of the parameter vector § or the input
space X.

4. Learning with misspecified priors,
with application to feature/model
selection

In this section, we study the case of misspecified priors,
Po # pe- As a motivating example of our results, we
give our first theorem in terms of a result on feature
selection.

Let there be a classification problem where the inputs
X have f features, of which an unknown subset is rel-
evant. More specifically, let R € {0,1}/ be a random
variable that is a string of f bits that indicates whether
each of the f features is relevant. Our prior pg assumes
that the subset of relevant features is picked randomly
according to the following procedure:

1. First, the number r of relevant features is chosen
uniformly from {0,1,..., f}.
2. Second, one of the (,’f) subsets of r out of the f

features is chosen randomly.

Note therefore that a particular feature subset of size
r has chance 1/ () (f + 1) of being chosen.

Next, we also assume that, conditioned on R, we
have some prior pe(f|R) (so that, e.g., for all 6 to

which pe(f|R) assigns positive probability, the classi-
fier fy(-) examines the i-th feature of its inputs only
if R; = 1). For instance, for logistic regression where
fo(@) = fup(z) = 1/(1 + exp(—w's — §)), we may
have p(w, B|R) drawing w; from a Normal(0,0?) dis-
tribution if R; =1, and w; = 0 otherwise.

We are interested in evaluating how well a VG algo-
rithm can perform feature selection. Therefore, we
want to compare its performance against that of a
“Bayes optimal classifier” that knows in advance ex-
actly which features are relevant. So, for some R*—the
“true” set of relevant features—let pg(0) = pe(6|R*).
How well does Voting Gibbs using the misspecified
prior p do?

Theorem 2 Let any mo, N and 0 < € < 1 be fized,
and assume the training and testing distributions D
and D' are the same. Also let R* be fixed, and let r*
be the number of relevant features (r* =Y, RY). Let a
training set S of size m be given, where m is distributed
uniformly in {[(1 — €)mg], [(1 — €)mo] + 1,...,m0}.
Then

Ele(hyam)] <

(1 +0 (\/LN)) (E[e(hB)] +0 ( T*:Sff»(s)

where the expectations are over the random training
set.

Corollary 3 To ensure that Ele(hygmy)] is at
most some constant € > 0 more than (1 +
O(1/V/N)E[e(hp)], it suffices to choose my =
Q(r*log f).

Remark (random training set size). The the-
orem contains a minor technical assumption that m
have some small amount of randomization around mg.
This is a condition that treats the training set size as
random (usually not an unrealistic assumption), and is
needed in the proof of theorem. (See the full paper (Ng
& Jordan, 2001) for details.)

Note that to state the simplest possible result, we have
given the theorem only in terms of a 1/v/N conver-
gence rate. Note also that that by letting N = oo,
this result also gives a bound for the setting of exact
Bayesian inference using misspecified priors.

The corollary, which re-states the error bound in
the Theorem in terms of a sample complexity result,
shows that if the (approximate) training set size myg is
Q(r*log f) (and if N is not unreasonably small), then
we will do nearly as well as if we had known exactly
which features are relevant. This is the sample com-
plexity of Bayesian feature selection, and since it is



only logarithmic in f, the total number of features, it
means that Bayesian feature selection using the par-
ticular prior described earlier is very insensitive to the
presence of irrelevant features. This result also re-
covers the best known such rates (Littlestone, 1988;
Kivinen & Warmuth, 1994; Ng, 1998), and has sam-
ple complexity that beats that of the common “wrap-
per” model (Kohavi & John, 1997) feature selection
algorithm (see the analysis in Ng, 1998). Indeed, the
logarithmic dependence suggests that we can, for in-
stance, square the total number of features, and need
only twice as much training data as a result. Alterna-
tively, we can also view this as saying that Bayesian
feature selection can handle exponentially many irrele-
vant features as we have training examples. We believe
this result has important implications for feature de-
sign in practical supervised learning tasks.

Theorem 2 is proved by showing a more general result
(the proof of which is deferred to the full paper, Ng
& Jordan, 2001) that is given in terms of KL(pe||pe).
More specifically, if pg were the “correct” prior used
by hp and pe the misspecified prior used by hyg(n),
then under the conditions given in the Theorem above,
we have

Ele(hvam)] < (1 +0 («/%D

KL(pe||pe)

E[E(hB)] +0 .

9)

These results can also be stated in terms of worst-
case error bounds for online learning and indeed such
bounds were the inspiration for the theorem. For a
closely related result in the worst-case setting for ex-
act Bayesian inference (corresponding to N = o0),
see (Barron et al., 1993).

Proof of Theorem 2. The result is easily shown
using Equation (9), by observing that

pe(0) = Zp )P (6| R) (10)
> R o0 (1)
- mﬁewm*) (12)
= mpe(e) (13)
This implies that
KL(pollie) = /9 po (6 Zido (19

+1) () do(15)

IN
—
=]
®
5'
OQ

log ((f +1) (£)) (16)
< (r+1)log(f + 1), (17)

which when substituted back into Equation (9), gives
the theorem.

It is also interesting to note that if we had used a
more “naive” choice of prior, for instance if we have
a prior which posits that each feature independently
has a some fixed probability of being relevant (so
R is a sequence of f independent coin tosses), then
an argument similar to the one above would give
KL(po||pe) = O(f). This gives an upper-bound on
the sample complexity of feature selection of O(f),
which is vastly inferior to O(r*log f) when r* < f.
Our experiments in the next section will also empir-
ically compare these two types of priors for feature
selection.

5. Experiments
5.1 The case of correct priors

Our first experiment compares VG(NN) and the Bayes
optimal classifier in a simple setting that was chosen so
that exact Bayesian inference is feasible, which allows
repeated comparison between the two methods. Con-
sider a parameter € uniformly distributed in [0, 1], and
let the target output on input z (also uniformly dis-
tributed in [0,1]) be 1 if z > 0, and 0 otherwise. Using
correct priors po = pe, each classifier (both Bayes op-
timal and VG) was trained with m training examples
{(z,y;)} with noisy labels that were corrupted at the
(known) noise rate of 0.2, so that y; = 1 with proba-
bility 0.8 when z; > 0, and y; = 1 with probability 0.2
when z; < 6. On each trial, both classifiers observed
exactly the same data sample.

Figure 2(a) presents a plot of the generalization errors
of the Bayes optimal classifier and of Voting Gibbs
with N = 1,7 and 51, plotted as a function of training
set size. VG(1)’s error seems somewhat larger than the
Bayes optimal classifier’s, VG(7) appears to be track-
ing it quite well, and VG(51)’s performance is virtually
indistinguishable from that of the Bayes optimal clas-
sifier.

Since our bounds are on the additional relative error,
we also plot the additional error as a function of N, for
a training set of size m = 10. (See Figure 2(b).) As
expected, the additional relative error does decrease
quite rapidly with N. If the additional relative error
decays as O(1/N), then we would also expect on the
log-log scale of the plot to see a line with slope approx-
imately -1. Ignoring the single point corresponding to
N =1 (see caption), Figure 2(b) seems to almost ex-
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Figure 2. (a) Plot of error vs. number of training examples m for the Bayes optimal classifier (solid) and for VG(1), VG(7)
and VG(51) (dash-dot, with higher NV corresponding to lower curves). The curve for VG(51) almost completely overlaps
that of the Bayes optimal classifier. (The results reported here are averages over 5000 trials.) (b) Plot of additional
relative error for VG(IV) as a function of (odd) N, for m = 10. The dotted part of the line corresponds to only one point
on the graph that had N = 1. If we ignore this “very small sample” case, the slope of the rest of the line is approximately

-1. (c) Same as the previous figure, but with m = 50.

actly match the asymptotic slope predicted by our the-
ory. Repeating this with a training set size of m = 50,
Figure 2(c) shows nearly identical behavior in which
the additional relative error also decays as O(1/N).

5.2 Feature selection: The case of misspecified
priors

Our second set of experiments studied feature selec-
tion. Our learning problem was Bayesian logistic re-
gression (as described in Section 4), and the Bayes
optimal classifier which serves as our baseline knows
exactly which r* of the f features are relevant. We
tested VG(IV) using the “good” prior and the “naive”
prior (which posits that R is a sequence of indepen-
dent coin tosses) described in the previous section. For
our experiments, we used 100 training and 10000 test
examples, and reversible jump Markov chain Monte
Carlo (Green, 1995) to draw N classifiers for VG(N).
We let the total number of features vary and let just
a single feature be relevant. Our results using N = 15
are shown in Figure 1. The results shown are averages
of 50 independent trials. The solid line near the bot-
tom shows the error of hp, which knows exactly which
feature was relevant. The dashed line shows VG(15)
using the “good” prior, and the dash-dot line VG(15)
using the “naive” prior.> The results are dramatically

30ther experimental details: Inputs were drawn from
a multivariate standard Normal distribution. For 1 rel-
evant feature, we used for the priors o1 = 5, and 8 ~
Normal(0, o3), where o2 = 0.5. (01 was defined in Sec-
tion 4.) For 3 relevant features, o1 was also rescaled to
5/3. In the “naive” prior, each feature was assumed to
be equally likely to be relevant or irrelevant. Since ex-
act Bayesian inference is not tractable, a long MCMC se-

different: As predicted by theory, the “good” prior is
very insensitive to the presence of large numbers of
irrelevant features, and does only slightly worse than
if we had been told exactly which features were rele-
vant. In contrast, as the number of irrelevant features
becomes large, the error using the “naive” prior ap-
proaches that of random guessing (0.5). Note also the
scale of the z-axis—even when learning with only 100
training examples and 1000 features (999 of which are
irrelevant), the algorithm still performs well.

Figure 3(a) presents the results of an extended experi-
ment in which the errors of VG(IV) where assessed, for
N =1,3,7,15 and with both priors. In all cases, the
lower lines correspond to larger values of N. We see
that even with the smaller values of IV, performance is
still quite reasonable. Finally, Figure 3(b) shows the
results when there are 3 relevant features. Once again,
we see the “good” prior exhibits a very high tolerance
to the presence of irrelevant features.

6. Summary

We have shown that, under mild assumptions, the rel-
ative error of Voting Gibbs converges to Bayes optimal
performance at a rate of O(1/N). When it is tractable
to sample from the posterior distribution of the pa-
rameters, this indicates that Voting Gibbs can indeed

quence (run using the “correct” prior p) was used to ap-
proximate both hp and the ground-truth posterior dis-
tributions. Lastly, these experiments were run using the
alternative version of VG(IV) described in Section 2.2,
that skips the second stage of sampling (involving draw-
ing y¥’s from Bernoulli(f4:(x))), and predicts 1 whenever

(1/N) Y fyi () > 0.5.
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Figure 3. (a) Plot of errors of VG(1), VG(3), VG(7), VG(15) using the “good” (dash) and “naive” (dash-dot) priors.
Higher lines correspond to lower values of N. (b) Same as Figure 1, but with 3 instead of 1 relevant features.

provide a good, practical way to approximate optimal
Bayesian classification. In the context of feature selec-
tion, we also showed that Voting Gibbs has very high
tolerance to the presence of irrelevant features, with
bounds comparable to those of the best known feature
selection algorithms.
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