1 Ultrafilter Extensions

Definition 1.1 (Ultrafilter) Let \(W \) be a non-empty set. An ultrafilter on \(W \) is a set \(u \subseteq \mathcal{P}(W) \) satisfying the following properties:

1. \(\emptyset \not\in u \)
2. If \(X, Y \in u \) then \(X \cap Y \in u \)
3. If \(X \in u \) and \(X \subseteq Y \) then \(Y \in u \).
4. For all \(X \subseteq W \), either \(X \in u \) or \(X \not\in u \) (where \(\overline{X} \) is the complement of \(X \) in \(W \)).

A collection \(u_0 \subseteq \mathcal{P}(W) \) has the **finite intersection property** provided for each \(X, Y \in u_0 \), \(X \cap Y \neq \emptyset \).

Theorem 1.2 (Ultrafilter Theorem) If a set \(u_0 \subseteq \mathcal{P}(W) \) has the finite intersection property, then \(u_0 \) can be extended to an ultrafilter over \(W \) (i.e., there is an ultrafilter \(u \) over \(W \) such that \(u_0 \subseteq u \)).

Proof. Suppose that \(u_0 \) has the finite intersection property. Then, consider the set

\[u_1 = \{ Z \mid \text{there are finitely many sets } X_1, \ldots, X_k \text{ such that } Z = X_1 \cap \cdots \cap X_k \} . \]

That is, \(u_1 \) is the set of finite intersections of sets from \(u_0 \). Note that \(u_0 \subseteq u_1 \), since \(u_0 \) has the finite intersection property, we have \(\emptyset \not\in u_1 \), and by definition \(u_1 \) is closed under finite intersections. Now, define \(u_2 \) as follows:

\[u' = \{ Y \mid \text{there is a } Z \in u_1 \text{ such that } Z \subseteq Y \} . \]
We claim that u' is a consistent filter: $Y_1, Y_2 \in u'$ then there is a $Z_1 \in u_1$ such that $Z_1 \subseteq Y_1$ and $Z_2 \in u_1$ such that $Z_2 \subseteq Y_2$. Then, since $\emptyset \neq Z_1 \cap Z_2 \in u_1$, we have $Z_1 \cap Z_2 \subseteq Y_1 \cap Y_2$. Hence, $Y_1 \cap Y_2 \in u_1$. Also, if $X \in u_1$ then there is a $Z \in u_1$ such that $Z \subseteq X$. If $X \subseteq Y$, then $Z \subseteq Y$ and so $Y \in u_1$. Hence, u_1 is a consistent filter.

The next step is to show that u_1 can be extended to an ultrafilter. This follows almost directly from Zorn’s Lemma\(^1\): Consider the set Z of all filters that extend u_1. That is, $Z = \{ v \mid u_1 \subseteq v \text{ and } v \text{ is a consistent filter} \}$. Note that Z is partially-ordered under the \subseteq-relation. Furthermore, the upper bound of any chain in Z (i.e., sequence of ultrafilters $v_0 \subseteq v_1 \subseteq \cdots$) is the union of all the filters in the chain. This collection of sets will be a consistent ultrafilter extending u_1, and so is contained in Z. By Zorn’s Lemma, Z must contain a maximal element. This maximal element must be an ultrafilter (containing u_1).

\[\text{QED} \]

Let $\mathcal{M} = \langle W, R, V \rangle$ be a Kripke model. Two functions are relevant to our analysis:

- $m : \wp(W) \to \wp(W)$ defined as $m(X) = \{ w \mid \text{there is a } v \text{ such that } wRv \text{ and } v \in X \}$, and
- $l : \wp(W) \to \wp(W)$ defined as $l(X) = \{ w \mid \text{for all } v, \text{ if } wRv \text{ then } v \in X \}$.

Definition 1.3 (Ultrafilter Extension) An ultrafilter extension is a model $ue(\mathcal{M}) = \langle Uf(W), R^{ue}, V^{ue} \rangle$ where

- $Uf(W) = \{ u \mid u \text{ is an ultrafilter over } W \}$,
- $uR^{ue}u'$ iff for all $X \subseteq W$, if $X \in u'$ then $m(X) \in u$, and
- $V^{ue}(p) = \{ u \mid V(p) \in u \}$.

Fact 1.4 In an ultrafilter extension $ue(\mathcal{M}) = \langle Uf(W), R^{ue}, V^{ue} \rangle$, we have $uR^{ue}u'$ iff $\{ Y \mid l(Y) \in u \} \subseteq u'$.

Proof. Left as an exercise. \text{QED}

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model. The truth map $[\cdot]_M : \mathcal{L} \to \wp(W)$ is defined by induction on the structure of φ as follows:

- For $p \in \text{At}$, $[p]_M = V(p)$

\(^1\)Zorn’s Lemma states that in a partially ordered set P, if every chain has an upper bound in P, then P contains at least one maximal element. The proof of Zorn’s Lemma uses the Axiom of Choice (indeed, it is equivalent to the Axiom of Choice).
• $\lnot \varphi_M = W - \varphi_M$
• $[\varphi \land \psi]_M = [\varphi]_M \land [\psi]_M$
• $[\Diamond \varphi]_M = m([\varphi]_M)$

Lemma 1.5 For all models $M = \langle W, R, V \rangle$, for all modal formulas φ, we have $[\varphi]_M \in u$ iff $ue(M), u \models \varphi$.

Proof. The proof is by induction on the structure of φ. Then we have,

Base case: φ is $p \in \text{At}$.

$$[p]_M \in u \quad \text{iff} \quad V(p) \in u \quad \text{(Definition of} \; [\cdot]_M)$$

$$\text{iff} \quad u \in V^{ue}(p) \quad \text{(Definition of} \; V^{ue})$$

$$\text{iff} \quad ue(M), u \models p \quad \text{(Definition of truth in a model)}$$

Induction Hypothesis: For all ψ less complex than φ, $[\psi]_M \in u$ iff $ue(M), u \models \psi$.

Case 1: φ is $\lnot \psi$:

$$[\lnot \psi]_M \in u \quad \text{iff} \quad W - \psi_M \in u \quad \text{(Definition of} \; [\cdot]_M)$$

$$\text{iff} \quad [\psi]_M \not\in u \quad \text{(Properties of an ultrafilter)}$$

$$\text{iff} \quad ue(M), u \not\models \psi \quad \text{(Induction Hypothesis)}$$

$$\text{iff} \quad ue(M), u \models \lnot \psi \quad \text{(Definition of truth)}$$

Case 2: φ is $\psi_1 \land \psi_2$

$$[\psi_1 \land \psi_2]_M \in u \quad \text{iff} \quad [\psi_1]_M \cap [\psi_2]_M \in u \quad \text{(Definition of} \; [\cdot]_M)$$

$$\text{iff} \quad [\psi_1]_M \in u \text{ and } [\psi_2]_M \in u \quad \text{(Properties of ultrafilters)}$$

$$\text{iff} \quad ue(M), u \models \psi_1 \text{ and } ue(M), u \models \psi_2 \quad \text{(Induction hypothesis)}$$

$$\text{iff} \quad ue(M), u \models \psi_1 \land \psi_2 \quad \text{(Definition of truth)}$$

Case 3: φ is $\Diamond \psi$

Suppose that $ue(M), u \models \Diamond \psi$. Then, there is a $u' \in Uf(W)$ such that $uR^{ue}u'$ and $ue(M), u' \models \psi$. By the induction hypothesis, $[\psi]_M \in u'$. By the definition of R^{ue}, we have $m([\psi]_M) \in u$, and so, $[\Diamond \psi]_M \in u$. Thus, we have shown that $ue(M), u \models \Diamond \psi$ implies $[\Diamond \psi]_M \in u$.

Suppose that $[\Diamond \psi]_M \in u$. We must show $ue(M), u \models \Diamond \psi$. Consider the set

$$u_0 = \{Y \mid l(Y) \in u \} \cup \{\psi\}_M$$

2Less complex means that ψ contains fewer connectives.
We claim that \(u_0 \) has the finite intersection property. We first show that \(\{ Y \mid l(Y) \in u \} \) is closed under finite intersections. It is enough to show that for any two sets \(Y_1, Y_2 \in \{ Y \mid l(Y) \in u \} \), \(Y_1 \cap Y_2 \in \{ Y \mid l(Y) \in u \} \) (why?). Suppose that \(Y_1, Y_2 \in \{ Y \mid l(Y) \in u \} \). Note that \(l(Y_1 \cap Y_2) = l(Y_1) \cap l(Y_2) \). Then, since \(u \) is an ultrafilter and \(l(Y_1), l(Y_2) \in u \), we have \(l(Y_1 \cap Y_2) = l(Y_1) \cap l(Y_2) \in u \). Hence \(Y_1 \cap Y_2 \in \{ Y \mid l(Y) \in u \} \). Next we show that for any \(Z \in \{ Y \mid l(Y) \in u \} \), we have \(Z \cap \{ \psi \}_{M} \neq \emptyset \). Choose an arbitrary \(Z \) such that \(l(Z) \in u \). We will show \(Z \cap \{ \psi \}_{M} \neq \emptyset \). Since \(l(Z) \in u \) and \(\{ \psi \}_{M} \subseteq u \), we have \(l(Z) \cap \{ \psi \}_{M} \in u \), and so \(l(Z) \cap \{ \psi \}_{M} \neq \emptyset \). Let \(w \in l(Z) \cap \{ \psi \}_{M} \). Then, there is a \(v \in W \) such that \(M, v \models \psi \). I.e., \(wRv \) and \(v \in \{ \psi \}_{M} \). Since \(w \in l(Y) \) and \(wRv \), we have \(v \in Y \cdot \) Hence, \(v \in Y \cap \{ \psi \}_{M} \). This implies that \(u_0 \) has the finite intersection property (why?). By the ultrafilter theorem, there is an ultrafilter \(u' \) such that \(u_0 \subseteq u' \). Since \(\{ Y \mid l(Y) \in u \} \subseteq u' \), we have \(u_{R}^{ue}u' \). By the induction hypothesis, since \(\{ \psi \}_{M} \subseteq u' \), we have \(u_{w}(M), u' \models \psi \). Hence, \(u_{w}(M), u \models \Diamond \psi \). QED

Corollary 1.6 For all models \(M \) and states \(w \in M \), we have \(w \hookrightarrow u_{w} \), where \(u_{w} \) is the principle ultrafilter generated by \(w \).

Proof. Let \(M = (W, R, V) \) be a model and \(w \in W \). The principle ultrafilter generated by \(w \) is \(u_{w} = \{ X \subseteq W \mid w \in X \} \). Let \(\varphi \) be an arbitrary modal formula. We have \(M, w \models \varphi \) iff \(w \in [\varphi]_{M} \) iff \([\varphi]_{M} \in u_{w} \) iff \(u_{w}(M), u_{w} \models \varphi \) (the latter equivalence follows from the above Lemma). QED

Lemma 1.7 For all models \(M \), \(u_{w}(M) \) is \(m \)-saturated.

Proof. Suppose that \(u_{w}(M) = (Uf(W), R^{ue}, V^{ue}) \) an ultrafilter extension of some model \(M = (W, R, V) \). Let \(u \in Uf(W) \) be any state in \(u_{w}(M) \) and \(\Sigma \) be a arbitrary set of modal formulas. Suppose that every finite subset of \(\Sigma \) is satisfiable at some successor of \(u \) (i.e., for each finite set \(\Delta \subseteq \Sigma \), there is a state \(v_{\Delta} \in W \) such that \(uR^{ue}v_{\Delta} \) and \(u_{w}(M), v_{\Delta} \models \Delta \)). We must find a state \(v \in W \) such that \(uR^{ue}v \) and \(u_{w}(M), v \models \Sigma \) (i.e., for each \(\psi \in \Sigma \), \(u_{w}(M), v \models \psi \)). Consider the set

\[
v_{0} = \{ Y \mid l(Y) \in u \} \cup \{ [\psi]_{M} \mid \psi \in \Sigma \}
\]

We will show \(v_{0} \) has the finite intersection property. Since \(\{ Y \mid l(Y) \in u \} \) is closed under finite intersections, it is enough to show that \(Y \cap \{ [\psi]_{M} \mid \psi \in \Delta \} \neq \emptyset \) for some finite subset \(\Delta \) of \(\Sigma \). Note that \(\bigcap \{ [\psi]_{M} \mid \psi \in \Delta \} = [\bigwedge \Delta]_{M} \). Recall that \(\Delta \) is satisfiable at some successor state \(v_{\Delta} \) of \(u \). That is, \(uR^{ue}v_{\Delta} \) and \(u_{w}(M), v_{\Delta} \models \Delta \). By Lemma 1.5, this means \([\bigwedge \Delta]_{M} \in v_{\Delta} \). By the definition of \(R^{ue} \), we have \(m([\bigwedge \Delta]_{M}) \in u \). Hence, \([\bigwedge \Delta]_{M} \in u \). Since \(u \) is
an ultrafilter, we have \(l(Y) \cap \Diamond \Delta \subseteq u \). Hence, (since \(\emptyset \notin u \)) there is a \(x \in l(Y) \cap \Diamond \Delta \). This implies there is a \(y \) such that \(xRy \) and \(y \in \Diamond \Delta \). Since \(xRy \) and \(x \in l(Y) \), we have \(y \in Y \). This means that \(y \in Y \cap \Diamond \Delta \). Hence, \(v_0 \) has the finite intersection property.

By the ultrafilter theorem there is an ultrafilter \(v \) such that \(v_0 \subseteq v \). By construction \(v \) is a successor \(u \) (i.e., \(uRv \)) and by Lemma 1.5, we have for each \(\psi \in \Sigma \), \(ue(M), u \models \psi \). Hence, \(\Sigma \) is satisfiable is some successor state of \(u \). QED

Theorem 1.8 (Bisimulation Somewhere Else Theorem) For all models \(M \) and \(M' \), we have \(M, w \leftrightarrow M', w' \) iff \(ue(M), u_w \leftrightarrow ue(M'), u_{w'} \), where \(u_w \) and \(u_{w'} \) are the principle ultrafilters containing \(w \) and \(w' \) respectively.

Proof. Suppose that \(ue(M), u_w \leftrightarrow ue(M'), u_{w'} \). Let \(\varphi \) be any model formula. We have

\[
M, w \models \varphi \quad \text{iff} \quad ue(M), u_w \models \varphi \quad \text{(Corollary 1.6)}
\]

\[
\text{iff} \quad ue(M'), u_{w'} \models \varphi \quad \text{(Bisimulation implies modal equivalence)}
\]

\[
\text{iff} \quad M', w' \models \varphi \quad \text{(Corollary 1.6)}
\]

Suppose that \(M, w \leftrightarrow M', w' \). Then, by Corollary 1.6, we have \(ue(M), u_w \leftrightarrow ue(M'), u_{w'} \). By Lemma 1.7, both \(ue(M) \) and \(ue(M') \) are modally saturated. In modally saturated models, modal equivalence implies bisimilarity. Hence, \(ue(M), u_w \leftrightarrow ue(M'), u_{w'} \). QED

2 The Standard Translation

Let \(M = \langle W,R,V \rangle \) be a Kripke model. The first-order language \(L_1 \) is built from a signature containing unary predicate symbols \(Px \) corresponding to each \(p \in At \) and a binary predicate symbol \(Rxy \). The standard translation is defined as follows:

Definition 2.1 (Standard Translation) The standard translation are functions \(st_x : L \rightarrow L_1 \) defined as follows:

\[
\begin{align*}
st_x(p) &= Px \\
st_x(\neg \varphi) &= \neg st_x(\varphi) \\
st_x(\varphi \land \psi) &= st_x(\varphi) \land st_x(\psi) \\
st_x(\Box \varphi) &= \forall y (Rxy \rightarrow st_y(\varphi)) \\
st_x(\Diamond \varphi) &= \exists y (Rxy \land st_y(\varphi))
\end{align*}
\]
Observation 2.2

Modal logic falls in the two-variable fragment of L_1.

Proof. By carefully reusing bound variables, once can ensure that the translation of a modal formula uses only two variable. An example suffices to show how this works:

$$st_x(\Box p) = \exists y (Rxy \land st_y(\Box p)) = \exists y (Rxy \land (\exists x (Ryx \land Px)))$$

QED

Lemma 2.3 Let $\mathcal{M} = \langle W, R, V \rangle$ be a Kripke model. For each $w \in W$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M} \models st_x(\varphi)[x/w]$, where \models denotes truth of L_1 in a model \mathcal{M} (viewed as a first-order structure).

Proof. The simple but instructive proof is left to the reader. QED

Theorem 2.4 (Van Benthem Characterization Theorem) A first-order formula $\alpha(x)$ (in the appropriate language) is invariant for bisimulation iff it is equivalent to the translation of a modal formula.