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RESEARCH OBJECTIVES
My long-term research interest is in making scientific discoveries in biology, by designing rich probabilistic
model representations that integrate heterogeneous genomic data and developing efficient algorithms to learn
these models automatically from data. Recent high-throughput methods have led to an explosion in the availabil-
ity of such heterogeneous data, allowing us for the first time to understand cellular processes on a genome-wide
scale. Transforming these immense amounts of data into biological information is a challenging task, and the key
to success lies in our ability to combine theoretically-founded algorithms and techniques from computer science,
statistics, and machine learning, with deep understanding of the biological domain. Biology is transitioning into
an information science and as such, the forthcoming years will be crucial for laying out the foundations and
methodologies that will be employed. Design and development of such frameworks for studying key biological
questions is the central long-term goal of my research efforts.

CURRENT ACHIEVEMENTS
Probabilistic Modeling Language My thesis research has focused on developing a statistical modeling lan-
guage (introduced in [5]) that can represent complex interactions in biological domains, and on applying it to
study a wide range of biological problems. The models are based on the language of relational Bayesian net-
works, which represents a probability distribution over various entities in a relational domain. In the biological
domain, we typically model several classes of objects, such as Gene, Array, Process, Expression, and Inter-
action. With each class, we also associate a set of observed attributes, such as the sequence of a gene or the
condition of an array, and a set of hidden attributes, such as the process a gene participates in, whose value we
wish to infer. Such a modeling language has several advantages. First, it allows us to explicitly represent and
reason about biological entities in a modular way, as well as model the mechanistic details of the underlying
biological system. Second, we can build on the sound foundation of statistical learning methods to develop al-
gorithms that learn the models directly from data. Finally, by designing each model separately, depending on the
biological phenomena we wish to study, we can use this general framework to solve a wide range of problems,
and obtain biological insights directly from the model.

For example, a living cell coordinates the activation and deactivation of genes by organizing them into regulatory
modules and controlling each module through a common regulatory mechanism. To discover this modular orga-
nization, including finding the regulatory modules and their actual regulators, we designed a class of models with
an explicit module entity [6,20]. Genes in the same module are then controlled by the same set of regulators and
share the same regulatory mechanism. We used gene expression data to learn these models: genes with similar
expression profiles are assigned to the same module; genes whose expression is predictive of the expression of
genes in the module, are assigned as the module regulators. Importantly, this design allowed us to read detailed
hypotheses about gene regulation directly from the learned models. In collaboration with David Botstein’s lab
(Genetics, Stanford), we tested three of the novel hypotheses in the wet lab. In all cases, the experimental results
supported the computational predictions, suggesting regulatory roles for previously uncharacterized proteins.
There is an ongoing debate in the biological community as to the extent to which it is possible to discover reg-
ulators from gene expression data alone. Our results provided strong support for our claim that we can, indeed,
induce regulation from expression. We published these findings in Nature Genetics [1].

Integrating Heterogeneous Data Due to deficiencies in measuring technologies and inherent redundancies in
biological systems, we can view each genomic dataset only as a partial and noisy sensor of a biological process.
By fusing sensors that originate from different genomic datasets, we can thus obtain much more reliable and
robust analyses. Indeed, an important aspect of our modeling language is that it provides a formal framework for
performing such sensor fusion. For example, we integrated protein-protein interaction data and gene expression
for the task of discovering molecular pathways [4]. We designed the model such that physically interacting pro-
teins, and genes with similar expression profiles, are more likely to participate in the same pathway. This resulted
in more functionally coherent pathways compared to standard approaches, and led to potential identification of
novel members of pathways. For this work, we received the best student paper award at ISMB, 2003.

In another project, we constructed detailed models of the mechanism by which patterns (motifs) in DNA promoter
sequences give rise to observed expression profiles, for the task of finding transcriptional modules — sets of
genes that are co-regulated through a common combination of motifs [3]. By integrating the sequence and
expression into a unified model, we allowed for bidirectional “information flow” when learning the models:



genes with similar expression profiles are more likely to be in the same module, forcing us to find motifs in
co-expressed genes; similarly, genes with common motifs affect the module assignment, forcing an organization
consistent with regulatory mechanisms. Using only raw sequence and expression data as input, these models
recovered many of the known motifs in yeast, several known motif combinations in human [25], and suggested
novel hypotheses that are consistent with other data. For this work, we received the best paper award at ISMB,
2003. We also showed how to combine protein-DNA binding data into these models, allowing us to recover a
fairly accurate model of the interactions between genes, transcription factors, and motifs in the cell cycle [9].

Multi-Species Models As biological systems are not fully optimized, some of the observed relationships may
not be biologically meaningful. However, since the functionally relevant relationships confer a selective advan-
tage, they are more likely to be conserved across evolution. Thus, we can find the key relationships by combining
data from different organisms. In collaboration with Stuart Kim’s lab (Developmental Biology, Stanford), we
developed a method to identify pairs of genes that are co-expressed in multiple organisms, and applied it to 3000
arrays from human, fly, worm, and yeast. This conserved co-expression network provided global insights about
evolutionary principles, and predicted the known function of genes significantly better than single species net-
works. We also presented wet lab experiments supporting some of the novel functional predictions. We published
these findings in Science [2]. We are now enriching the expressive power of our probabilistic framework to multi-
species models in order to address a broad range of biological questions regarding evolution. In particular, we are
collaborating with Matthew Scott’s lab (Developmental Biology, Stanford) on developing methods for detecting
conserved regulatory pathways and studying the degree to which regulatory relationships are conserved.

Learning Learning our models automatically from data poses great computational challenges, stemming from
the many inter-dependencies that exist between the various biological entities and from the vast amounts of
biological data we include. As part of this learning task, we had to reason in some of the largest and most densely
connected graphical models constructed so far, some with over two million hidden variables. As reasoning in
such models is intractable, we developed several learning algorithms that exploit problem-specific biological
structure, such as the context-specificity of transcription factor binding or the modularity of gene regulation,
leading to efficient algorithms. These learning algorithms require us to infer the values of hidden variables. In
our models, such inference cannot be done exactly, and we thus scaled up existing approximate algorithms, as
well as developed novel approximate inference algorithms [3,7].

Visualization For computational tools to have a broad impact, they must be accompanied by visualization and
browsing tools that are easily accessible to biologists. To support this effort, we developed GeneXPress, a soft-
ware environment for visualization and statistical analysis of genomic data, including gene expression, sequence
data, and protein-protein interactions. Currently, 383 scientists from 41 countries are using GeneXPress.

FUTURE DIRECTIONS
Genomic datasets, spanning many organisms and data types, are rapidly being produced, creating new opportuni-
ties for understanding the molecular mechanisms underlying human disease, and for studying complex biological
processes, such as development and gene regulation, on a global scale. It is clear that computational tools will
play a major role in realizing these opportunities, but the challenge will be to develop methods that extract mean-
ingful information from the vast amounts of raw data. My long-term research goal is to address these challenges
by constructing probabilistic models that integrate heterogeneous data from different organisms and exploit the
modularity in biological systems for obtaining efficient representations and learning algorithms. When new types
of measurements, such as protein expression levels, sub-cellular localizations, and tissue specific expression lev-
els become available, I plan to design new models for incorporating them in order to obtain a more reliable and
complete view of the biological system.

With the growing availability of genomic data, a key challenge is to unravel the genetic blueprint of the cell:
identify all the genes, their biochemical functions, physical interactions, and involvement in processes. The
next challenge is to understand how these ‘parts’ assemble into higher order functional units and how these units
interact to give rise to fully functional organisms. Thus, I plan to develop higher level representations whose basic
building blocks correspond to functional units such as pathways or transcription factor targets. The models will
then characterize biological conditions in terms of these units, leading to more informative views of organisms,
as we show in a global analysis of human cancer [24]. In constructing these models, we need to address several
challenges, such as modeling the uncertainty of gene membership in units, integrating gene level models to
support our higher order conclusions, and identifying novel functional units. I believe that this challenging and
exciting line of research can lead to qualitative leaps in our understanding of how cells and organisms work.


