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Abstract

We study a simple, yet rich subclass of congestion games that
we callsingletongames. These games are exponentially more
compact than general congestion games. In contrast with
some other compact subclasses, we show tractability of many
natural game-theoretic questions, such as finding a sample or
optimal Nash equilibrium. For best- and better-response dy-
namics, we establish polynomial upper and lower bounds on
the rate of convergence and present experimental results. We
also consider a natural generalization of singleton games and
show that many tractability results carry over.

Introduction
Game theory is the central tool used in artificial intelligence
to understand multiagent systems with strategic agents.
Congestion games(Rosenthal 1973) have been an active
area of research in computer science because they can model
diverse phenomena such as processor scheduling, routing,
and network design. In these games each agent (e.g., a
task owner) is allowed to choose a subset of a global set
of resources (e.g., CPUs), and agents’ costs depend only on
the number, but not the identities, of the other agents us-
ing the same resources. A desirable outcome of multiagent
interactions is that agents coordinate on an action profile
which is stable against strategic deviation — aNash equilib-
rium (NE). Unlike general games, congestion games always
have pure-strategy equilibria. Moreover, NEs in congestion
games can be justified even for boundedly-rational agents,
sincebetter-responseand best-responsedynamics — very
natural asynchronous dynamics in multiagent systems — are
both guaranteed to converge to a NE in a finite number of
steps. Unfortunately, most natural problems in congestion
games have been shown to be intractable: even represent-
ing general congestion games requires space exponential in
natural parameters of the game. Similarly, the problem of
finding Nash equilibria is suspected to take time also expo-
nential in natural parameters, as is the convergence of best
response dynamics.

However, little attention has yet been paid to studying in-
teresting classes of congestion games that are computation-
ally tractable. In this paper, we focus onsingleton conges-
tion games: a tractable class of congestion games in which
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each player is restricted to choosing a single resource. With
a careful choice of cost functions, singleton games can cap-
ture many settings naturally modeled by general congestion
games. For example, consider a group of factories in a re-
gion, each of whom has a choice of suppliers for a given in-
put. Note that, in contrast to much previous work on conges-
tion games, we make no simplifying assumptions on the cost
functions. In our example, the suppliers may face economies
of scale at one level of production, but diseconomies of scale
at another. Thus, simplifying restrictions on cost functions,
such as assuming monotonicity, are insufficient for model-
ing the full range of possible phenomena.

In this paper, we show the following properties of single-
ton games:

• They are representable in polynomial space.

• Even optimal equilibria can be found in time polynomial
in the size of the representation.

• Both best- and better-response dynamics are guaranteed
to converge to an equilibrium in polynomial time.

In addition to being interesting and expressive in their
own right, singleton games allow a reduction from a broader
class of games we call Independent Resource Congestion
Games (IRCGs), in which players may choose multiple re-
sources and may be asymmetric in their choices. These
games can also be represented in polynomial space, and the
reduction shows that best-response dynamics is guaranteed
to converge in polynomial time in IRCGs as well.

Related Work
Much recent effort in computer science has gone into the ex-
tremely challenging (Papadimitriou 2001) problem of find-
ing a Nash equilibrium for general games (Conitzer & Sand-
holm 2003; Porter, Nudelman, & Shoham 2004). Given the
generality of the problem, however, intractability results are
common while tractability results are rare. Equilibria tend
not to be unique and are computationally hard to find. Also,
best-response dynamics is not guaranteed to converge. As
a result, in many games it is hard to justify a Nash equilib-
rium, especially a mixed-strategy one, as a meaningful con-
cept. Moreover, capturing strategic interactions in normal
form requires space exponential in the number of players,
and, hence, is hard even without computational issues.



A complementary research direction has been to intro-
duce compact game representations (Koller & Milch 2001;
Kearns, Littman, & Singh 2001; Leyton-Brown & Tennen-
holtz 2003; Bhat & Leyton-Brown 2004). Most of these
representations strive to be as general as possible while cap-
turing a particular kind of independence. However, a form
that can represent any game must necessarily allow games
which do not have pure-strategy Nash equilibria or conver-
gent best-response dynamics. Similarly, this line of research
rarely results in polynomial time algorithms.

One solution to this dilemma has been to study particular
classes of games which have nice properties or reflect com-
puter science practice. Congestion games and subclasses
have been targeted by this line of research.

Fabrikantet al. 2004, looked at a very natural subclass
called network congestion games, in which players route
flow through a network. Unfortunately, they showed that
finding a Nash equilibrium in general network congestion
games is complete for the complexity class PLS (a seman-
tic class generalizing local search problems), by a reduction
which also showed that best-response dynamics may have
convergence time exponential in the input size.

Other work (Even-Dar, Kesselman, & Mansour 2003;
Anshelevichet al. 2004) considers the convergence time
of best response in congestion games with a particular cost
function and resource set. We believe that our work is the
first to allow arbitrary cost functions and make assumptions
only about the choice of resources.

Finally, singleton games, sometimes called simple games,
have been studied in a variety of contexts in economics
(Holzman & Law-Yone 1997), but this work has usually
been non-computational. Milchtaich 1996 considers com-
putational issues in a generalization of singleton games, but
his discussion is heavily dependent on monotonic cost as-
sumptions. The existence of pure-strategy Nash equilibria
in other generalizations of singleton games, usually assum-
ing some variant of monotonic costs, has been extensively
studied as well; see Voorneveldet al.1999 for a survey.

Notation and Background
A game in normal form(for an introduction to game the-
ory see, e.g. (Osborne & Rubinstein 1994)) is a tuple
〈N, (Si)i∈N , (ui)i∈N 〉, whereN = {1, . . . , n} is a finite set
of players,Si is a finite set of actions available to playeri.
Let S =

∏
i∈N Si. Thenui : S → R is the utility function

for each playeri that maps a profile of actions to a value. Let
s ∈ S denote a joint strategy profile of players. We will use
s−i to stand for the same profile withi’s strategy excluded,
so that(si, s−i) forms a complete profile of actions.

Define thebest response of playeri to s−i to be the set
of actions yielding optimal utility givens−i: BRi(s−i) =
argmaxsi∈Si

ui(si, s−i). Similarly, thebetter response ofi
to s is ∆Ri(s) = {s′i ∈ Si : ui(s′i, s−i) > ui(si, s−i)}.

An action profiles is a (pure strategy) Nash equilibrium
(NE) if every player is playing best response to his oppo-
nents. Formally: for alli, si ∈ BRi(s−i) or, equivalently,
for all i, ∆Ri(s) = ∅. In this paper we will only consider
pure strategy equilibria.

Best-response and better-response dynamicsrefer to the
strategy profiles over a series of best-response or better-
response moves. We say that best-response (better-response)
dynamicsconverges inm stepsif any series ofm best-
responses (better-responses) yields a NE.

Congestion Games
A congestion game (CG) is a tuple G =
〈N, R, (Si)i∈N , (cj)j∈R〉, where N is the set of players
with sizen, R is the set of resources with sizek, Si ⊆ 2R is
the action space of playeri, andcr : {1, 2, . . . , n} → R is
the cost function for resourcer.

Denote the number of players choosing a particular re-
sourcer by νr(s). We will refer to vectorsν = ν(s) as
configurationsof players inG. The semantics of CGs is that
each playeri choosing a setsi of resources must pay the
total costc(i)(s) =

∑
r∈si

cr(νr(s)). We will assume that
players are attempting to minimize cost. Thus, each conges-
tion game defines a normal-form game〈N, (Si), (−c(i))〉.

To represent a general congestion game, we must define
two things. First, the cost function for all resources can be
represented as acost matrixC = (ci(j))ij of sizek × n.
This can be done in spaceO(nk) even for arbitrary cost
functions. Second, the setSi for each player must be rep-
resented. This requires space exponential ink for general
congestion games.

Note that, for a fixed number of players, the CG represen-
tation is only polynomially smaller than normal form. Thus,
a NE can be found in polynomial time by expanding the CG
representation into a normal form game. However, this can
take exponential time for games which have compact repre-
sentations or unbounded numbers of players.

A concept that is very tightly related to congestion games
is that of a potential function. For a normal form game
G, a functionΦ : S → R is called an(exact) potential
function, if for all s, s′ such that∃i s−i = s′−i, we have
Φ(s) − Φ(s′) = ui(s′) − ui(s).1 It is easy to see that
any profile which minimizes the potential function is a Nash
equilibrium, since each best- or better-response move must
decrease the potential. Thus, games with potential functions
always have pure-strategy NEs. Rosenthal (1973) showed
that CGs always have exact potential functions, given by
Φ(s) =

∑
r∈R

∑νr(s)
l=1 cr(l).

Thesocial costof a configurationν for a cost matrixC,
denoted byK(ν, C), is the sum of the costs paid by all play-
ers: K(ν, C) =

∑
r νr · C(r, νr). A configurationν is a

socially optimal Nash equilibriumif ν is a Nash equilibrium
and for all other NEν′, K(ν, C) ≤ K(ν′, C).

Singleton Congestion Games
Since the representation size for general congestion games
may be exponential, it is natural to consider compactly rep-
resentable subclasses. We first focus on singleton congestion
games, where each player is allowed to choose any resource

1Since our games use costs rather than utilities, we adopt the
convention that potential decreases with a decrease in cost or an
increase in utility.



from R, but must choose exactly one. As described in the
introduction, this class is rich enough to model many inter-
esting interactions.

Definition 1. A singleton congestion game(SCG) is a con-
gestion game〈N, R, (Si)i∈N , (cj)j∈R〉 with Si = {X ∈
2R : |X| = 1}.
Notice that an SCG is completely specified in polynomial
space by itsk× n cost matrix. We also note that players are
anonymous in SCGs. So, given a configurationν, all strat-
egy profiless with ν = ν(s) differ only by a permutation of
players. Thus, we can refer to equilibriumconfigurations,
instead of strategy profiles.

Despite the simplicity of SCGs, with an arbitrary cost ma-
trix C there may be exponentially many Nash equilibria, as
the following cost matrix for2n players andk resources
demonstrates:

C(i, j) =
{

0 if j is even
∞ if j is odd

A configuration is a Nash equilibrium forC if there are an
even number of players at each resource. In this game, there
are

(
k+n−1

k−1

)
different possible NE configurations, which

is exponential even without considering the permutation of
players. It is also easy to construct SCGs with very few NEs.

Given these observations and the fact that SCGs reduce
input size exponentially, it is possible that the problem of
searching for Nash equilibria may become hard.

In the next section, we will show how to find the optimal
Nash equilibrium for a certain class of optimality criteria in
polynomial time. We will also exhibit optimality criteria for
which the problem of finding optimal NE isNP-hard.

Finding a Socially Optimal Nash Equilibrium
For a variety of optimality conditions, we can use dynamic
programming to find an optimal NE in polynomial time.2

We will first illustrate this technique by describing an algo-
rithm to find the socially optimal NE.

Theorem 1. Opt-Nash(Algorithm 1) calculates a socially
optimal NE and terminates inO(n6k5) time.

Before proving this theorem, we will introduce some in-
tuition and a pair of useful lemmas.

To find a socially optimal NE using dynamic program-
ming, we will construct a Nash equilibrium from two
“smaller” equilibria. For any subset of resourcesT ⊂ R
consider therestrictedgameC|T obtained by deleting re-
sources inR \ T . Similarly, given a configurationν, con-
struct a restricted configurationν|T in C|T by ignoring play-
ers that do not choose resources inT . We exploit one key
observation: ifν is a Nash equilibrium forC, then for any
T ⊂ R, ν|T is a NE forC|T . The converse is not true: merg-
ing two NE configurations on different subsets of resources
may not yield a NE, because a player may be able to switch
from an expensive resource in its subset to an inexpensive
resource in the other subset.

Thus, we need to enforce an additional constraint in merg-
ing two NEs. Let themaximum exposed costM(ν, C) of a

2For monotonic costs, a faster greedy solution also works.

Algorithm 1 Opt-Nash(R, C, n)
1: // Dynamic Programming Table: A(h, B, M, V )

// the cost of(B, M, V )-restricted-optimal NE
// on the set of resources{r1, r2, . . . , rh}.

2: // Opt-NashBase Case:

Z(i, B, M, V ) =

8
><
>:

B · c(i, B) if c(i, B) ≤ M

andc(i, B + 1) ≥ V

∞ otherwise

3: A(1, B, M, V ) = Z(1, B, M, V )

4: for h = 2 to |R| do
5: A(h, B, M, V ) =

min
p ∈ {0, 1, . . . , B}

m ∈ {C(i, j)|C(i, j) ≤ M}
v ∈ {C(i, j)|V ≤ C(i, j)}

A(h− 1, p, m, v)+
Z(h, B − p, min{M, v}, max{V, m})

6: end for
7: Return A(|R|, n, max{C(i, j)}, min{C(i, j)}).

configuration be the cost of the most expensive resource that
any player is using. Similarly, let theminimum vacant cost
V (ν, C) be the cheapest cost a player could pay if he were to
switch resources. We can merge two NE configurations on
different subsets of resources only if the maximum exposed
cost of each configuration is no more than the minimum va-
cant cost of the other.

Formally, assumingC(·, 0) = −∞ andC(·, n + 1) =
∞, define M(ν, C) = maxr C(r, νr) and V (ν, C) =
minr C(r, νr + 1).
Lemma 1. SupposeT1 and T2 are disjoint subsets ofR.
Let ν|T1 and ν|T2 be two NE configurations for the re-
stricted cost matricesC|T1 and C|T2 . Furthermore, let
M(ν|T1 , C) ≤ V (ν|T2 , C) andM(ν|T2 , C) ≤ V (ν|T1 , C).
Thenν|T1∪T2 = ν|T1 ∪ ν|T2 is also a NE forC|T1∪T2 .

Proof. For contradiction, supposeν|T1∪T2 is not a NE. Then
there is a playerp currently using resourcei that is more
expensive than another resourcej. Since bothν|T1 andν|T2

are NEs, assume wlog thati ∈ T1 andj ∈ T2.
By definition, M(ν|T1 , C) ≥ C(i, ν|T1(i)) and

V (ν|T2 , C) ≤ C(j, 1 + ν|T2(j)). Since p can move
from i to j, C(i, ν|T1(i)) > C(j, 1 + ν|T2(j)). Thus,
M(ν|T1 , C) > V (ν|T2 , C), contradicting our assumption.
thatM(ν|T1 , C) ≤ V (ν|T2 , C).

Lemma 1 provides the basis for the merging step of our
algorithm. We now introduce the notion of arestricted-
optimalNash equilibrium, and show that a socially optimal
NE can be decomposed into smaller restricted-optimal NEs.

Definition 2. A configurationν for a cost matrixC is a
restricted-optimalNE of parameters(B, M, V ) if ν is so-
cially optimal among all NEsν′ with B players where
M(ν′, C) ≤ M andV (ν′, C) ≥ V .

Lemma 2. Let ν be a socially optimal NE for cost
matrix C on the resources setR. SupposeT ⊂
R. Then ν|T is a restricted-optimal NE of parameters(∑

i∈T νi,M(ν|T , C|T ), V (ν|T , C|T )
)
.



Proof. By contradiction, supposeν|T is not a restricted-
optimal NE of the given parameters. Sinceν|T satisfies
the parameters by definition, there exists a restricted-optimal
NE ν′ on T , which has a better social cost. Consider
ν∗ = ν′ ∪ ν|R\T , which is a NE by Lemma 1. However,
ν∗ has a lower social cost thanν, contradicting our assump-
tion of optimality.

The algorithmOpt-Nashfinds a socially optimal Nash
configuration by adding one resource at a time to a
restricted-optimal Nash equilibrium that only uses the first
h resources. Using Lemmas 1 and 2,Opt-Nashcombines
restricted-optimal NEs onT1 andT2 for all possible combi-
nations of(B, M, V ) parameters to find the optimum. Al-
gorithm 1 gives the pseudo code ofOpt-Nashthat returns
the optimal value. With additional data structures, the actual
assignment of players to resources can be obtained.

Proof of Theorem 1.Correctness ofOpt-Nashis immediate
from Lemma 2. The running time is determined by the num-
ber of entries in the table and the time it takes to fill a single
entry. There are at mostnk different values forM andV
because the cost matrix only has at mostnk entries. The
value ofB varies from0 to n. We fill entries forh = 2 to
k. Thus, there are a totalO(n3k3) table entries. For each
entry, step 5 ofOpt-NashtakesO(n3k2) time, for the total
of O(n6k5).

Note that the dynamic programming approach can be gen-
eralized to finding NEs that satisfy other interesting optimal-
ity criteria besides social welfare, so long as an appropriate
version of Lemma 2 holds. For example, considerminimax-
optimal Nash equilibrium, which minimizes the maximum
cost that any player has to pay. To adaptOpt-Nashto find
minimax-optimal NE, simply take the maximum of the two
subproblems instead of their sum in step 5 ofOpt-Nash.

Hard Optimality Criteria
In contrast to our previous result, there are optimality criteria
for which finding the optimal Nash equilibrium isNP-hard.

Definition 3. A Nash configurationν for a cost matrixC is
a B-bounded optimalNE if for any Nash configurationν′
with B ≤ K(ν′, C), B ≤ K(ν, C) ≤ K(ν′, C).

This is a natural criterion e.g. in a setting where some
contractor hires coders to work on a number of independent
projects simultaneously. If the workers are allowed to switch
projects, it is natural to assume that they will settle in a Nash
equilibrium. However, if the contractor has a budget ofB,
then only aB-bounded equilibrium will be acceptable.

Theorem 2. Givenn players,r resources, and the cost ma-
trix C, it isNP-hard to find aB-bounded optimal NE.

Sketch.The theorem can be shown by a reduction from the
PARTITION problem.

Better- and Best-Response Dynamics
So far, we have concentrated on finding Nash equilibria us-
ing a centralized algorithm. While centrally computed opti-
mal NEs carry normative power, in a multiagent system self-
interested players would switch between resources on their

own to lower their costs. This behavior is more appropriately
captured by studying the dynamics of players making better
or best responses. The fact that these natural dynamics con-
verge to a NE in congestion games also gives the equilibrium
concept a meaningful descriptive weight. In this section, we
will quantify the rate at which Nash dynamics converges.

Note that there is no guarantee on the social cost of the
NE to which Nash dynamics converges. There are examples
where unless the agents start in a NE with low social cost,
BR dynamics will always converge to a NE that is a factor
of Θ(nk) more costly than the social optimum.

Two things were unspecified in the definition of Nash dy-
namics, both of which could possibly affect our analysis.
First, Nash dynamics does not prescribe which player gets
to move from a current state. Second, the initial strategy
profile must be specified. Our theoretical results assume a
worst-case player ordering and initial profile.

Upper Bounds
The first bound that we give shows that better response, and
therefore best response, will converge in polynomial time.

Theorem 3. For n players andk resources, better (hence,
best) response converges in at mostn2k moves.
The fact that Theorem 3 holds for better response is signifi-
cant. It implies that even boundedly-rational agents that al-
ways take the first beneficial move will converge to a NE
quickly.

To prove Theorem 3, observe that the dynamics of reach-
ing a NE depends solely on preferences of the players be-
tween configurations rather than the actual costs.

Definition 4. Given a cost matrixC, therankof cost entry
C(i, j) is r if there are exactlyr−1 distinctcost values (not
entries) inC that are less thanC(i, j).

Proof. Given an SCG cost matrixC, rank-preserving trans-
formations ofC do not affect any Nash equilibria or dynam-
ics of reaching Nash equilibria. Therefore, replace each cost
entry with its rank. The new potential functionΦ can only
have integral values between1 andn2k, since the highest
rank is at mostnk and there aren players. Any better-
response move reducesΦ by at least1, thus converging in
n2k moves.

Our second bound limits the number of resources that are
touched by any best-response dynamics in an SCG.

Theorem 4. In a game withn players, no more than2n
resources are used during best-response dynamics.

Sketch.Call playerp apioneerif p is the first player to use a
resource for the first time. Under best response each player
can be a pioneer at most once.

Lower Bounds
We have examples that establish these lower bounds:

Theorem 5. For n players andk resources,

1. There is a cost matrixC, an initial configurationν, and a
sequence ofbetter-responsemovesP s.t. |P| = Ω(n

3
2 k).
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Figure 1: Best response takesΩ(min(nk, n2)) moves.

2. There is a cost matrixC and an initial configurationν s.t.
anybestresponse sequence takesΩ(min(nk, n2)) moves.

Proof. Due to space constraints, we only illustrate case 2.
Consider the cost matrixC in Figure 1. Each vertical col-
umn represents a resource. The cost of havingj players on
each resource is indicated by the values in the column, with
the cost of having one player at the bottom of the column.
Any unspecified costs have a value of infinity. The initial
placementν is represented by shaded boxes in the matrix.

Note,C has a special property: at each point only play-
ers using a particular resource have incentives to switch to a
different resource. Initially, only players usingr1 can move
to improve their payoffs. By tracing the best response dy-
namics, we see that ally players usingr1 will move torx+1.
Then, thexn − 1 entry ofrx+1 becomes available. Now, a
player usingr2 will move to improve his cost toxn−1. Note
thatrx+1 can only accommodate one of the two players from
r2, which means that the next player (now facing the cost of
n3) will move from r2 to rx+2. After this move, all players
in rx+1 will move rx+2. This pattern of all players mov-
ing from one resource to another will continue. Specifically,
players usingrx+i will move to rx+i+1. The total num-
ber of best response moves isO(xy). By settingy = 1

2n

andx = 1
8n we induce3

8n2 moves. Themin clause in the
lower-bound is to reflect the fact that we actually needO(n)
resources to achieve theO(n2) lower-bound.

Simulation
In the previous section, we studied the worst-case behavior
of BR dynamics in SCGs. To better understand the behavior
of BR dynamics under more general circumstances, we con-
ducted a number of simulation runs on random cost matri-
ces.3 In all of our experiments, we observed that BR dynam-
ics converges rapidly to a NE. Due to space constraint, we
will only highlight one of our experiments and speak briefly
about the others.

In one experiment, we attempted to understand the effect
of initial placement and choice of player-ordering heuristic
on the rate of convergence. We generated a random cost ma-
trix with 12 players and 6 resources and enumerated all 6188

3Random matrices provide the most unbiased view of BR be-
havior, even if they may not be typical of what happens in practice.
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Figure 2: CDF of the number of moves, for a random 12-
player 6-resource singleton game.

possible initial configurations. We simulated BR dynam-
ics for each initial configuration for three player-ordering
heuristics: player with highest cost moving first, players
moving in a round-robin fashion, and players moving in ran-
dom order. The random heuristic was run 20 times with dif-
ferent seeds on each initial configuration. Figure 2 shows
the CDF of the number of runs taking less than a given num-
ber of moves to converge to a NE. In all cases far fewer than
nk = 72 moves, the theoretical lower bound, were required
for convergence to a NE. Other heuristics and additional runs
on other random cost matrices exhibited qualitatively simi-
lar results. In other experiments, we tested how well best-
response dynamics scales with the size of the game. The
results show that the number of moves required to converge
to a NE grows extremely slowly as the number of players
and resources increases.

Independent-Resource Congestion Games
We now considerindependent-resource congestion games
(IRCGs), a natural extension of SCGs with much greater ex-
pressivity but similar theoretical properties. In IRCGs, each
player is given a setRi ⊂ R, and may choose any subset of
Ri of limited size:

Definition 5. An independent-resource congestion gameis
a CG 〈N, R, (Si)i∈N , (cj)j∈M , (li, ui, Ri)i∈N , 〉 such that
0 ≤ li ≤ ui ≤ |R| andSi = {X ⊆ Ri : li ≤ |X| ≤ ui}.

IRCGs can model a much greater range of phenomena
than SCGs, as players are no longer anonymous and may
choose multiple resources. However, IRCGs are related to
SCGs through the potential function: for an IRCGG, a strat-
egy profiles with playeri usingki resourcesinducesa con-
figurationν for an SCGG̃ that has

∑
i ki players and the

same cost matrix, simply by treating each player as a set
of ki players each using one resource. After this mapping,
ΦG(s) = ΦG̃(ν(s)).

Given above, it is natural to hope for a tight link between
Nash dynamics in the two classes. In fact, we will use a
transformation to SCGs to show that best response in IRCGs
will converge in polynomial time. However, we will also
show that better response in IRCGs may take exponentially
many moves to converge.

Theorem 6. There exists a sequence of better responses
in IRCGs that takes exponentially many moves to converge
even if there is only one player in the game.



Proof. Let there bek resources, withC(i, 1) = 2i−1. Let
l1 = 0 andu1 = k. Suppose that the only player initially
uses all resources. The sequence of moves where each suc-
cessive move reduces the cost of the player by 1 is a valid
sequence of better responses.

Theorem 7. BR dynamics converges to a Nash equilibrium
in n2k2 + nk moves from any starting configuration.

Proof. Let G be the IRCG. DefinẽG to be an SCG with
the same cost matrix plus a resourcer0, with C(r0, ·) =
0. Let the number of players iñG be

∑
i∈N ui. Map each

configurationν in G to a configuratioñν in G̃ as follows:
ν̃j = νj for j 6= 0, andν̃0 =

∑
i∈N ui −

∑
j∈R νj .

Suppose that some playeri has a best response inG from
S to S′. Let S0 = S, . . . , Sm = S′ be a sequence of
resource choices for which each successive choice of re-
sources differ in exactly one resource. This sequence can
be constructed by settingSj = Sj−1 − r′j + rj , where
rj ∈ Sj−1 \ S′ and r′j ∈ S′ \ Sj−1. In other words,
choose a resource that does not belong to the final choice
and replace with one that does. IfSj−1 \ S′ or S′ \ Sj−1 is
empty, choose the appropriate resource to ber0. Consider
the configurationsν0, ..., νm in which playeri playsSj . We
will show that each configurationνj has potential no higher
than that ofνj−1. Suppose thatΦG(νj) > ΦG(νj−1). Let
ν′ be the configuration wherei playsS′ − r′j + rj . Then
ΦG(ν′) < ΦG(νm), contradicting thatS′ is a best response.

Now, ν̃0, ..., ν̃m is a series of configurations iñG in which
only one player moves and in which the potential is non-
increasing. Furthermore,ΦG̃(ν̃m) < ΦG̃(ν̃0). Thus, af-
ter a transformation from cost values to ranks,ΦG̃(ν̃m) <

ΦG̃(ν̃0). There are at mostnk + 1 distinct ranks inG̃
and at mostnk players. Thus, the potential is bounded by
n2k2 + nk, and each best response inG decreases potential
by at least 1.

Note that a restricted form of better-response dynam-
ics, which we termlocal-improvement response dynamics,
where each agent makes local changes to its resource choice
by replacing a resource used with a cheaper resource, will
also converge to a NE inn2k2 + nk moves.

Finally, we note that if for all agentsi, li = ui = m for
some constantm andRi = R, Opt-Nashcan be used to find
an optimal NE; the complexity for general IRCGs remains
an open question.

Conclusions and Open Questions
We introduced compactly-representable classes of singleton
and independent-resource congestion games. We demon-
strated that optimal Nash equilibria can be found in poly-
nomial time in singleton games. We also gave force to the
equilibrium concept by showing that better-response dynam-
ics finds equilibria in polynomial time. Nevertheless, this
work leaves a number of very important open questions.

First, we conjecture that the upper bound ofn2k on best
response is too weak, and that an upper bound ofO(nk) is
possible. However, proving this will require fundamentally
new techniques: our analysis of Nash dynamics is based on

potential functions, but potentials cannot easily differentiate
between best and better responses, since they must decrease
with every move. Thus, non-potential-based analysis of con-
gestion games might be very useful.

We also feel that the area of compact forms for congestion
games is barely explored, despite its considerable theoreti-
cal interest. One natural restriction would be to consider
only contiguous resources (e.g. resources are temporal). If
each agent must choose exactlym adjacent resources, we
can find NE inO(nm+1k) time. Analysis of other compact,
yet tractable classes will lead to more practical multiagent
systems and lay sound theoretical ground for computational
game theory.
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