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Abstract. We propose a new approach for understanding the algorithm-specific
empirical hardness of NP-Hard problems. In this work we focus on the empirical
hardness of the winner determination problem—an optimization problem arising
in combinatorial auctions—when solved by ILOG’s CPLEX software. We con-
sider nine widely-used problem distributions and sample randomly from a con-
tinuum of parameter settings for each distribution. We identify a large number of
distribution-nonspecific features of data instances and use statistical regression
techniques to learn, evaluate and interpret a function from these features to the
predicted hardness of an instance.

1 Introduction

It is no secret that particular instances of NP-Hard problems can be quite easy to solve
in practice. In recent years researchers in the constraint programming and artificial in-
telligence communities have studied the empirical hardness of individual instances or
distributions of NP-Hard problems, and have often managed to find simple mathemat-
ical relationships between features of the problem instances and the hardness of the
problem. The majority of this work has focused on decision problems: that is, problems
that ask a yes/no question of the form, “Does there exist a solution meeting the given
constraints?”. The most successful approach for understanding the empirical hardness
of such problems—taken for example in [3, 1]—is to vary some parameter of the input
looking for a hard-easy-hard transition corresponding to a phase transition in the solv-
ability of the problem. This approach uncovered the famous result that 3-SAT instances
are hardest when the ratio of clauses to variables is about 4.3; it has also been applied
to other decision problems such as quasigroup completion [7]. Another approach rests
on a notion of backbone [17, 1], which is the set of solution invariants.

1.1 Empirical Hardness of Optimization Problems

Some researchers have also examined the empirical hardness of optimization problems,
which ask a real-numbered question of the form, “What is the best solution meeting the
given constraints?”. These problems are clearly different from decision problems, since
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they always have solutions and hence cannot give rise to phase transitions in solvability.
One way of finding hardness transitions related to optimization problems is to transform
them into decision problems of the form, “Does there exist a solution with the value of
the objective function ≥ x?” This approach has yielded promising results when applied
to MAX-SAT and TSP. Other experimentally-oriented work includes the extension of
the concept of backbone to optimization problems [24], although it is often difficult to
define for arbitrary problems and can be costly to compute.

A second approach is to attack the problem analytically rather than experimentally.
For example, Zhang performed average case theoretical analysis of particular classes
of search algorithms [25]. Though his results rely on independence assumptions about
the branching factor and heuristic performance at each node of the search tree that
do not generally hold, the approach has made theoretical contributions—describing a
polynomial/exponential-time transition in average-case complexity—and shed light on
real-world problems. Korf and Reid predict the average number of nodes expanded
by a simple heuristic search algorithm such as A* on a particular problem class by
making use of the distribution of heuristic values in the problem space [14]. As above,
strong assumptions are required: e.g., that the branching factor is constant and node-
independent, and that edge costs are uniform throughout the tree.

Both experimental and theoretical approaches have sets of problems to which they
are not well suited. Existing experimental techniques have trouble when problems have
high-dimensional parameter spaces, as it is impractical to manually explore the space
of all relations between parameters in search of a phase transition or some other pre-
dictor of an instance’s hardness. This trouble is compounded when many different data
distributions exist for a problem, each with its own set of parameters. Theoretical ap-
proaches are also difficult when the input distribution is complex or is otherwise hard
to characterize, but they also have other weaknesses. They tend to become intractable
when applied to complex algorithms, or to problems with variable and interdependent
edge costs and branching factors. Furthermore, they are generally unsuited to making
predictions about the empirical hardness of individual problem instances, instead con-
centrating on average (or worst-case) performance on a class of instances.

1.2 Our Methodology

Some optimization problems do not invite study by existing experimental or theoretical
approaches: problems characterized by a large number of apparently relevant features,
the existence of many, highly parameterized distributions, significant variation in edge
costs throughout the search tree and the desirability of predicting the empirical hardness
of individual problem instances.1 We propose a novel experimental approach for pre-
dicting the running time of a given algorithm on individual instances of such a problem,
drawn from one of many different distributions. Our methodology follows:

1. An optimization algorithm is selected.
2. A set of problem instance distributions is selected. For each parameter of each

distribution a range of acceptable values is established.
1 We observe that these characteristics are not unique to optimization problems, but in this paper

we limit our discussion to optimization.



3. Problem size is defined and a size is chosen. Problem size will be held constant to
focus on unknown sources of hardness.

4. A set of polytime-computable, distribution-independent features is selected.
5. To generate instances, a distribution is chosen at random and then the range of

acceptable values for each parameter is sampled. This step is repeated until the
desired number of problem instances have been generated.

6. For each problem instance the running time of the optimization algorithm is deter-
mined, and all features are computed.

7. Redundant or uninformative features are eliminated.
8. A function of the features is learned to predict running time (or some other measure

of empirical hardness), and prediction error is analyzed.

The application of machine learning to the prediction of running time has received
some recent study (see, eg., [12]); however, there is no other work of which we are
aware that uses such an approach primarily in order to understand the empirical hard-
ness of an NP-Hard problem. Although our methodology applies to the broad class of
problems described above, for concreteness we concentrate on one widely-studied prob-
lem that exemplifies the class. The winner determination problem (WDP) is a constraint
programming optimization problem associated with combinatorial auctions. It has often
been observed that WDP algorithms vary by many orders of magnitude in their running
times for different problems of the same size—even for different instances drawn from
the same distribution. However, little is known about what causes WDP instances to
differ in their empirical hardness. Understanding what characteristics of data instances
are predictive of long running times would be useful for predicting how long an auction
will take to clear, tuning data distributions for hardness, constructing algorithm portfo-
lios, designing package bidding rules to reduce the chances of long clearing times and
possibly for improving the design of WDP algorithms.

1.3 Overview

In section 2 we give an introduction to combinatorial auctions in general, and previous
work on the WDP in particular. We then survey nine of the most widely-studied com-
binatorial auction data distributions in section 3. (Because of space limitations we give
the range of acceptable values we chose for each distribution on our website.) In sec-
tion 4 we discuss holding the problem size constant in order to concentrate on unknown
sources of hardness; in section 5 we describe our 25 distribution-independent features.
Finally, our experimental results and analysis are presented in section 6.

2 Combinatorial Auctions

Combinatorial auctions have received considerable attention in computer science over
the past several years because they provide a general framework for allocation and
decision-making problems among self-interested agents: agents may bid for bundles of
goods, with the guarantee that these bundles will be allocated “all-or-nothing”. These
auctions are particularly useful in cases where agents consider some goods to be com-
plementary, which means that an agent’s valuation for some bundle exceeds the sum



of its valuation for the goods contained in the bundle. They may also allow agents to
specify that they consider some goods to be substitutable, e.g., agents can state XOR
constraints between bids, indicating that at most one of these bids may be satisfied.

2.1 Combinatorial Auction Winner Determination

The winner determination problem (WDP) is choosing the subset of bids that maxi-
mizes the seller’s revenue, subject to the constraint that each good can be allocated at
most once. A WDP instance consists of a set of bids: bid i is made up of a bundle of
goods denoted bi and a price offer pi. If a set of bids are joined by an XOR constraint,
the constraint is represented through the addition of a “dummy good” which is included
in bi. (A dummy good is an artificial good that exists only to enforce an XOR constraint;
see [6].) The WDP may be formulated as an integer program, where indicator variables
xi encode the inclusion or exclusion of each bid i from the allocation:

maximize:
∑

i

xipi

subject to:
∑

i|g∈bi

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i

Although this problem is equivalent to weighted set-packing and is therefore NP-
Hard, there are cases where it is important to solve the WDP to optimality. There has
been much discussion of the application of the Vickrey-Clarke-Groves mechanism to
combinatorial auctions (e.g., a good survey of combinatorial auction research is [4]).
This economic mechanism requires that a provably-optimal solution to the WDP be pro-
vided. Parkes and Ungar [19], among others, have proposed ascending auction mech-
anisms that also require provably-optimal solutions to the WDP. Also, it is known that
the WDP is inapproximable within any constant factor: cf. [21].

Much recent work has concerned algorithms for solving the WDP to optimality.
A very influential early paper was [20], but it focused on tractable subcases of the
problem and addressed computational approaches to the general WDP only briefly. The
first algorithms designed specifically for the general WDP were published at IJCAI-99
[6, 21]; these authors improved and extended upon their algorithms in [16, 22]. Other
influential algorithmic work on the general WDP is [18, 8].

More recently, researchers have converged towards solving the WDP with branch-
and-bound search, using a linear-programming relaxation of the problem as a heuris-
tic. There has thus been increasing interest in the use of ILOG’s CPLEX software to
solve the WDP, particularly since the mixed integer programming module in that pack-
age improved substantially in version 6 (released 2000), and again in version 7 (re-
leased 2001). In version 7.1 this off-the-shelf software has reached the point where it is
competitive with the best special purpose software, Sandholm’s CABOB [22]. Indeed,
CABOB makes use of CPLEX’s linear programming package as a subroutine and uses
branch-and-bound search. The combinatorial auction research community has thus seen
convergence towards branch-and-bound search in general, and CPLEX in particular, as



the preferred approach to optimally solving the WDP. In this paper we selected CPLEX
7.1 as our WDP algorithm.

3 Artificial Data Distributions

3.1 Legacy Data Distributions

The wealth of research into algorithms for solving the WDP has created a need for many
instances on which to test these algorithms. Since to date computational hurdles have
made real-world data scarce, researchers have generally turned to artificial distributions
for the evaluation of WDP algorithms. Along with the first wave of algorithms for the
WDP, seven distributions were proposed in [21, 6, 11] that have been widely used by
other researchers including many of those cited above. Each of these distributions may
be seen as an answer to two questions: what number of goods to request in a bundle,
and what price to offer for a bundle. Given a required number of goods, all distributions
select which goods to include in a bid uniformly at random without replacement. The
following methods are used to select the number of goods in a bundle:

– Uniform: Uniformly distributed on [1, num goods]
– Normal: Normally distributed with µ = µg and σ = σg

– Constant: Fixed at constant goods

– Decay: Starting with 1, increment the size of the bundle until rand(0, 1) > α

– Binomial: Request n goods with probability pn(1−p)num goods−nC(num goods, n)
– Exponential: Request n goods with probability Ce−n/q

The following methods are used to select a price offer:

– Fixed Random: Uniform on [low, hi]
– Linear Random: Uniform on [low · n, hi · n]
– Normal: Draw from a normal distribution with µ = µp and σ = σp

The seven legacy distributions follow:

– [L1] Sandholm: Uniform; Fixed Random: low = 0, hi = 1
– [L2] Sandholm: Uniform; Linear Random: low = 0, hi = 1
– [L3] Sandholm: Constant: constant goods = 3; Fixed Random: low = 0, hi = 1
– [L4] Sandholm: Decay: α = 0.55; Linear Random: low = 0, hi = 1
– [L5] Boutilier et al.: Normal: µg = 4, σg = 1; Normal: µp = 16, σp = 3
– [L6] Fujishima et al.: Exponential: q = 5; Linear Random: low = 0.5, hi = 1.5
– [L7] Fujishima et al.: Binomial: p = 0.2; Linear Random: low = 0.5, hi = 1.5

3.2 CATS Distributions

Subsequent research has exposed a variety of problems with these legacy distributions:
see, for example, [2, 4, 15]. Broadly, these concerns may be divided into challenges
to the realism of these distributions as a model for bidding in CA’s and claims that
these distributions are not empirically hard. We attempted to address the first group
of problems in previous work [15], proposing the Combinatorial Auction Test Suite



(CATS). Indeed, the CATS distributions have been widely used, by many of the authors
cited above and also for example by [10, 23, 13]. In this paper we consider four CATS
distributions: regions, arbitrary, matching, and scheduling.2 Although the available
space does not permit the enumeration of each distribution’s parameters, we give a
high-level description of each distribution. Regions models an auction of real estate,
or more generally of any goods over which two-dimensional adjacency is the basis of
complementarity; bids request goods that are adjacent in a planar graph. Arbitrary is
similar, but relaxes the planarity assumption and models arbitrary complementarities
between discrete goods such as electronics parts or collectables. Matching applies to
FAA airline take-off and landing rights auctions; each bid requests one take-off and
landing slot bundle, and each bidder submits an XOR’ed set of bids for acceptable
bundles. Scheduling models a distributed job-shop scheduling domain, with bidders
requesting an XOR’ed set of resource time-slots that will satisfy their specific deadlines.

By modeling bidders explicitly and creating bid amounts, sets of goods and sets of
substitutable bids from models of bidder valuations and models of problem domains,
we aimed for the CATS distributions to serve as a step towards a realistic set of test
distributions. However, we made no efforts to tune the distributions to provide hard
instances. In practice, many researchers have remarked that some CATS problems are
comparatively easy. In section 6 we show experimentally that some CATS distributions
are always very easy for CPLEX, while others can be extremely hard.

4 The Issue of Problem Size

Some sources of empirical hardness in NP-Hard problem instances are well-understood.
Our goal is to understand what other features of instances are predictive of hardness so
we hold these parameters constant, concentrating on variations in other features.

For the WDP, it is well known that problems become harder as the number of goods
and bids increases.3 For this reason, researchers have traditionally reported the per-
formance of their WDP algorithms in terms of the number of bids and goods of the
input instances. While it is easy to fix the number of goods, holding the number of bids
constant is not as straightforward as it might appear. Most special-purpose algorithms
make use of a polynomial-time preprocessing step which removes bids that are strictly
dominated by one other bid. More precisely, bid i is dominated by bid j if the goods
requested by i are a (non-strict) superset of the goods requested by j, and the price offer
of i is smaller than or equal to the price offer of j. (This is similar in flavor to the use of
arc-consistency as a preprocessing step for a CSP or weighted CSP problem.) It is thus
possible for the size of problems given as input to the WDP algorithm to vary even if
all generated instances had the same number of bids.

2 We have not included the paths distribution because we are updating and extending it; we will
include results concerning this distribution in the full version of this paper.

3 An exception is that problems generally become easier when the number of bids grows very
large in distributions favoring small bundles, because each small bundle is sampled much more
often than each large bundle, giving rise to a new distribution for which the optimal allocation
tends to involve only small bundles. We consider much smaller numbers of bids here.



It is not obvious whether domination ought to remove many bids, or whether the
relationship between the average number of non-dominated bids and total bids ought
to vary substantially from one distribution to another. No other work of which we are
aware characterizes this relationship, so we set out to measure it. Figure 4 shows the
number of non-dominated bids as a function of the total number of bids generated. In
these experiments, with each line representing an average over 20 runs, bids were gen-
erated for an auction with 64 goods, and the program stopped after 2000 non-dominated
bids had been made. We observe that some of the “legacy” distributions are consider-
ably more likely than others to generate non-dominated bids; we do not show the CATS
distributions in this graph as all four generated virtually no dominated bids.
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Fig. 1. Non-Dominated Bids vs. Raw Bids

Of course, many other polynomial-time preprocessing steps are possible, e.g., a
check for bids that are dominated by a pair of other bids. Indeed, CPLEX employs
many, much more complex preprocessing steps before initiating its own branch-and-
bound search. However, our own experience with algorithms for the WDP has suggested
that other polynomial-time preprocessing steps offer much poorer performance in terms
of the number of bids discarded in a given amount of time. The results above certainly
suggest that the results of strict domination checking should not be disregarded, since
distributions differ substantially in the ratio between the number of non-dominated bids
and the raw number of bids. We thus defined the problem size as the pair (number of
goods, number of non-dominated bids). We re-implemented the CATS software so that
it generated instances for all CATS and legacy distributions with a specified number
of non-dominated bids: the software iteratively generated bids and removed dominated
bids until the specified target was reached. Our focus on the number of non-dominated
bids forced us not to consider bids from the distributions L1 and L5 in the remainder of
the paper, because they often failed to generate the specified number of non-dominated
bids even after millions of bids were created. (We note that this helps explain why L1
and L5 have been found empirically easy by other researchers.)



Bid-Good Graph Features:

1-3. Bid nodes degree statistics: max and min degree of
the bid nodes, and standard deviations.

4-7. Good nodes degree statistics: average, maximum,
minimum degree of the good nodes, and their
standard deviations.

Bid Graph Features:

8. Edge Density: number of edges in the BG divided
by the number of edges in a complete graph with
the same number of nodes.

9-11. Node degree statistics: the max and min node de-
grees in the BG, and their standard deviation.

12-13. Clustering Coefficient and Deviation. A measure
of “local cliqueness.” For each node calculate the
number of edges divided by k(k−1)/2, where k is
the number of neighbors. We record average (the
clustering coefficient) and standard deviation.

14. Average minimum path length: the average mini-
mum path length, over all pairs of bids.

15. Ratio of the clustering coefficient to the average
minimum path length: One of the measures of the
smallness of the BG.

16-19. Node eccentricity statistics: The eccentricity of a
node is the length of a shortest path to a node
furthest from it. We calculate the maximum ec-
centricity of BG (graph diameter), the minimum
eccentricity of BG (graph radius), average eccen-
tricity, and standard deviation of eccentricity.

LP-Based Features:

20-22. L1, L2, L∞ norms of the integer slack vector.

Price-Based Features:

23. Standard deviation of prices among all bids:
stdev(pi)

24. Deviation of price per number of goods:
stdev(pi/|bi|)

25. Deviation of price per square root of the number of
goods: stdev(pi/

√

|bi|).

Fig. 2. Four Groups of Features

5 Features

As described above, we characterize each problem instance with a set of features. There
is no automatic way of constructing a feature set: researchers must use their domain
knowledge to identify properties of the instance that appear likely to provide useful in-
formation about empirical hardness. We only consider features that can be generated
from any problem instance, without knowledge of how that instance was constructed.
Furthermore we restrict ourselves to those features that are computable in polynomial
time, since the computation of the features should scale well as compared to solving the
optimization problem. Although features must be manually selected, there are statis-
tical techniques for identifying useless features. Identifying such features is important
because highly correlated features can unnecessarily increase the dimensionality of the
hypothesis space: this can degrade the performance of some regression algorithms and
also makes the resulting formula harder to interpret.

For our WDP case study, we determined 35 features which we thought could be
relevant to the empirical hardness of the optimization, ranging in their computational
complexity from linear to cubic time. After feature selection we were left with 25 fea-
tures: these are summarized in Fig. 2. We describe our features in more detail below,
and also mention some of the features that were eliminated by feature selection.

There are two natural graphs associated with each instance. First, is the bid-good
graph (BGG): a bipartite graph having a node for each bid, a node for each good and
an edge between a bid and a good node for each good in the given bid. We measure a
variety of BGG’s properties: extremal and average degrees and their standard deviations
for each group of nodes. The average number of goods per bid was perfectly correlated
with another feature, and so did not survive our feature selection.

The bid graph (BG) represents conflicts among bids (thus it is the constraint graph
for the associated CSP). As is true for all CSPs, the BG captures a lot of useful infor-
mation about the problem instance. Our second group of features are concerned with



structural properties of the BG.4 We originally measured the first and third quartiles
and the median of the BG node degrees, but they turned out to be highly correlated
with edge density. We also measured the average number of conflicts per bid, but since
the number of bids was held constant this feature was always proportional to edge den-
sity. We considered using the number of connected components of the BG to measure
whether the problem is decomposable into simpler instances, but found that nearly ev-
ery instance consisted of a single component. Finally, it would be desirable to include
some measure of the size of the (unpruned) search space. For some problems branching
factor and search depth are used; for WDP neither is easily estimated. A related measure
is the number of maximal independent sets of BG, which corresponds to the number of
feasible solutions. However, this counting problem is hard, and to our knowledge does
not have a polynomial-time approximation.

The third group of features is calculated from the solution vector of the LP relax-
ation of the WDP. We calculate the integer slack vector by replacing each component
xi with min(|xi|, |1 − xi|). These features appeared particularly useful both because
the slack gives insight into the quality of CPLEX’s initial solution and because CPLEX
uses LP as its search heuristic. Originally we also included median integer slack, but
excluded the feature when we found that it was always zero.

Our last group of features is the only one to explicitly consider the prices associated
with bids. While the scale of the prices has no effect on hardness the spread is crucial,
since it impacts pruning. We note that feature 25 was shown to be an optimal bid-
ordering heuristic for branch-and-bound search on the WDP in [8].

6 Experimental Results

We generated three separate data sets of different problem sizes, to ensure that our
results were not artifacts of one particular choice of problem size. The first data set
contained runs on instances of 1000 bids and 256 goods each, with a total of 4500
instances (500 instances per distribution). The second data set with 1000 bids and 144
goods had a total of 2080 instances; the third data set with 2000 bids and 64 goods
contained 1964 instances. Where we present results for only a single data set, the first
data set was always used. All of our runtime data was collected by running CPLEX 7.1
with preprocessing turned off. We used a cluster of 4 machines, each of which had 8
Pentium III Xeon 550 MHz processors and 4G RAM and was running Linux 2.2.12.
Since many of the instances turned out to be exceptionally hard, we stopped CPLEX
after it had expanded 130,000 nodes (reaching this point took between 2 hours and 22
hours, averaging 9 hours). Overall, solution times varied from as little as 0.01 seconds to
as much as 22 hours. We estimate that we consumed approximately 3 years of CPU time
collecting this data. We also computed our 35 features for each instance. (Recall that
feature selection took place after all instances had been generated.) Each feature in each
data set was normalized to have a mean of 0 and a standard deviation of 1. Regression
was performed using the open-source R package (see www.r-project.org).

4 We thank Rámon Béjar for providing code for calculating the clustering coefficient.
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6.1 Gross Hardness

Before attempting to characterize the hardness of our problems with machine learning
techniques, we examined the gross hardness of each distribution. To our knowledge no
previously published results show the distribution of hard and easy problems across dif-
ferent data distributions. Figure 3 shows the results of 500 runs for each distribution on
problems with 256 goods and 1000 non-dominated bids, indicating the number of in-
stances with the same order-of-magnitude runtime—i.e., blog10(runtime)c—for each
of our nine distributions. Each instance of each distribution had different parameters,
each of which was sampled from a range of acceptable values.

This figure illustrates that some data distributions were always easy for CPLEX,
while others were nearly always hard. It is interesting that most distributions had in-
stances that varied in hardness by several orders of magnitude, despite the fact that all
instances had the same problem size. In the next sections we will describe our attempts
to predict the order-of-magnitude hardness of data instances—effectively, to induce the
hardness information in Fig. 3 without running CPLEX or identifying the distribution
from which an instance was drawn.

6.2 Homing in on Sources of Hardness

Since we wanted to learn a continuous-valued model of the features, we used statistical
regression techniques.5 We chose the logarithm of CPLEX running time as our response
variable—the value to be predicted—rather than absolute running time, for consistency
with our original motivation of automatically reconstructing the gross hardness figure.
We wanted the model to be penalized according to whether the predicted and actual val-
ues had the same order of magnitude: if we had tried to predict absolute running times
then the model would have been penalized very little for dramatically mispredicting the
running time of very easy instances, and would have been penalized heavily for slightly
mispredicting the running time of the hardest instances. We performed regression on a
training set consisting of 80% of each of our datasets, and then tested our model on the
remaining 20% to evaluate its ability to generalize to new data.

5 A large literature addresses the statistical techniques we used; for an introduction see, e.g., [9].



Linear Regression One of the simplest and most widely-studied regression techniques
is linear regression. This technique works by finding a hyperplane in the feature space
that minimizes root mean squared error (RMSE), which is defined as the square root
of the average squared difference between the predicted value and the true value of the
response variable. Minimizing RMSE is reasonable because it conforms to the intuition
that, holding mean absolute error constant, models that mispredict all instances equally
should be preferred to models that vary in their mispredictions. Although we go on to
consider nonlinear regression, it is useful to consider the results of linear regression for
two reasons. First, one of our main goals was to understand the factors that influence
hardness, and insights gained from a linear model are useful even if other, more accurate
models can be found. Second, our linear regression model serves as a baseline to which
we can compare the performance of more complex regression techniques.

In Fig. 4(a) we report both RMSE and mean absolute error, since the latter is often
more intuitive. A third measure, adjusted R2, is the fraction of the original variance in
the response variable that is explained by the model, with a penalty for more complex
models. Despite this penalty, adjusted R2 is a measure of fit to the training set and
cannot entirely correct for overfitting; nevertheless, it can be an informative measure
when presented along with test set error. Overall, this table shows that our linear model
would be able to do a good job of classifying instances into the bins shown in Fig.
3, despite the fact that it is not given the distribution from which each instance was
drawn: 93% of the time the log running times of the data instances in our test set were
predicted to the correct order of magnitude (i.e., with an absolute error of less than 1.0).
Figures 4(b) and 4(c) show histograms of mean absolute and RMS error, with bin width
0.1. These histograms show that most instances are predicted very accurately, and few
instances are dramatically mispredicted.

Data Point Mean Abs Err RMSE Adj. R2 
1000 Bids/256 Goods 0.399 0.543 0.938 
1000 Bids/144 Goods 0.437 0.579 0.909 
2000 Bids/64 Goods 0.254 0.368 0.912 

 
(a) Errors and Adjusted R

2

0

50

100

150

200

0 0.3 0.6 0.9 1.2 1.5 1.8

(b) MAE

0

100

200

300

400

500

0 0.3 0.6 0.9 1.2 1.5 1.8

(c) RMSE

Fig. 4. Experimental results for linear regression

Nonlinear Models Although our linear model was quite effective, we expected that
nonlinear interactions between our features would be important, and therefore looked
to nonlinear models. A simple way of performing nonlinear regression is to compute
new features based on nonlinear interactions between the original features, and then to
perform linear regression on the union of both sets of features. We added all products
of pairs of features to our linear model, including squares of individual features, which
gave us a total of 350 features. This allowed us to fit a 2nd degree polynomial instead
of our previous linear model. For all three of our datasets this model gave considerably
better error measurements on the test set and also explained nearly all the variance in
the training set, as shown in Fig. 5(a).



Data Point Mean Abs Err RMSE Adj. R2 
1000 Bids/256 Goods 0.183 0.297 0.987 
1000 Bids/144 Goods 0.272 0.475 0.974  
2000 Bids/64 Goods 0.163 0.272 0.981  
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Fig. 5. Experimental results for 2
nd degree polynomial regression

We also explored another nonlinear regression technique, Multivariate Adaptive Re-
gression Splines (MARS) [5]. MARS models are linear combinations of the products
of one or more basis functions, where basis functions are the positive parts of linear
functions of single features. The RMSE on our MARS models differed from the RMSE
on our second-order model only in the second decimal place; as MARS models can be
unstable and difficult to interpret, we focus on the second-order model here.

Analysis The results summarized above demonstrate that it is possible to learn a model
of our features that accurately predicts the log of CPLEX running time on novel in-
stances. For some applications (e.g., predicting the time it will take for an auction to
clear; building an algorithm portfolio) accurate prediction is all that is required. For
other applications it is necessary to understand what makes an instance empirically
hard. In this section we set out to interpret our models.

It is tempting to interpret a model by comparing the coefficients assigned to the
different features; since all features have the same mean and standard deviations, more
important features should tend to have larger coefficients. The reason that this does not
work is that most features are at least somewhat correlated. Two perfectly correlated
but entirely unimportant features can have large coefficients with opposite signs in a
linear model; in practice, since imperfect correlation and correlations among larger sets
of variables are common, it is difficult to untangle the effects of correlation and impor-
tance in explaining a given coefficient’s magnitude. One solution is to force the model
to have smaller coefficients and/or to contain fewer variables. Requiring smaller coef-
ficients reduces interactions between correlated variables; two popular techniques are
ridge regression and lasso regression. We evaluated these techniques using cross vali-
dation and found no significant effect on errors or on interpretability of the model, so
we do not present these results here.

Another family of techniques allows interpretation without the consideration of co-
efficient magnitudes. These techniques select “good” subsets of the features, essentially
performing exhaustive enumeration when possible and various greedy search tech-
niques otherwise. Small models are desirable for analysis because they are easier to
interpret directly and because a small, optimal subset will tend to contain fewer highly
covariant features than a larger model. We plotted subset size (from 1 to the total num-
ber of variables) versus the RMSE of the best model built from a subset of each size. We
then chose the smallest subset size at which there was little incremental benefit gained
by moving to the next larger subset size. We examined the features in the model, and
also measured each variable’s cost of omission—the (normalized) difference between
the RMSE of the model on the original subset and a model omitting the given variable.



It is important to note that because of correlation between features many different sub-
sets may achieve nearly the same RMSE, and that very little can be inferred from what
particular variables are included in the best subset of a given size. This is of little con-
cern, however, when subset selection is used only to gain a conceptual understanding of
the features that are important for predicting empirical hardness; in this case the substi-
tution of one feature for another covariant feature is irrelevant because the inclusion of
either feature in the model has the same intuitive meaning. It is also worth noting that
subset selection and cost of omission were both evaluated using the test set, but that all
model selection was evaluated using cross validation, and all analysis was performed
after our models had been learned.
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Fig. 6. Subset Selection in Linear Models.

Figure 6(a) shows the RMSE of the best subset containing between 1 and 25 fea-
tures for linear models; since we had only 25 features in total we selected the best
subsets by exhaustive comparison. We chose to examine the model with seven features
because it was the first for which adding another feature did not cause a large decrease
in RMSE. Figure 6(b) shows the seven features in this model and their respective costs
of omission (scaled to 100). The most striking conclusion is that structural features are
the most important. Edge density of BG is essentially a measure of the constrainedness
of the problem, so it is not surprising to find that this feature is the most costly to omit.
Clustering coefficient, the second feature, is a measure of average cliquiness of BG; this
feature gives an indication of how local constraints in the problem are. All but one of
the remaining features concern node degrees in BG or BGG; the final feature is the L1

norm of the linear programming slack vector. The importance of this feature is quite
intuitive: the L1 norm is close to 0 for problems that are almost completely solved by
LP, and larger for more difficult problems.

Figure 7(a) shows the best subsets containing between 1 and 60 features for second-
order models. In this case we had 350 features, making exhaustive exploration of fea-
tures impossible; we instead used four different greedy subset selection methods and
at each size chose the best subset among the four. The subsets shown in Fig. 7(a) are
likely not the RMSE-minimizing subsets of the given sizes, but since our goal was only
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Fig. 7. Subset Selection in Second-Order Models.

to understand what sorts of features are important this likely lack of optimality is not
a serious problem. We observe that the interactions between features dramatically im-
proved RMSE on very small subsets. Figure 7(b) shows the costs of omission for the
variables from the best subset of six features. Again we observe that edge density of BG
is a critically important feature, as are the clustering coefficient and node degrees. We
observe that overall many second-order features were selected. The L1 norm becomes
more important than in the linear model when it is allowed to interact with other fea-
tures; in the second-order model it is also sufficiently important to be included as the
only first-order feature. It is striking that no price features were important in either our
first- or second-order models. Although price-based features do appear in larger mod-
els, they seem not to be as critically important as structural or LP-based features. This
may be partially explained by the fact that the removal of dominated bids eliminates
the bids that deviate most substantially on price, and indeed caused us to eliminate the
distribution (L1) in which average price per good varied most dramatically across bids.

7 Conclusion and Future Directions

This paper makes two main contributions. First, we performed an extensive experi-
mental investigation into the hardness of the WDP. We contrasted widely-used WDP
distributions with respect to their empirical hardness, and showed that the traditional
definition of problem size can be misleading. We identified structural, distribution-
independent features of WDP instances and showed that, somewhat surprisingly, they
contain enough information to predict CPLEX running time with high accuracy.

Second and more importantly, we proposed a new, general methodology for under-
standing the empirical hardness of complex, high-dimensional NP-Hard problems. We
believe that our methodology, based on using machine learning techniques to identify
hard regions of the feature space, is applicable to a wide variety of hard problems; we
intend to test this hypothesis in future work. Furthermore, we intend to explore some
of the applications described earlier: straightforward prediction of running time, effec-



tive algorithm selection in algorithm portfolios, tuning distributions for hardness and
gaining deeper insight into empirical hardness through the analysis of learned models.
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