
EMPIRICAL APPROACH TO THE COMPLEXITY OF HARD

PROBLEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Eugene Nudelman

October 2005



c© Copyright by Eugene Nudelman 2006

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Yoav Shoham Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Andrew Ng

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Bart Selman

(Computer Science Department, Cornell University)

Approved for the University Committee on Graduate Studies.

iii



iv



To my parents and grandparents

v



vi



Abstract

Traditionally, computer scientists have considered computational problems and al-

gorithms as artificial formal objects that can be studied theoretically. In this work

we propose a different view of algorithms as natural phenomena that can be studied

using empirical methods. In the first part, we propose a methodology for using ma-

chine learning techniques to create accurate statistical models of running times of a

given algorithm on particular problem instances. Rather than focus on the traditional

aggregate notions of hardness, such as worst-case or average-case complexity, these

models provide a much more comprehensive picture of algorithms’ performance. We

demonstrate that such models can indeed be constructed for two notoriously hard

domains: winner determination problem for combinatorial auctions and satisfiability

of Boolean formulae. In both cases the models can be analyzed to shed light on the

characteristics of these problems that make them hard. We also demonstrate two con-

crete applications of empirical hardness models. First, these models can be used to

construct efficient algorithm portfolios that select correct algorithm on a per-instance

basis. Second, the models can be used to induce harder benchmarks.

In the second part of this work we take a more traditional view of an algorithm as

a tool for studying the underlying problem. We consider a very challenging problem of

finding a sample Nash equilibrium (NE) of a normal-form game. For this domain, we

first present a novel benchmark suite that is more representative of the problem than

traditionally-used random games. We also present a very simple search algorithm for

finding NEs. The simplicity of that algorithm allows us to draw interesting conclusions

about the underlying nature of the problem based on its empirical performance. In

particular, we conclude that most structured games of interest have either pure-

strategy equilibria or equilibria with very small supports.
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Chapter 1

Introduction

1.1 Complexity

Fundamentally, this thesis is about complexity. Complexity became truly inherent in

computer science at least since it was in some sense formalized by Cook [1971] and

Levin [1973]; in reality, it has been a concern of computer science since the inception of

the field. I would argue that the mainstream perspective in computer science (which,

by no means, is the only existing one) is heavily influenced by a particular view that

really goes back to the logical beginnings of CS, the works of Church and Turing, if

not earlier. One of the first (and, certainly, true) things that students are taught in

the “foundational” CS courses is that we can think of the computational problems

as formal languages — i.e., sets of strings with certain properties. Algorithms, then,

become simply mappings from one set of strings to another. The work of Cook [1971]

firmly cemented the dimension of time (read – complexity) to concrete realizations

of such mappings, but it didn’t change the fact that algorithms are formal artificial

objects. The fallacy that often follows this observation lies in the fact that formal or

artificial objects must be studied by analytical formal methods.

There is another perspective that seems to be dominant at least among theoretically-

inclined CS researchers. Often the algorithms are viewed as somehow being secondary

to the computational problems. A well-established computer scientist once even said

to me that “algorithms are merely tools, like microscopes, that allow us to study the

1



2 CHAPTER 1. INTRODUCTION

underlying problem”. This is certainly also a very much valid and useful point of

view. Indeed, in the second part of this thesis, we’ll subscribe to this view ourselves.

I hope to demonstrate, at least via the first part, that yet again, this is not the only

possible view.

Let us examine closer some ramifications that the views described above had on

computer science, and, in particular, on the study of complexity. First, the view of

algorithms as being secondary causes most work to focus on the aggregate picture of

complexity; i.e., complexity of a problem as a whole, and not of particular instances.

Indeed, the complexity of a single instance is simply undefinable irrespectively of an

algorithm, for one can always create an algorithm that solves any particular instance

in constant time by a simple lookup. In the most classical case this aggregation

takes form of the worst-case complexity (i.e., the max operator). A slightly more

informative view is obtained by adding to the mix some (usually, uniform) probability

distribution over problem instances or some randomness to the algorithms. This leads

to the notion of average-case complexity — still an aggregation, with max replaced by

the expectation. In certain cases instead of a distribution a metric can be imposed,

leading to such notions as smoothed complexity. None of these notions are concerned

with individual instances.

This problem of not being concerned with minutiae is compounded by the formal

approach. Instead of specifics, a lot of work focuses on the asymptotics — theoretical

bounds and limits. One cannot really hope to do much better, at least without

fixing an algorithm. For example, the notion of the worst-case problem instance is

meaningless for the same reason as above: we can always come up with an algorithm

that would be tremendously efficient on any particular instance. Unfortunately, the

practical implications of such theoretical bounds sometimes border on being absurd.

Here is an anecdote from a fellow student Sergei Vassilvitskii, one of many such. He

was examining some well-cited (and, apparently, rather insightful) work that showed

that certain peer-to-peer systems achieve very good performance when being used

by sufficiently many people. Out of curiosity, Sergei actually calculated the number

of users at which presented bounds would take effect. It came out to the order of

1027 people — probably more than the universe will bear in any foreseeable future.
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Besides possibly very exciting and useful proof techniques, it is not clear what can be

drawn from such work.

1.2 Empirical Complexity

In no way do I wish to suggest that traditional CS undertakings are useless or futile.

On the contrary, our understanding of the state of the world has been steadily ad-

vancing. In the end we are dealing with formal objects, and so formal understanding

of computation is still necessary. However, in this thesis we’ll take a complementary

view of complexity that overcomes some of the shortcomings listed above.

In order to get to this complementary view, we are going to make one important

philosophical (or, at least, methodological) distinction. We are going to think of

both computational problems and algorithms as natural, not artificial, phenomena.

In the first part of this thesis our fundamental subject of study is going to be a

triple consisting of a space of possible problem instances, a probability distribution

over those instances, and an algorithm that we wish to study. In the second part we

are going to take a slightly more traditional view and treat algorithms as tools for

studying the underlying problem (though these tools will turn out to be very useful

as algorithms).

Once we take on this perspective, one course of action readily suggests itself. We

should take a hint from natural sciences and approach these “natural” phenomena

with empirical studies. That is, running experiments, collecting data, and mining

that data for information can give us a lot of insight; insight that, as we’ll see, can

later be used to come up with better formal models and shine light on important new

research directions. In a sense, empirical approach will allow us to study a different

kind of complexity, which we’ll call empirical complexity.

Definition 1.1 The empirical complexity of an instance I with respect to an

(implementation of an) algorithm A is the actual running time of A when given I as

input.

Empirical complexity has also been variously called typical-case complexity and
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empirical hardness.

This new notion of complexity leads to a complementary perspective in several

different directions. First, this allows for a comprehensive, rather than aggregate,

view, since we are now working on the scale of instances. Second, after going to

the level of particular implementations, we can start making statements about real

running times, as opposed to bounds and limits.

Perhaps the most important distinction is that this view will allow us to get a

better handle on input structure, as opposed to the traditional input size. After all, al-

ready Cook [1971], in his discussion of the complexity of theorem-proving procedures,

suggested that time dependent only on the input size is too crude of a complexity

measure, and that additional variables should also play a role. It seems that for the

most part, problem size just stuck since then. While in the limit size might be the

only thing that matters, where empirical complexity is concerned structure becomes

paramount. For example, throughout many experiments with the instances of combi-

natorial auctions winner determination problem (see Chapter 3), I never saw a clear

dependence of running times on input size. No matter what size we tried, we would

always see trivial instances that took fractions of a second to solve, as well as in-

stances that took more than our (extremely generous) patience allowed. Though the

hardest instances probably did get harder with size, the picture was not clear for any

reasonable-sized input that we could generate. It might not take 1027 participants to

have a tangible effect in this case, but it is clear that understanding the dependence

on the elusive “problem structure” is crucial.

1.3 Contributions and Overview

The most important contribution of this thesis is in demonstrating how the empirical

approach to CS complements a more traditional one. In doing so, a number of

much more concrete and tangible results have been obtained. These include a novel

methodology for approaching empirical studies, identification of structural properties

that are relevant to hardness in two specific domains, introduction of a new testbed

and novel algorithms, and, as the ultimate result, a multitude of important new
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research directions.

The rest of this thesis is broken into two parts. The first one takes to heart the

definition of empirical complexity and demonstrates how one can study it with respect

to particular algorithms. In that part we present and validate a general methodol-

ogy for these kinds of studies. The second part takes a closer look at the domain

of computational game theory. Via that domain, it demonstrates how algorithms,

together with the experimental mindset, can help to uncover interesting facts about

the underlying problem domain.

1.3.1 Algorithms as Subjects

In Chapter 2 we propose a new approach for understanding the empirical complexity

of NP-hard problems. We use machine learning to build regression models that pre-

dict an algorithm’s runtime given a previously unseen problem instance. We discuss

techniques for interpreting these models to gain understanding of the characteristics

that cause instances to be hard or easy. We also describe two applications of these

models: building algorithm portfolios that can outperform their constituent algo-

rithms, and generating test distributions to focus future algorithm design work on

problems that are hard for an existing portfolio. We also survey relevant literature.

In Chapter 3 we demonstrate the effectiveness of all of the techniques from Chap-

ter 2 in a case study on the combinatorial auctions winner determination problem.

We show that we can build very accurate models of the running time of CPLEX —

the state-of-the-art solver for the problem. We then interpret these models, build an

algorithm portfolio that outperforms CPLEX alone by a factor of three, and tune a

standard benchmark suite to generate much harder problem instances.

In Chapter 4 we validate our approach in yet another domain — random k-SAT.

It is well known that the ratio of the number of clauses to the number of variables

in a random k-SAT instance is highly correlated with the instance’s empirical hard-

ness. We demonstrate that our techniques are able to automatically identify such

features. We describe surprisingly accurate models for three SAT solvers — kcnfs,
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oksolver and satz— and for two different distributions of instances: uniform ran-

dom 3-SAT with varying ratio of clauses-to-variables, and uniform random 3-SAT

with fixed ratio of clauses-to-variables. Furthermore, we analyze these models to de-

termine which features are most useful in predicting whether a SAT instance will be

hard to solve. We also discuss the use of our models to build SATzilla, an algorithm

portfolio for SAT. Finally, we demonstrate several extremely interesting research di-

rections for the SAT community that were highlighted as a result of this work.

1.3.2 Algorithms as Tools

In Chapter 5 we explain the relevance of game theory to computer science, give a brief

introduction to game theory, and introduce exciting game-theoretic computational

problems.

In Chapter 6 we present GAMUT1, a suite of game generators designed for testing

game-theoretic algorithms. We explain why such a generator is necessary, offer a way

of visualizing relationships between the sets of games supported by GAMUT, and

give an overview of GAMUT’s architecture. We highlight the importance of using

comprehensive test data by benchmarking existing algorithms. We show surprisingly

large variation in algorithm performance across different sets of games for two widely-

studied problems: computing Nash equilibria and multiagent learning in repeated

games.

Finally, in Chapter 7 we present two simple search methods for computing a

sample Nash equilibrium in a normal-form game: one for 2-player games and one for

n-player games. Both algorithms bias the search towards supports that are small and

balanced, and employ a backtracking procedure to efficiently explore these supports.

We test these algorithms on many classes of games from GAMUT, and show that

they perform well against the state of the art — the Lemke-Howson algorithm for

2-player games, and Simplicial Subdivision and Govindan-Wilson for n-player games.

This conclusively demonstrates that most games that are considered “interesting” by

researchers must posses very “simple” Nash equilibria.

1Available at http://gamut.stanford.edu
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Chapter 2

Empirical Hardness: Models and

Applications

In this chapter we expand on our discussion of the need for having good statistical

models of runtime. We present a methodology for constructing and analyzing such

models and several applications of these models. Chapters 3 and 4 validate this

methodology in two domains, combinatorial auctions winner determination problem

and SAT.

2.1 Empirical Complexity

It is often the case that particular instances of NP-hard problems are quite easy to

solve in practice. In fact, classical complexity theory is never concerned with solving

a given problem instance, since for every instance there always exists an algorithm

that is capable of solving that particular instance in polynomial time. In recent years

researchers mostly in the artificial intelligence community have studied the empirical

hardness (often called typical-case complexity) of individual instances or distributions

of NP-hard problems, and have often managed to find simple mathematical relation-

ships between features of problem instances and the hardness of a problem. Perhaps

the most notable such result was the observation that the ratio of the number of

8
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clauses to the number of variables in random k-SAT formulae exhibits strong corre-

lation with both the probability of the formula being solvable, and its the apparent

hardness [Cheeseman et al. 1991; Selman et al. 1996]. The majority of such work

has focused on decision problems: that is, problems that ask a yes/no question of the

form, “Does there exist a solution meeting the given constraints?”.

Some researchers have also examined the empirical hardness of optimization prob-

lems, which ask a real-numbered question of the form, “What is the best solution

meeting the given constraints?”. These problems are clearly different from decision

problems, since they always have solutions. In particular, this means that they can-

not give rise to phenomena like phase transitions in the probability of solvability that

were observed in several NP-hard problems. One way of finding hardness transitions

related to optimization problems is to transform them into decision problems of the

form, “Does there exist a solution with the value of the objective function ≥ x?”

This approach has yielded promising results when applied to MAX-SAT and TSP.

Unfortunately, it fails when the expected value of the solution depends on input fac-

tors irrelevant to hardness (e.g., in MAX-SAT scaling of the weights has effect on the

value, but not on the combinatorial structure of the problem). Some researchers have

also tried to understand the empirical hardness of optimization problems through an

analytical approach. (For our discussion of the literature, see Section 2.5.1.)

Both experimental and theoretical approaches have sets of problems to which they

are not well suited. Existing experimental techniques have trouble when problems

have high-dimensional parameter spaces, as it is impractical to manually explore the

space of all relations between parameters in search of a phase transition or some other

predictor of an instance’s hardness. This trouble is compounded when many different

data distributions exist for a problem, each with its own set of parameters. Similarly,

theoretical approaches are difficult when the input distribution is complex or is other-

wise hard to characterize. In addition, they also have other weaknesses. They tend to

become intractable when applied to complex algorithms, or to problems with variable

and interdependent edge costs and branching factors. Furthermore, they are generally

unsuited to making predictions about the empirical hardness of individual problem

instances, instead concentrating on average (or worst-case) performance on a class
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of instances. Thus, if we are to better understand empirical hardness of instances of

such problems, a new experimental approach is called for.

The idea behind our methodology in some sense came from the basic goal of ar-

tificial intelligence research: if we cannot analyze the problem either empirically, or

theoretically, ourselves, why not make computers do the work for us? More precisely,

it is actually possible to apply machine learning techniques in order to learn para-

meters that are relevant to hardness. Philosophically, this approach to the study of

complexity is reminiscent of the classical approach taken in natural sciences. When

natural phenomena (problems and algorithms in our case) are too complicated to

understand directly, we instead attempt to collect a lot of data and measurements,

and then mine it to create statistical (as opposed to analytical) models1.

Before diving in, it is worthwhile to consider why we would want to be able to

construct such models. First, sometimes it is simply useful to be able to predict how

long an algorithm will take to solve a particular instance. For example, in case of the

combinatorial auctions winner determination problem (WDP) (see Chapter 3), this

will allow auctioneers to know how long an auction will take to clear. More generally,

this can allow the user to decide how to allocate computational resources to other

tasks, whether the run should be aborted, and whether an approximate or incomplete

(e.g., local search) algorithm will have to be used instead.

Second, it has often been observed that algorithms for NP-hard problems can

vary by many orders of magnitude in their running times on different instances of the

same size—even when these instances are drawn from the same distribution. (Indeed,

we show that the WDP exhibits this sort of runtime variability in Figure 3.4, and SAT

in Figure 4.6.) However, little is known about what causes these instances to vary

so substantially in their empirical hardness. In Section 2.3 we explain how analyzing

our runtime models can shine light on the sources of this variability, and in Chapters

3 and 4 we apply these ideas to our case studies. This sort of analysis could lead to

changes in problem formulations to reduce the chance of long solver runtimes. Also,

better understanding of high runtime variance could serve as a starting point for

1We note that this methodology is related to approaches for statistical experiment design (see,
e.g., [Mason et al. 2003; Chaloner and Verdinelli 1995]).
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improvements in algorithms that target specific problem domains.

Empirical hardness models also have other applications, which we discuss in Sec-

tion 2.4. First, we show how accurate runtime models can be used to construct

efficient algorithm portfolios by selecting the best among a set of algorithms based on

the current problem instance. Second, we explain how our models can be applied to

tune input distributions for hardness, thus facilitating the testing and development

of new algorithms which complement the existing state of the art. These ideas are

validated experimentally in Chapter 3.

2.2 Empirical Hardness Methodology

We propose the following methodology for predicting the running time of a given

algorithm on individual instances drawn from some arbitrary distribution.

1. Select an algorithm of interest.

2. Select an instance distribution. Observe that since we are interested in

the investigation of empirical hardness, the choice of distribution is fundamen-

tal — different distributions can induce very different algorithm behavior. It

is convenient (though not necessary) for the distribution to come as a set of

parameterized generators; in this case, a distribution must be established over

the generators and their parameters.

3. Define problem size (or known sources of hardness). Problem size can

then be held constant to focus on unknown sources of hardness, or it can be

allowed to vary if the goal is to predict runtimes of arbitrary instances.

4. Identify a set of features. These features, used to characterize problem

instance, must be quickly computable and distribution independent. Eliminate

redundant or uninformative features.

5. Collect data. Generate a desired number of instances by sampling from the

distribution chosen in step 2, setting the problem size according to the choice
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made in step 3. For each problem instance, determine the running time of the

algorithm selected in step 1, and compute all the features selected in step 4.

Divide this data into a training set and a test set.

6. Learn a model. Based on the training set constructed in step 5, use a machine

learning algorithm to learn a function mapping from the features to a prediction

of the algorithm’s running time. Evaluate the quality of this function on the

test set.

In the rest of this section, we describe each of these points in detail.

2.2.1 Step 1: Selecting an Algorithm

This step is simple: any algorithm can be chosen. Indeed, one advantage of our

methodology is that it treats the algorithm as a black box, meaning that it is not

necessary to have access to an algorithm’s source code, etc. Note, however, that the

empirical hardness model which is produced through the application of this methodol-

ogy will be algorithm-specific, and thus can never directly provide information about

a problem domain which transcends the particular algorithm or algorithms under

study. (Sometimes, however, empirical hardness models may provide such informa-

tion indirectly, when the observation that certain features are sufficient to explain

hardness can serve as the starting point for theoretical work. Techniques for using

our models to initiate such a process are discussed in Section 2.3.) We do not consider

the algorithm-specificity of our techniques to be a drawback — it is not clear what

algorithm-independent empirical hardness would even mean — but the point deserves

emphasis.

While Chapter 3 focuses only on deterministic algorithms, we have also had suc-

cess in using our methodology to build empirical hardness models for randomized

search algorithms (see Chapter 4). Note that our methodology does not apply as di-

rectly to incomplete algorithms, however. When we attempt to predict an algorithm’s

running time on an instance, we do not run into an insurmountable problem when

the actual running time varies from one invocation to another. For incomplete algo-

rithms, however, even the notion of running time is not always well defined because



2.2. EMPIRICAL HARDNESS METHODOLOGY 13

the algorithm can lack a termination condition. For example, on an optimization

problem such as the WDP, an incomplete algorithm will not know when it has found

the optimal allocation. On a decision problem such as SAT, an incomplete algorithm

will know that it can terminate when it finds a satisfying assignment, but will never

know when it has been given an unsatisfiable instance. We expect that techniques

similar to those presented here will be applicable to incomplete algorithms; however,

this is a topic for future work.

In principle, it is equally possible to predict some other measure of empirical

hardness, or even some other metric, such as solution quality. While we’ve also had

some success with the latter in the Traveling Salesman problem domain, in this thesis

we’ll focus exclusively on the running time as it is the most natural and universal

measure.

2.2.2 Step 2: Selecting an Instance Distribution

Any instance distribution can be used to build an empirical hardness model. In the

experimental results presented in this thesis we consider instances that were created

by artificial instance generators; however, real-world instances may also be used. (In-

deed, we did the latter when constructing SATzilla (see Section 4.5 in Chapter 4.)

The key point that we emphasize in this step is that instances should always be under-

stood as coming from some distribution or as being generated from some underlying

real-world problem. The learned empirical hardness model will only describe the al-

gorithm’s performance on this distribution of instances — while a model may happen

to generalize to other problem distributions, there is no guarantee that it will do so.

Thus, the choice of instance distribution is critical. Of course, this is the same issue

that arises in any empirical work: whenever an algorithm’s performance is reported

on some data distribution, the result is only interesting insofar as the distribution is

important or realistic.

It is often the case that in the literature on a particular computational problem, a

wide variety of qualitatively different instance distributions will have been proposed.

Sometimes one’s motivation for deciding to build empirical hardness models will be
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tied to a very particular domain, and the choice of instance distribution will be

clear. In the absence of a reason to prefer one distribution over another, we favor an

approach in which a distribution is chosen at random and then an instance is drawn

from the distribution. In a similar way, individual instance generators often have

many parameters; rather than fixing parameter values, we prefer to establish a range

of reasonable values for each parameter and then to generate each new instance based

on parameters drawn at random from these ranges.

2.2.3 Step 3: Defining Problem Size

Some sources of empirical hardness in NP-hard problem instances are already well

understood; in particular, as problems get larger they also get harder to solve. How-

ever, as we illustrate when we consider this step in our case study (Section 3.3 in

Chapter 3), there can be multiple ways of defining problem size for a given problem.

Defining problem size is important when the goal for building an empirical hardness

model is to understand what previously unidentified features of instances are predic-

tive of hardness. In this case we generate all instances so that problem size is held

constant, allowing our models to use other features to explain remaining variation

in runtime. In other cases, we may want to build an empirical hardness model that

applies to problems of varying size; however, even in this case we must define the

way in which problem size varies in our instance distribution, and hence problem size

must be clearly defined. Another advantage of having problem size defined explicitly

is that its relationship to hardness may be at least approximately known. Thus, it

might be possible to tailor hypothesis spaces in the machine learning step to make

direct use of this information.

2.2.4 Step 4: Selecting Features

An empirical hardness model is a mapping from a set of features which describe

a problem instance to a real value representing the modeled algorithm’s predicted

runtime. Clearly, choosing good features is crucial to the construction of good models.

Unfortunately, there is no known automatic way of constructing good feature sets;
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researchers must use domain knowledge to identify properties of instances that appear

likely to provide useful information. However, we did discover that a lot of intuitions

can be generalized. For example, many features that proved useful for one constraint

satisfaction or optimization problem can carry over into another. Also heuristics or

simplified algorithms often make good features.

The good news is that techniques do exist for building good models even if the

set of features provided includes redundant or useless features. These techniques are

of two kinds: one approach throws away useless or harmful features, while the second

keeps all of the features but builds models in a way that tries to use features only

to the extent that they are helpful. Because of the availability of these techniques,

we recommend that researchers brainstorm a large list of features which have the

possibility to prove useful, and allow models to select among them.

We recommend that features that are extremely highly correlated with other fea-

tures or extremely uninformative (e.g., they always take the same value) be eliminated

immediately, on the basis of some small initial experiments. Features which are not

(almost) perfectly correlated with other features should be preserved at this stage,

but should be re-examined if problems occur in Step 6 (e.g., numerical problems arise

in the training of models; models do not generalize well).

We do offer two guidelines to restrict the sorts of features that should be con-

sidered. First, we only consider features that can be generated from any problem

instance, without knowledge of how that instance was constructed. For example,

we do not use parameters of the specific distribution used to generate an instance.

Second, we restrict ourselves to those features that are computable in low-order poly-

nomial time, since the computation of the features should scale well as compared to

solving the problem instance.

2.2.5 Step 5: Collecting Data

This step is simple to explain, but nontrivial to actually perform. In the case stud-

ies that we have performed, we have found the collection of data to be very time-

consuming both for our computer cluster and for ourselves.
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First, we caution that it is important not to attempt to build empirical hardness

models with an insufficient body of data. Since each feature which is introduced

in Step 4 increases the dimensionality of the learning problem, a very large amount

of data may be required for the construction of good models. Fortunately, problem

instances are available in large quantities, so the size of a dataset is often limited only

by the amount of time one is willing to wait for it. This tends to encourage the use

of large parallel computer clusters, which are luckily becoming more and more widely

available. Of course, it is essential to ensure that hardware is identical throughout

the cluster and that no node runs more jobs than it has processors.

Second, when one’s research goal is to characterize an algorithm’s empirical per-

formance on hard problems, it is important to run problems at a size for which pre-

processors do not have an overwhelming effect, and at which the runtime variation

between hard and easy instances is substantial. Thus, while easy instances may take

a fraction of a second to solve, hard instances of the same size may take many hours.

(We see this sort of behavior in our WDP case study, for example, in Section 3.5.1.)

Since runtimes will often be distributed exponentially, it may be infeasible to wait for

every run to complete. Instead, it may be necessary to cap runs at some maximum

amount of time.2 In our experience such capping is reasonably safe as long as the

captime is chosen in a way that ensures that only a small fraction of the instances

will be capped, but capping should always be performed cautiously.

Finally, we have found data collection to be logistically challenging. When ex-

periments involve tens of processors and many CPU-years of computation, jobs will

crash, data will get lost, and it will become necessary to recover from bugs in feature-

computation code. In the work that led to this thesis, we have learned a few general

lessons. (None of these observations are especially surprising — in a sense, they all boil

down to a recommendation to invest time in setting up clean data collection methods

rather than taking quick and dirty approaches.) First, enterprise-strength queuing

software should be used rather than attempting to dispatch jobs using home-made

scripts. Second, data should not be aggregated by hand, as portions of experiments

2In the first datasets of our WDP case study we capped runs at a maximum number of nodes ;
however, we now believe that it is better to cap runs at a maximum running time, which we did in
our most recent WDP dataset.
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will sometimes need to be rerun and such approaches will become unwieldy. Third,

for the same reason the instances used to generate data should always be kept (even

though they can be quite large). Finally, it is worth the extra effort to store ex-

perimental results in a database rather than writing output to files — this reduces

headaches arising from concurrency, and also makes queries much easier.

2.2.6 Step 6: Building Models

Our methodology is agnostic on the choice of a particular machine learning algo-

rithm to be used to construct empirical hardness models. Since the goal is to predict

runtime, which is a continuous-valued variable, we have come to favor the use of

statistical regression techniques as our machine learning tool. In our initial (unpub-

lished) work we considered the use of classification approaches such as decision trees,

but we ultimately became convinced that they were less appropriate. (For a discus-

sion of some of the reasons that we drew this conclusion, see Section 2.5.2.) Because

of our interest in being able to analyze our models and in keeping model sizes small

(e.g., so that models can be made publicly available as part of an algorithm portfolio),

we have avoided approaches such as nearest neighbor or Gaussian processes; however,

there may be applications for which these techniques are the most appropriate.

There are a wide variety of different regression techniques; the most appropriate

for our purposes perform supervised learning3. Such techniques choose a function

from a given hypothesis space (i.e., a space of candidate mappings from the features

to the running time) in order to minimize a given error metric (a function that scores

the quality of a given mapping, based on the difference between predicted and actual

running times on training data, and possibly also based on other properties of the

mapping). Our task in applying regression to the construction of hardness models

thus reduces to choosing a hypothesis space that is able to express the relationship

between our features and our response variable (running time), and choosing an error

metric that both leads us to select good mappings from this hypothesis space and

can be tractably minimized.

3A large literature addresses these statistical techniques; for an introduction see, e.g., [Hastie
et al. 2001].
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The simplest supervised regression technique is linear regression, which learns

functions of the form
∑

i wifi, where fi is the ith feature and the w’s are free vari-

ables, and has as its error metric root mean squared error (RMSE). Geometrically,

this procedure tries to construct a hyperplane in the feature space that has the closest

ℓ2 distance to data points. Linear regression is a computationally appealing proce-

dure because it reduces to the (roughly) cubic-time problem of matrix inversion.4 In

comparison, most other regression techniques depend on more complex optimization

problems such as quadratic programming.

Besides being relatively tractable and well-understood, linear regression has an-

other advantage that is very important for this work: it produces models that can be

analyzed and interpreted in a relatively intuitive way, as we’ll see in Section 2.3.

While we will discuss other regression techniques later in Section 2.5, we will

present linear regression as our baseline machine learning technique.

Choosing an Error Metric

Linear regression uses a squared-error metric, which corresponds to the ℓ2 distance

between a point and the learned hyperplane. Because this measure penalizes outly-

ing points superlinearly, it can be inappropriate in cases where data contains many

outliers. Some regression techniques use ℓ1 error (which penalizes outliers linearly);

however, optimizing such error metrics often requires solution of a quadratic program-

ming problem.

Some error metrics express an additional preference for models with small (or

even zero) coefficients to models with large coefficients. This can lead to more reliable

models on test data, particularly when features are correlated. Some examples of such

“shrinkage” techniques are ridge, lasso and stepwise regression. Shrinkage techniques

generally have a parameter that expresses the desired tradeoff between training error

and shrinkage, which is tuned using either cross-validation or a validation set.

4In fact, the worst-case complexity of matrix inversion is O(N log27)
.
= O(N2.807).
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Choosing a Hypothesis Space

Although linear regression seems quite limited, it can actually be extended to a wide

range of nonlinear hypothesis spaces. There are two key tricks, both of which are quite

standard in the machine learning literature. The first is to introduce new features

that are functions of the original features. For example, in order to learn a model

which is a quadratic function of the features, the feature set can be augmented to

include all pairwise products of features. A hyperplane in the resulting much-higher-

dimensional space corresponds to a quadratic manifold in the original feature space.

The key problem with this approach is that the size of the new set of features is the

square of the size of the original feature set, which may cause the regression problem to

become intractable (e.g., because the feature matrix cannot fit into memory). There

is also the more general problem that using a more expressive hypothesis space can

lead to overfitting, because the model can become expressive enough to fit noise in

the training data. Thus, in some cases it can make sense to add only a subset of the

pairwise products of features; e.g., only pairwise products of the k most important

features in the linear regression model. Of course, we can use the same idea to reduce

many other nonlinear hypothesis spaces to linear regression: all hypothesis spaces

which can be expressed by
∑

i wigi(f), where the gi’s are arbitrary functions and

f = {fi}.

Sometimes we want to consider hypothesis spaces of the form h (
∑

i wigi(f)). For

example, we may want to fit a sigmoid or an exponential curve. When h is a one-to-one

function, we can transform this problem to a linear regression problem by replacing

the response variable y in the training data by h−1(y), where h−1 is the inverse of h,

and then training a model of the form
∑

i wigi(f). On test data, we must evaluate the

model h (
∑

i wigi(f)). One caveat about this trick is that it distorts the error metric:

the error-minimizing model in the transformed space will not generally be the error-

minimizing model in the true space. In many cases this distortion is acceptable,

however, making this trick a tractable way of performing many different varieties

of nonlinear regression. In this thesis, unless otherwise noted, we use exponential

models (h(y) = 10y; h−1(y) = log10(y)) and logistic models (h(y) = 1/(1 + e−y);

h−1(y) = ln(y) ln(1−y) with values of y first mapped onto the interval (0, 1)). Because
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logistic functions have a finite range, we found them particularly useful for modeling

capped runs.

It seems that exponential (and, similarly, logistic) models provide a better hy-

pothesis space for predicting running times than linear models do. The problem is

that in our data we encounter a large number of very easy instances, with small

runtimes. In order to fit these, linear regression necessarily must sometimes predict

negative values, resulting in bad overall performance. With the exponential models,

these negative predictions get appropriately transformed into small positive values

after exponentiation.

2.3 Analyzing Hardness Models

In the previous section we have explained how it is possible to learn a statistical

model that accurately predicts algorithm’s runtime on given instances. For some

applications accurate prediction is all that is required. For other applications it is

necessary to understand what makes an instance empirically hard. In this section we

explain one way to interpret our models.

2.3.1 Evaluating the Importance of Variables

A key question in explaining what makes a hardness model work is which features

were most important to the success of the model. It is tempting to interpret a linear

regression model by comparing the coefficients assigned to the different features, on

the principle that if |wi| ≫ |wj| then fi must be more important than fj. This

can be misleading for two reasons. First, features may have different ranges, though

this problem can be mitigated by normalization. More fundamentally, when two or

more features are highly correlated then models can include larger-than-necessary

coefficients with different signs. For example, suppose that we have to identical and

completely unimportant features fi ≡ fj . Then all models where wi = −wj are

equally good, even if in some of them wi = 0, while in others |wi| → ∞.

A better approach is to force models to contain fewer variables, on the principle
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that the best low-dimensional model will involve only relatively uncorrelated features

since adding a feature that is very correlated with one that is already present will

yield a smaller marginal decrease in the error metric. There are many different “subset

selection” techniques for finding good, small models. Ideally, exhaustive enumeration

would be used to find the best subset of features of desired size. Unfortunately, this

process requires consideration of a binomial number of subsets, making it infeasible

unless both the desired subset size and the number of base features are very small.

When exhaustive search is impossible, heuristic search can still find good subsets. We

considered four heuristic methods: forward selection, backward elimination, sequential

replacements and least-angle regression (LAR).

Forward selection starts with an empty set, and greedily adds the feature that,

combined with the current model, makes the largest reduction to cross-validated error.

Backward elimination starts with a full model and greedily removes the features that

yields the smallest increase in cross-validated error. Sequential replacement is like

forward selection, but also has the option to replace a feature in the current model

with an unused feature. 5 Finally, the recently introduced LAR [Efron et al. 2002]

algorithm is a shrinkage technique for linear regression that can set the coefficients

of sufficiently unimportant variables to zero as well as simply reducing them; thus, it

can be also be used for subset selection.

Since none of these techniques is guaranteed to find the optimal subset, we combine

them together by running all and keeping the model with the smallest cross-validated

(or validation-set) error.

Besides being an important tool in model analysis, this procedure can be iterated

to aid model construction as follows. For example, if we have a 100 base features, the

full quadratic model would contain on the order of 5000 terms, which is very costly to

train. Instead, one can first use subset selection techniques to select a subset of few

(say 30) base features that is most predictive. Then, we can compute all quadratic

terms involving just those 30 features to obtain a reasonable second-order model.

We can once again, apply subset selection techniques on this new model to analyze

5For a detailed discussion of techniques for selecting relevant feature subsets and for comparisons
of different definitions of “relevant,” focusing on classification problems, see [Kohavi and John 1997].
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relative variable importance of quadratic terms.

2.3.2 Cost of Omission

Once a model with a small number of variables has been obtained, we can evaluate the

importance of each feature to that model by looking at each feature’s cost of omission.

That is, to evaluate score(fi) we can train a model using all features except for fi and

report the resulting increase in (cross-validated) prediction error compared to the full

model. To make scores more meaningful, we scale the cost of omission of the most

important feature to 100 and scale the other costs of omission in proportion. Notice,

that this would not work in the presence of highly-correlated features: if fi ≡ fj and

both are very useful, then dropping either one will not result in any increase in the

error metric, leading us to believe that they are useless.

We must discuss what it means for our techniques to identify a variable as “impor-

tant.” If a set of variables X is identified as the best subset of size k, and this subset

has validation-set error that is close to that of the complete model, this indicates that

the variables in X are sufficient to approximate the performance of the full model

— useful information, since it means that we can explain an algorithm’s empirical

hardness in terms of a small number of features. It must be stressed, however, that

this does not amount to an argument that choosing the subset X is necessary for good

performance in a subset of size k. Because variables are very often at least somewhat

correlated, there may be other sets that would achieve similar performance; further-

more, since our subset selection techniques are heuristic, we are not even guaranteed

that X is the globally best subset of its size. Thus, we can draw conclusions about

the variables that are present in small, well-performing subsets, but we must be very

careful in drawing conclusions about the variables that are absent.

2.4 Applications of Empirical Hardness Models

Although some algorithms are better than others on average, there is rarely a best

algorithm for a given problem. Instead, it is often the case that different algorithms
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perform well on different problem instances. Not surprisingly, this phenomenon is

most pronounced among algorithms for solving NP-hard problems, because run-

times for these algorithms are often highly variable from instance to instance. When

algorithms exhibit high runtime variance, one is faced with the problem of deciding

which algorithm to use; Rice dubbed this the “algorithm selection problem” [Rice

1976]. In the nearly three decades that have followed, the issue of algorithm selection

has failed to receive widespread study, though of course some excellent work does

exist. By far, the most common approach to algorithm selection has been to mea-

sure different algorithms’ performance on a given problem distribution, and then to

use only the algorithm having the lowest average runtime. This approach, to which

we refer as “winner-take-all,” has driven recent advances in algorithm design and

refinement, but has resulted in the neglect of many algorithms that, while uncom-

petitive on average, offer excellent performance on particular problem instances. Our

consideration of the algorithm selection literature, and our dissatisfaction with the

winner-take-all approach, has led us to ask the following two questions. First, what

general techniques can we use to perform per-instance (rather than per-distribution)

algorithm selection? Second, once we have rejected the notion of winner-take-all al-

gorithm evaluation, how ought novel algorithms to be evaluated? Taking the idea of

boosting from machine learning as our guiding metaphor, we strive to answer both

questions.

2.4.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapire [1990] and widely studied

since. Although we do not make use of any technical results from the boosting

literature, we take inspiration from the boosting philosophy. Stated simply, boosting

is based on two insights:

1. Poor classifiers can be combined to form an accurate ensemble when the classi-

fiers’ areas of effectiveness are sufficiently uncorrelated.

2. New classifiers should be trained on problems on which the current aggregate

classifier performs poorly.
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We argue that algorithm design should be informed by two analogous ideas:

1. Algorithms with high average running times can be combined to form an algo-

rithm portfolio with low average running time when the algorithms’ easy inputs

are sufficiently uncorrelated.

2. New algorithm design should focus on problems on which the current algorithm

portfolio performs poorly.

Of course the analogy to boosting is imperfect; we discuss differences in Section 2.5.4.

2.4.2 Building Algorithm Portfolios

In the presence of accurate algorithm-specific models of the empirical hardness of

given distributions of problem instances, we can build portfolios of multiple algorithms

in a very straightforward way:

1. Train a model for each algorithm, as described in Section 2.2.

2. Given an instance:

(a) Compute feature values.

(b) Predict each algorithm’s running time using runtime models.

(c) Run the algorithm predicted to be fastest.

Overall, while we will show experimentally that our portfolios can dramatically

outperform the algorithms of which they are composed, our techniques are also decep-

tively simple. For discussion and comparison with other approaches in the literature,

please see Section 2.5.2.

We now turn to the question of enhancing our techniques specifically for use with

algorithm portfolios.
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Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.

We expect that portfolios will be most useful when they combine several (worst-case)

exponential-time algorithms that have highly uncorrelated runtimes, and that fast

polynomial-time features should be sufficient for most models. Nevertheless, on some

instances the computation of individual features may take substantially longer than

one or even all algorithms would take to run. In such cases it would be desirable to

perform algorithm selection without spending as much time computing features, even

at the expense of some accuracy in choosing the fastest algorithm.

We begin by partitioning the features into sets ordered by time complexity, S1, . . . , Sl,

with i > j implying that each feature in Si takes significantly longer to compute than

each feature in Sj
6. The portfolio can start by computing the easiest features, and

iteratively compute the next set only if the expected benefit to selection exceeds the

cost of computation. More precisely:

1. For each set Sj learn or provide a model c(Sj) that estimates time required to

compute it. Often, this could be a simple average time scaled by input size.

2. Divide the training examples into two sets. Using the first set, train models

M i
1 . . .M i

l , with M i
k predicting algorithm i’s runtime using features in

⋃k
j=1 Sj .

Note that M i
l is the same as the model for algorithm i in our basic portfolio

methodology. Let Mk be a portfolio which selects arg mini M
i
k.

3. Using the second training set, learn models D1 . . .Dl−1, with Dk predicting the

difference in runtime between the algorithms selected by Mk and Mk+1 based

on Sk. The second set should be used to avoid training the difference models

on data to which the runtime models were fit.

6We assume here that features will have low runtime variance; this assumption holds in our case
studies. If feature runtime variance makes it difficult to partition the features into time complexity
sets, smart feature computation becomes somewhat more complicated.
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Given an instance x, the portfolio now works as follows:

4. For j = 1 to l

(a) Compute features in Sj .

(b) If Dj [x] > c(Sj+1)[x], continue.

(c) Otherwise, return with the algorithm predicted to be fastest according to

Mj .

Alternative Performance Measures

From the machine learning point of view, the task faced by algorithm portfolios is that

of discrimination among algorithms. Thus, in principle, many standard discriminative

machine learning algorithms (instead of our regression models) could be used. What

makes this task different from standard classification is that we might be interested

in different, non-trivial, performance (and, hence, error) measures.

Average runtime is an obvious measure of portfolio performance if one’s goal is

to minimize computation time over a large number of instances. Even with this

measure it is clear that standard discrimination methods may not be appropriate:

it is much more important to be correct on cases where wrong choice is very costly,

than on cases where all algorithms have runtimes relatively close to each other. Since

we use regression models that minimize root mean squared error on predictions of

runtime, they appropriately penalize 20 seconds of error equally on instances that

take 1 second or 10 hours to run. That is, they penalize the same absolute error

in the same way regardless of the magnitude of the instance’s runtime. Standard

off-the-shelf classifications techniques face the same difficulty.

However, another motivation is to achieve good relative error on every instance

regardless of its hardness — we might thus consider that a 20 second error is more

significant on a 1 second instance than on a 10 hour instance. Let n be the number of

instances; let rp
i and r∗i be the portfolio’s selection runtime and the optimal selection

runtime, respectively, on instance i. One measure that gives an insight into the

portfolio’s selection quality (regardless of hardness) is percent optimal :
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1

n
|{i : r∗i = rp

i }| (2.1)

Another measure of relative error is average percent suboptimal :

1

n

∑

i

rp
i − r∗i
r∗i

. (2.2)

In this thesis we concentrate on the average runtime as the most natural metric.

Capping Runs

The portfolio methodology requires gathering runtime data for every algorithm on

every problem instance in the training set. While the time cost of this step is fun-

damentally unavoidable in our approach, gathering perfect data for every instance

can take an unreasonably long time. For example, if algorithm a1 is usually much

slower than a2 but in some cases dramatically outperforms a2, a perfect model of

a1’s runtime on hard instances may not be needed to discriminate between the two

algorithms. The process of gathering data can be made much easier by capping the

runtime of each algorithm at some maximum and recording these runs as having ter-

minated at the captime. This approach is safe if the captime is chosen so that it is

(almost) always significantly greater than the minimum of the algorithms’ runtimes;

if not, it might still be preferable to sacrifice some predictive accuracy for dramati-

cally reduced model-building time. Note that if any algorithm is capped, it can be

dangerous (particularly without a log transformation that occurs in exponential and

logistic models) to gather data for any other algorithm without capping at the same

time, because the portfolio could inappropriately select the algorithm with the smaller

captime.

2.4.3 Inducing Hard Distributions

Once we have decided to solve the algorithm selection problem by selecting among

existing algorithms using a portfolio approach, it makes sense to reexamine the way

we design and evaluate algorithms. Since the purpose of designing a new algorithm is
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to reduce the time that it will take to solve problems, designers should aim to produce

new algorithms that complement an existing portfolio rather than seeking to make

it obsolete. In order to understand what this means it is first essential to choose a

distribution D that reflects the problems that will be encountered in practice. Given

a portfolio, the greatest opportunity for improvement is on instances that are hard

for that portfolio, common in D, or both. More precisely, the importance of a region

of problem space is proportional to the amount of time the current portfolio spends

working on instances in that region. This is analogous to the principle from boosting

that new classifiers should be trained on instances that are hard for the existing

ensemble, in the proportion that they occur in the original training set.

Let Hf be a model of portfolio runtime based on instance features, constructed

as the minimum of the models that constitute the portfolio. By normalizing, we can

reinterpret this model as a density function hf . By the argument above, we should

generate instances from the product of this distribution and our original distribution,

D (let D · hf (x) =
D(x)hf (x)R

Dhf
). However, it is problematic to sample from D · hf : D

may be non-analytic (an instance generator), while hf depends on features and so

can only be evaluated after an instance has been created.

One way to sample from D · hf is rejection sampling (see e.g., [Doucet et al.

2001]): generate problems from D and keep them with probability proportional to

hf . This method works best when another distribution is available to guide the sam-

pling process toward hard instances. Test distributions usually have some tunable

parameters −→p , and although the hardness of instances generated with the same pa-

rameter values can vary widely, −→p will often be somewhat predictive of hardness. We

can generate instances from D · hf in the following way:7

1. Create a new hardness model Hp, trained using only −→p as features, and nor-

malize it so that it can be used as a probability density function, hp.

2. Generate a large number of instances from D · hp. Observe that we can sample

from this distribution: hp is a polynomial, so we can sample from it directly;

7In true rejection sampling step 2 would generate a single instance that would be then accepted
or rejected in step 3. Our technique approximates this process, but doesn’t require us to normalize
Hf and allows us to output an instance after generating a constant number of samples.
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this gives us parameter values that we can pass to the generator.

3. Construct a distribution over instances by assigning each instance s probability

proportional to
Hf (s)

hp(s)
, and select an instance by sampling from this distribution.

Observe that if hp turns out to be helpful, hard instances from D · hf will be

encountered quickly. Even in the worst case where hp directs the search away from

hard instances, observe that we still sample from the correct distribution because the

weights are divided by hp(s).

In practice, D may be factored as Dg · Dpi
, where Dg is a distribution over oth-

erwise unrelated instance generators with different parameter spaces, and Dpi
is a

distribution over the parameters of the chosen instance generator i. In this case it

is difficult to learn a single Hp. A good solution is to factor hp as hg · hpi
, where hg

is a hardness model using only the choice of instance generator as a feature, and hpi

is a hardness model in instance generator i’s parameter space. Likewise, instead of

using a single feature-space hardness model Hf , we can train a separate model for

each generator Hf,i and normalize each to a pdf hf,i.
8 The goal is now to generate

instances from the distribution Dg ·Dpi
· hf,i, which can be done as follows:

1. For every instance generator i, create a hardness model Hpi
with features −→pi ,

and normalize it to create a pdf, hpi
.

2. Construct a distribution over instance generators hg, where the probability of

each generator i is proportional to the average hardness of instances generated

by i.

3. Generate a large number of instances from (Dg · hg) · (Dpi
· hpi

)

(a) select a generator i by sampling from Dg · hg

(b) select parameters for the generator by sampling from Dpi
· hpi

(c) run generator i with the chosen parameters to generate an instance.

8However, the experimental results presented in Figures 3.31–3.33 use hardness models Hf trained
on the whole dataset rather than using models trained on individual distributions. Learning new
models could be expected to yield even better results.



30 CHAPTER 2. EMPIRICAL HARDNESS: MODELS AND APPLICATIONS

4. Construct a distribution over instances by assigning each instance s from gener-

ator i probability proportional to
Hf,i(s)

hg(s)·hpi
(s)

, and select an instance by sampling

from this distribution.

Inducing “Realistic” Distributions

It is important for our portfolio methodology that we begin with a “realistic” D:

that is, a distribution accurately reflecting the sorts of problems expected to occur

in practice. Care must always be taken to construct a generator or set of genera-

tors producing instances that are representative of problems from the target domain.

Sometimes, it is possible to construct a function Rf that scores the realism of a gen-

erated instance based on features of that instance; such a function can sometimes

encode additional information about the nature of realistic data that cannot easily

be expressed in a generator. If a function Rf is provided, we can construct D from

a parameterized set of instance generators by using Rf in place of Hf above and

learning rp in the same way we learned hp. Given these distributions, the techniques

described in the previous section are guaranteed to generate instances with increased

average realism scores.

2.5 Discussion and Related Work

2.5.1 Typical-Case Complexity

Early work [Selman et al. 1996; Cheeseman et al. 1991] considered the empirical per-

formance of DPLL-type solvers running on uniform random k-SAT instances, finding

a strong correlation between the instance’s hardness and the ratio of the number of

clauses to the number of variables in the instance. Further, it was demonstrated that

the hardest region (e.g., for random 3-SAT, a clauses-to-variables ratio of roughly

4.26) corresponds exactly to a phase transition in an algorithm-independent prop-

erty of the instance: the probability that a randomly-generated formula having a
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given ratio will be satisfiable9. Similar phenomenon has also been observed in other

decision problems such as quasigroup completion [Gomes and Selman 1997]. This

well-publicized finding led to increased enthusiasm for the idea of studying algorithm

performance experimentally, using the same tools as are used to study natural phe-

nomena. Follow-up work that took a closer look at runtime distributions includes

[Gomes et al. 2000], which demonstrated that runtimes of many SAT algorithms

tend to follow power-law distributions, and that random restarts provably improve

such algorithms. Later, [Gomes et al. 2004] refined these notions and models, demon-

strating that statistical regimes of runtimes change drastically as one moves across

the phase transition.

Over the past decade, the study of empirical hardness has complemented the theo-

retical worst-case analysis of algorithms, leading to interesting findings and concepts.

A related approach to understanding empirical hardness rests on the notion of a

backbone [Monasson et al. 1998; Achlioptas et al. 2000], which is the set of solution

invariants. Backbone has also been extended to optimization problems [Slaney and

Walsh 2001], although it is often difficult to define for arbitrary problems and can be

costly to compute. Williams et al. [2003] defined the concept of a backdoor of a CSP

instance: the set of variables, which, if assigned correctly, lead to a residual problem

that is solvable in polynomial time. They showed that many real world SAT instances

indeed have small backdoors, which may explain the observed empirical behavior of

SAT solvers. A lot of effort has also gone into the study of search space topologies for

stochastic local search algorithms [Hoos and Stützle 1999; Hoos and Stützle 2004].

This flurry of activity also prompted more theoretical approaches. Kolaitis [2003]

defined and studying “islands of tractability” of hard problems. Analytical attempts

to understand the empirical hardness of optimization problems include Zhang [1999],

who performed average case theoretical analysis of particular classes of search al-

gorithms. Though his results rely on independence assumptions about the branch-

ing factor and heuristic performance at each node of the search tree that do not

generally hold, the approach has made theoretical contributions — describing a

9Though [Coarfa et al. 2000] pointed out that this is quite algorithm-specific, as well as that
runtimes are still exponential for higher ratios.



32 CHAPTER 2. EMPIRICAL HARDNESS: MODELS AND APPLICATIONS

polynomial/exponential-time transition in average-case complexity — and shed light

on real-world problems. Korf and Reid [1998] predict the average number of nodes

expanded by a simple heuristic search algorithm such as A* on a particular problem

class by making use of the distribution of heuristic values in the problem space. As

above, strong assumptions are required: e.g., that the branching factor is constant

and node-independent, and that edge costs are uniform throughout the tree.

2.5.2 Algorithm Selection

It has long been understood that algorithm performance can vary substantially across

different classes of problems. Rice [1976] was the first to formalize algorithm selection

as a computational problem, framing it in terms of function approximation. Broadly,

he identified the goal of selecting a mapping S(x) from the space of instances to

the space of algorithms, to maximize some performance measure perf(S(x), x). Rice

offered few concrete techniques, but all subsequent work on algorithm selection can

be seen as falling into his framework. The main methodological difference with our

approach is that we recognize that the actual step of algorithm selection is trivial and

need not be learned, if we can accurately learn the performance measure (time, in

our case).

We explain our choice of methodology by relating it to other approaches for algo-

rithm selection that have been proposed in the literature.

Parallel Execution

One tempting alternative to portfolios that select a single algorithm is the parallel

execution of all available algorithms. While it is often true that additional proces-

sors are readily available, it is also often the case that these processors can be put

to uses besides running different algorithms in parallel, such as parallelizing a single

search algorithm or solving multiple problem instances at the same time. Meaning-

ful comparisons of running time between parallel and non-parallel portfolios require

that computational resources be fixed, with parallel execution modeled as ideal (no-

overhead) task swapping on a single processor. Let t∗(x) be the time it takes to run
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the algorithm that is fastest on instance x, and let n be the number of algorithms. A

portfolio that executes all algorithms in parallel on instance x will always take time

nt∗(x).

In some domains, parallel execution can be a very effective technique. Gomes and

Selman [2001] proposed such an approach for incomplete SAT algorithms, using the

term portfolio to describe a set of algorithms run in parallel. In this domain runtime

depends heavily on variables such as random seed, making it difficult to predict; thus,

parallel execution is likely to outperform a portfolio that chooses a single algorithm.

In such cases it is possible to extend our methodology to allow for parallel execution.

We can add one or more new algorithms to our portfolio, with algorithm i standing as

a placeholder for the parallel execution of ki of the original algorithms; in the training

data i would be given a running time of ki times the minimum of its constituents.

This approach would allow portfolios to choose to task-swap sets of algorithms in

parts of the feature space where the minimums of individual algorithms’ runtimes are

much smaller than their means, but to choose single algorithms in other parts of the

feature space. Our use of the term “portfolio” may thus be seen as an extension of

the term coined by Gomes and Selman, referring to a set of algorithms and a strategy

for selecting a subset (perhaps one) for parallel execution.

Classification

Since algorithm selection is fundamentally discriminative — it entails choosing among

algorithms to find one that will exhibit minimal runtime — classification is an ob-

vious approach to consider. Any standard classification algorithm (e.g., a decision

tree) could be used to learn which algorithm to choose given features of the instance

and labeled training examples. The problem is that such non-cost-sensitive classifi-

cation algorithms use the wrong error metric: they penalize misclassifications equally

regardless of their cost. We want to minimize a portfolio’s average runtime, not its ac-

curacy in choosing the optimal algorithm. Thus, we should penalize misclassifications

more when the difference between the runtimes of the chosen and fastest algorithms

is large than when it is small. This is just what happens when our decision criterion

is to select the smallest prediction among a set of regression models that were fit to



34 CHAPTER 2. EMPIRICAL HARDNESS: MODELS AND APPLICATIONS

minimize root mean squared error.

A second classification approach entails dividing running times into two or more

bins, predicting the bin that contains the algorithm’s runtime, and then choosing the

best algorithm. For example, Horvitz et al. [2001; 2002] used classification to pre-

dict runtime of CSP and SAT solvers with inherently high runtime variance (heavy

tails). Despite its similarity to our portfolio methodology, this approach suffers from

the same problem as described above. First, the learning algorithm does not use an

error function that penalizes large misclassifications (off by more than one bin) more

heavily than small misclassifications (off by one bin). Second, this approach is un-

able to discriminate between algorithms when multiple predictions fall into the same

bin. Finally, since runtime is a continuous variable, class boundaries are artificial.

Instances with runtimes lying very close to a boundary are likely to be misclassified

even by a very accurate model, making accurate models harder to learn.

Markov Decision Processes

Perhaps most related to our methodology is work by Lagoudakis and Littman [2000;

2001]. They worked within the Markov decision processes (MDP) framework, and

concentrated on recursive algorithms (e.g., sorting, DPLL), sequentially solving the

algorithm selection problem on each subproblem. This work demonstrates encour-

aging results; however, its generality is limited by several factors. First, the use of

algorithm selection at each stage of a recursive algorithm can require extensive recod-

ing, and may simply be impossible with ‘black-box’ commercial or proprietary algo-

rithms, which are often among the most competitive. Second, solving the algorithm

selection problem recursively requires that the value functions be very inexpensive to

compute; in our case studies we found that more computationally expensive features

were required for accurate predictions of runtime.

Finally, these techniques can be undermined by non-Markovian algorithms, such

as those using clause learning, taboo lists, or other forms of dynamic programming.

Of course, our approach could also be characterized as an MDP; we do not do so as

the framework is redundant in the absence of sequential decision-making.
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Experts Algorithms

Another area of research which is somewhat related to algorithm selection is that of

“experts algorithms” (e.g., [de Farias and Megiddo 2004]). The setting studied in this

area is the following. An agent must repeatedly act in a certain environment. It has

access to the number of “experts” that can provide advice about the best action in

the current step based on past histories and some knowledge. Thus, in some sense,

at each step the agent must solve the algorithm selection problem. This is generally

done by estimating past experts’ performances, and then choosing the best expert

based on these estimates. The estimation step is in principle similar to our use of

regression models to predict algorithm performance. The main difference between

our work and the area of experts algorithms is that the latter do both learning and

selection online. As a result, estimation often simply takes form of historical averages,

and a lot of work goes into the study of the exploration-exploitation tradeoff.

Different Regression Approaches

Lobjois and Lemâıtre [1998] select among several simple branch-and-bound algo-

rithms based on a prediction of running time. This work is similar in spirit to our

own; however, their prediction is based on a single feature and works only on a par-

ticular class of branch-and-bound algorithms.

Since our goal is to discriminate among algorithms, it might seem more appropri-

ate to learn models of pairwise differences between algorithm runtimes, rather than

models of absolute runtimes. For linear regression (and the forms of nonlinear regres-

sion used in our work) it is easy to show that the two approaches are mathematically

equivalent. Nonetheless, it can still be useful to think of portfolios as using models of

pairwise differences, as the models are ultimately used for discrimination rather than

prediction.

2.5.3 Hard Benchmarks

It is widely recognized that the choice of test distribution is important for algorithm

development. In the absence of general techniques for generating instances that are
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both realistic and hard, the development of new distributions has usually been per-

formed manually. An excellent example of such work is Selman et al. [1996], which

describes a method of generating SAT instances near the phase transition threshold,

which are known to be hard for most SAT solvers.

Recently, there has been a conscious effort in the SAT community to provide

generators for hard instances. For example, Achlioptas et al. [2004] and Jia et al.

[2005] hide pre-specified solutions in random formulae that appear to be hard. Jia

et al. [2004] generate random hard formulae based on statistical physics spin-glass

models, once again highlighting the connection between physical phenomena and

phase transitions in SAT.

2.5.4 The Boosting Metaphor Revisited

Although it is helpful, our analogy to boosting is clearly not perfect. One key dif-

ference lies in the way components are aggregated in boosting: classifiers can be

combined through majority voting, whereas the whole point of algorithm selection

is to run only a single algorithm. We instead advocate the use of learned models of

runtime as the basis for algorithm selection, which leads to another important differ-

ence. It is not enough for the easy problems of multiple algorithms to be uncorrelated;

the models must also be accurate enough to reliably recommend against the slower

algorithms on these uncorrelated instances. Finally, while it is impossible to improve

on correctly classifying an instance, it is almost always possible to solve a problem

instance more quickly. Thus, improvement is possible on easy instances as well as

on hard instances; the analogy to boosting holds in the sense that focusing on hard

regions of the problem space increases the potential gain in terms of reduced average

portfolio runtimes.

2.6 Conclusion

This chapter layed out the methodology that we can use to construct empirical hard-

ness models. In Chapters 3 and 4 we validate this methodology by actually applying it
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in two different domains. In Chapter 3 we present the combinatorial auctions winner

determination problem. We’ll discuss features that can be used to describe instances

of that problem, and demonstrate that accurate models can indeed be learned. In

Section 3.7 we validate both our methodology for constructing algorithm portfolios

and for inducing hard instance distributions. In Chapter 4 we demonstrate that good

models can also be constructed in SAT domain. In that chapter we focus more on an-

alyzing hardness models, and as a result highlight several exciting research directions

for the SAT community.



Chapter 3

The Combinatorial Auctions

Winner Determination Problem

In this chapter we will apply methodologies introduced in Chapter 2 to the winner

determination problem, in order to both validate them and to shed some light onto

the nature of the WDP.

3.1 Introduction

Combinatorial auctions have received considerable attention from computer science

and artificial intelligence researchers over the past several years because they provide a

general framework for allocation and decision-making problems among self-interested

agents: agents may bid for bundles of goods, with the guarantee that these bundles

will be allocated “all-or-nothing”. (For an introduction to the topic, see e.g., [Cramton

et al. 2006].) These auctions are particularly useful in cases where agents consider

some goods to be complementary, which means that an agent’s valuation for some

bundle exceeds the sum of its valuation for the goods contained in the bundle. They

may also allow agents to specify that they consider some goods to be substitutable,

e.g., agents can state XOR constraints between bids, indicating that at most one of

these bids may be satisfied.

38
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The winner determination problem (WDP) is a combinatorial optimization prob-

lem naturally arising in conjunction with combinatorial auctions. The goal of the

WDP is to allocate sets of goods among the bidders given their bids, while optimiz-

ing seller’s revenue. Formally, the WDP turns out to be NP-hard. However, as has

been observed by many researchers in the past, the WDP appears to be relatively

easily solvable on realistic (as opposed to random) inputs.

The WDP thus seems to be a perfect candidate for the study of empirical com-

plexity. Yet, it is a good example of a problem that is ill-suited for either existing

experimental or theoretical approaches. WDP instances can be characterized by a

large number of apparently relevant features. There exist many, highly parameterized

instance distributions of interest to researchers. There is significant variation in edge

costs throughout the search tree for most algorithms.

The rest of this chapter is organized as follows. In Section 3.2 we describe the

WDP, algorithms used to solve it, and the testbed on which these algorithms can

be evaluated. In Section 3.3 we discuss the definition of the problem size for WDP

instances. In Section 3.4 we describe the features that can be used to characterize

a WDP instance. Then, in Section 3.5 we demonstrate that it is indeed possible to

construct accurate runtime models for the WDP algorithms. Finally, in Section 3.7 we

show how these hardness models can be used to both construct algorithm portfolios,

and to induce much harder test distributions.

3.2 The Winner Determination Problem

In a combinatorial auction (see e.g., [de Vries and Vohra 2003; Cramton et al. 2006]),

a seller is faced with a set of price offers for various bundles of goods, and his aim is

to allocate the goods in a way that maximizes his revenue. The winner determination

problem (WDP) is choosing the subset of bids that maximizes the seller’s revenue,

subject to the constraint that each good can be allocated at most once. This problem

is formally equivalent to weighted set packing.

Let G = {γ1, γ2, . . . , γm} be a set of goods, and let B = {b1, . . . , bn} be a set of

bids. Bid bi is a pair (p(bi), g(bi)) where p(bi) ∈ R
+ is the price offer of bid bi and
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g(bi) ⊆ G is the set of goods requested by bi. For each bid bi define an indicator

variable xi that encodes the inclusion or exclusion of bid bi from the allocation.

Problem 3.1 The Winner Determination Problem is:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

xi ∈ {0, 1} ∀i

3.2.1 WDP Algorithms

There are many WDP algorithms from which to choose, as much recent work has

addressed this problem. A very influential early paper was [Rothkopf et al. 1998],

but it focused on tractable subclasses of the problem and addressed computational

approaches to the general WDP only briefly. The first algorithms designed specifi-

cally for the general WDP were published at IJCAI in 1999 [Fujishima et al. 1999;

Sandholm 1999]; the authors of these papers subsequently improved and extended

upon their algorithms in [Leyton-Brown et al. 2000b; Sandholm et al. 2001]. First-

generation WDP solvers such as CASS [Fujishima et al. 1999] made use of classical

AI heuristic search techniques, structuring their search by branching on goods. (In

contrast, Sandholm’s first-generation solver [Sandholm 1999] branched on bids.)

More recently, there has been an increasing interest in solving the WDP with

branch-and-bound search, using a linear-programming (LP) relaxation of the prob-

lem as a heuristic. ILOG’s CPLEX software has come into wide use, particularly

after influential arguments by Nisan [2000] and Anderson et al. [2000] and since the

mixed integer programming module in that package improved substantially in ver-

sion 6 (released 2000), and again in version 7 (released 2001). In version 7.1 this

off-the-shelf software reached the point where it was competitive with the best spe-

cial purpose software, Sandholm et al.’s CABOB [Sandholm et al. 2001]. (In fact,
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CABOB makes use of CPLEX’s linear programming package as a subroutine and also

uses branch-and-bound search.) Likewise, GL ([Gonen and Lehmann 2001]) is also

a branch-and-bound algorithm that uses CPLEX’s LP solver as its heuristic. Thus,

the combinatorial auctions research community has seen convergence towards branch-

and-bound search in general, and CPLEX in particular, as the preferred approach to

optimally solving the WDP.

We chose to select CPLEX as our algorithm for this part of the case study, since

it is at least comparable in performance to the CABOB algorithm, and the latter is

not publicly available. As we discuss in later sections, the experimental results in this

chapter are based on several different datasets. Three of these datasets were used

in our previously published conference papers on empirical hardness models [Leyton-

Brown et al. 2002; Leyton-Brown et al. 2003b; Leyton-Brown et al. 2003a]; another

represents new work which first appears in this chapter. Because a new version of

CPLEX became available before we began to construct the last dataset, we upgraded

our CPLEX software at this point. Thus, for our fixed-sized datasets we used CPLEX

7.1, and for the variable-sized dataset we used CPLEX 8.0.

3.2.2 Combinatorial Auctions Test Suite

The wealth of research into algorithms for solving the WDP created a need for many

instances on which to test these algorithms. To date few unrestricted combinatorial

auctions have been held, and little data has been publicly released from those auction

that have been held. Thus, researchers have mostly evaluated their WDP algorithms

using artificial distributions.

Legacy Data Distributions

Along with the first wave of algorithms for the WDP, seven distributions were pro-

posed in [Sandholm 1999; Fujishima et al. 1999; Hoos and Boutilier 2000]. They have

been widely used by other researchers including many of those cited above. Each of

these distributions may be seen as an answer to two questions: what number of goods

to request in a bundle, and what price to offer for a bundle. Given a required number
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of goods, all distributions select which goods to include in a bid uniformly at random

without replacement. We give here the names that were used to identify them as

“legacy” distributions in [Leyton-Brown et al. 2000a]; we use these names hereafter.

• L1, the Random distribution from [Sandholm 1999], chooses a number of goods

uniformly at random from [1, m], and assigns the bid a price drawn uniformly

from [0, 1].

• L2, the Weighted Random distribution from [Sandholm 1999], chooses a number

of goods g uniformly at random from [1, m] and assigns a price drawn uniformly

from [0, g].

• L3, the Uniform distribution from [Sandholm 1999], sets the number of goods

to some constant c and draws the price offer from [0, 1].

• L4, the Decay distribution from [Sandholm 1999] starts with a bundle size of 1,

and increments the bundle size until a uniform random draw from [0, 1] exceeds

a parameter α. The price is drawn uniformly from [0, 1].

• L5, the Normal distribution from [Hoos and Boutilier 2000], draws both the

number of goods and the price offer from normal distributions.

• L6, the Exponential distribution from [Fujishima et al. 1999], requests g goods

with probability Ce−g/q, and assigns a price offer drawn uniformly at random

from [0.5g, 1.5g].

• L7, the Binomial distribution from [Fujishima et al. 1999], gives each good an

independent probability p of being included in a bundle, and assigns a price

offer drawn uniformly at random from [0.5g, 1.5g] where g was the number of

goods selected.

We used five of these distributions in our experiments. For reasons explained in

Section 3.3, we did not use the distributions L1 and L5.
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CATS Distributions

The above distributions were criticized in several ways, perhaps most significantly for

lacking economic justification (see, e.g., [Leyton-Brown et al. 2000a; Anderson et al.

2000; de Vries and Vohra 2003]). This criticism was significant because the WDP is

simply a weighted set packing problem; if the data on which algorithms are evaluated

lacks any connection to the combinatorial auction domain, it is reasonable to ask

what connection the algorithms have with the WDP in particular. To focus algorithm

development more concretely on combinatorial auctions, Leyton-Brown et al. [2000a]

introduced a new set of benchmark distributions called the Combinatorial Auction

Test Suite (CATS). By modeling bidders explicitly and creating bid amounts, sets of

goods and sets of substitutable bids from models of bidder valuations and models of

problem domains, CATS distributions were aimed to serve as a step towards a realistic

set of test distributions. (For example, note that none of the legacy distributions

introduce any structure in the choice of which goods are included in a bundle; this is

one way that the CATS distributions differ.)

In this chapter we consider four CATS distributions: regions, arbitrary, matching

and scheduling. We provide a high-level description of each distribution; however, a

more formal definition of each distribution is beyond the scope of this chapter. For a

detailed description of CATS please refer to [Leyton-Brown et al. 2000a].

• Regions models an auction of real estate, or more generally of any goods over

which two-dimensional adjacency is the basis of complementarity; bids request

goods that are adjacent in a planar graph.

• Arbitrary is similar, but relaxes the planarity assumption and models arbi-

trary complementarities between discrete goods such as electronics parts or

collectibles.

• Matching models airline take-off and landing rights auctions such as those that

have been discussed by the FAA; each bid requests one take-off and landing slot

bundle, and each bidder submits an XOR’ed set of bids for acceptable bundles.
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• Scheduling models a distributed job-shop scheduling domain, with bidders

requesting an XOR’ed set of resource time-slots that will satisfy their specific

deadlines.

In [Leyton-Brown et al. 2000a] no efforts were made to tune the distributions to

provide hard instances. In practice, some researchers have remarked that some CATS

problems are comparatively easy (see e.g., [Gonen and Lehmann 2000; Sandholm et al.

2001]). In Section 3.5.1 we show experimentally that some CATS distributions are

always very easy for CPLEX, while others can be extremely hard. We come back to

the question of whether these distributions could be made computationally harder in

Section 3.7.2.

3.3 The Issue of Problem Size

Step 3 of our methodology in Section 2.2 prescribes us to identify known sources of

hardness. Some sources of empirical hardness in NP-hard problem instances are well

understood. The reason for this step is to understand what other features of instances

are predictive of hardness, so we hold these parameters constant, concentrating on

variations in other features.

For the WDP, it is well known that problems become harder as the number of

goods and bids increases.1 For this reason, researchers have traditionally reported the

performance of their WDP algorithms in terms of the number of bids and goods of

the input instances. While it is easy to fix the number of goods, holding the number

of bids constant is not as straightforward as it might appear.

Definition 3.2 Bid bi is dominated by bid bj if g(bj) ⊆ g(bi) and p(bi) ≤ p(bj).

Most special-purpose algorithms make use of a polynomial-time preprocessing

step which removes bids that are strictly dominated by one other bid. Therefore,

1An exception is that problems generally become easier when the number of bids grows very large
in distributions favoring small bundles, because each small bundle is sampled much more often than
each large bundle, giving rise to a new distribution for which the optimal allocation tends to involve
only small bundles. To our knowledge, this was first pointed out by Anderson et al. [2000].
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if artificial distributions such as the legacy and CATS distributions generate a large

number of dominated bids, it is possible that the apparent size of problems given

as input to WDP algorithms could be much larger than the size of the problem

that leaves the preprocessor. This means that we might be somewhat misled about

the core algorithms’ scaling behaviors — we might inadvertently learn about the

preprocessors’ scaling behavior as well.

Of course, it is not clear how much stock we should place in abstract arguments

like those above — it is not clear whether the removal of dominated bids has a

substantial impact on algorithm behavior, or whether the relationship between the

average number of non-dominated bids and total bids should be expected to vary

substantially from one distribution to another. To gain a better understanding, we

set out to measure the relationship between numbers of dominated and undominated

bids generated for all of our distributions.

Overall, we found that the CATS distributions generated virtually no dominated

bids; however, the legacy distributions were much more variable. Figure 3.3 shows

the number of non-dominated bids generated as a function of the total number of

bids generated for the seven legacy distributions. In these experiments each data

point represents an average over 20 runs. Bids were generated for an auction having

64 goods, and we terminated bid generation once 2000 non-dominated bids had been

created.

Because of the generator-specific variation in the number of non-dominated bids

generated in a fixed number of raw bids, we concluded that raw bids was not a reliable

algorithm-independent proxy for the number of non-dominated bids. We therefore

defined problem size as the pair (number of goods, number of non-dominated bids).

Of course, many other polynomial-time preprocessing steps are possible; e.g., a

check for bids that are dominated by a pair of other bids. Indeed, CPLEX employs

many, much more complex preprocessing steps before initiating its own branch-and-

bound search. Our own experience with algorithms for the WDP has suggested that

as compared to the removal of dominated bids, other polynomial-time preprocessing

steps offer poorer performance in terms of the number of bids discarded in a given

amount of time. In any case, the results above suggest that strict domination checking
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Figure 3.1: Non-Dominated Bids vs. Raw Bids.

should not be disregarded, since distributions differ substantially in the ratio between

the number of non-dominated bids and the raw number of bids. Observe that if we

want to be able to generate any given number of non-dominated bids then we will be

unable to use the distributions L1 and L5, because they often fail to generate a target

number of non-dominated bids even after millions of bids were created. (This helps

to explain why researchers have found that their algorithms perform well on L1 (see

e.g., [Sandholm 1999; Fujishima et al. 1999]) and L5 (see e.g., [Hoos and Boutilier

2000].)

3.4 Describing WDP Instances with Features

As described in Section 2.2, we must characterize each problem instance with a set

of features.

We determined 35 features which we thought could be relevant to the empirical

hardness of the WDP, ranging in their computational complexity from linear to cubic

time. After having generated feature values for all our problem instances, we exam-

ined our data to identify redundant features. After eliminating these, we were left

with 28 features, which are summarized in Figure 3.2. Of course for the variable size

data the numbers of goods and bids were also used as two additional features. We
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Bid-Good Graph Features:

1-4. Bid nodes degree statistics: average,
maximum, minimum, and standard devia-
tion of the bid nodes degrees.

5-8. Good nodes degree statistics: average,
maximum, minimum, and standard devia-
tion of the good node degrees.

Bid Graph Features:

9. Edge Density: number of edges in the BG
divided by the number of edges in a complete
graph with the same number of nodes.

10-15. Node degree statistics: maximum, min-
imum, standard deviation, first and third
quartiles, and the median of the node de-
grees.

16-17. Clustering Coefficient and Devia-
tion. A measure of “local cliquiness.” For
each node calculate the number of edges
among its neighbors divided by k(k − 1)/2,
where k is the number of neighbors. We
record average (the clustering coefficient)
and standard deviation.

18. Average minimum path length: the
average minimum path length, over all pairs
of bids.

19. Ratio of the clustering coefficient to
the average minimum path length:
One of the measures of the smallness of the
BG.

20-22. Node eccentricity statistics: The ec-
centricity of a node is the length of a short-
est path to a node furthest from it. We
calculate the minimum eccentricity of the
BG (graph radius), average eccentricity, and
standard deviation of eccentricity.

LP-Based Features:

23-25. ℓ1, ℓ2, ℓ∞ norms of the integer slack vector
(normalized).

Price-Based Features:

26. Standard deviation of prices among
all bids: stdev(p(bi)).

27. Deviation of price per number of
goods: stdev(p(bi)/|g(bi)|).

28. Deviation of price per square
root of the number of goods:
stdev(p(bi)/

√

|g(bi)|).

Figure 3.2: Four Groups of Features.

describe our features in more detail below, and also mention some of the redundant

features that were eliminated.

There are two natural graphs associated with each instance; schematic examples

of these graphs appear in Figure 3.3. First is the bid-good graph (BGG): a bipartite

graph having a node for each bid, a node for each good and an edge between a bid and

a good node for each good in the given bid. We measure a variety of BGG’s properties:

extremal and average degrees and their standard deviations for each group of nodes.

The average number of goods per bid was perfectly correlated with another feature,

and so did not survive our feature selection.

The bid graph (BG) has an edge between each pair of bids that cannot appear

together in the same allocation. This graph can be thought of as a constraint graph

for the associated constraint satisfaction problem (CSP). As is true for all CSPs, the

BG captures a lot of useful information about the problem instance. Our second
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Figure 3.3: Examples of the Graph Types Used in Calculating Features 1–19: Bid-
Good Graph (left); Bid Graph (right).

group of features are concerned with structural properties of the BG.

We considered using the number of connected components of the BG to measure

whether the problem is decomposable into simpler instances, but found that virtually

every instance consisted of a single component.2

The third group of features is calculated from the solution vector of the linear

programming (LP) relaxation of the WDP. Recall that the WDP can be formulated

as an integer program (Problem 3.1). To obtain the LP relaxation, we simply drop

integrality constraints, and solve the resulting LP.

We calculate the integer slack vector by replacing each component xi with |0.5−

xi|. These features appeared promising both because the slack gives insight into

the quality of CPLEX’s initial solution and because CPLEX uses LP as its search

heuristic. Originally we also included median integer slack, but excluded the feature

when we found that it was always zero.

Our last group of features is the only one that explicitly considers the prices

associated with bids. Observe that the scale of the prices has no effect on hardness;

however, the spread is crucial, since it impacts pruning. We note that feature 28 was

shown to be an optimal bid-ordering heuristic for certain greedy WDP approximation

2It would have been desirable to include some measure of the size of the (unpruned) search
space. For some problems branching factor and search depth are used; for the WDP neither is easily
estimated. A related measure is the number of maximal independent sets of BG, which corresponds
to the number of feasible solutions. However, this counting problem is hard, and to our knowledge
does not have a polynomial-time approximation.
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schemes in [Gonen and Lehmann 2000].

3.5 Empirical Hardness Models for the WDP

Since the purpose of this work was both to demonstrate that it is possible to construct

accurate and useful runtime models, and to home in on unknown sources of hardness,

we ran experiments both on fixed and variable-sized data.

For our fixed-size experiments we generated three separate data sets of different

problem sizes, to ensure that our results were not artifacts of one particular choice

of problem size. The first data set contained runtimes of CPLEX, CASS, and GL on

instances of 1000 bids and 256 goods each, with a total of 4466 instances (roughly

500 instances per distribution). The second data set with 1000 bids and 144 goods

had runtimes of CPLEX on a total of 4500 instances; the third data set with 2000

bids and 64 goods contained CPLEX’s runtimes on 4493 instances. Where we present

results for only a single fixed-size data set, the first data set was always used. All of

our fixed-size CPLEX’s runtime data was collected by running CPLEX’s version 7.1

with preprocessing turned off.3 We used a cluster of 4 machines, each of which had 8

Pentium III Xeon 550 MHz processors and 4G RAM and was running Linux 2.2.12.

Since many of the instances turned out to be exceptionally hard, we stopped CPLEX

after it had expanded 130,000 nodes (reaching this point took between 2 hours and 22

hours, averaging 9 hours). Overall, solution times varied from as little as 0.01 seconds

to as much as 22 hours. We estimate that we consumed approximately 3 years of CPU

time collecting this data. We also computed our 35 features for each instance. (Recall

that feature selection took place after all instances had been generated.)

Our variable-size dataset was collected at a later time. The number of bids was

randomly selected from the interval [50, 2000], and the number of goods was drawn

from [40, 400]4. We obtained runtimes for both CPLEX and CASS on 7146 of these

3When the work described in this chapter was performed, CPLEX 7.1 was the latest version.
Unfortunately, it’s not easy to rerun 3 CPU-years worth of experiments! On the bright side, limited
experiments suggest that CPLEX 8.0 is not a huge improvement over CPLEX 7.1, at least for our
WDP benchmark distributions.

4Due to the limitations imposed by CATS generators, for some instances the number of goods
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instances (roughly 800 instances per distribution). CPLEX version 8.0 with default

parameters was used to run these experiments. This time we capped CPLEX based

on runtime rather than the number of nodes. The timeout for CPLEX was set to 1

CPU-week (and was reached on 2 instances from the arbitrary distribution). The

timeout for CASS was set to 12 hours (the reason being that in our experience CASS

was not likely to solve an instance within any reasonable time given that it already

ran this long). The variable-size dataset was collected on a cluster of 12 dual-CPU

2.4GHz Xeon machines running Linux 2.4.20. The average run of CPLEX took around

4 hours on this dataset, with CASS taking 6 hours on average. The second dataset

took almost 9 CPU-years to collect!

3.5.1 Gross Hardness

Figure 3.4 shows the results of 500 runs for each distribution on problems with 256

goods and 1000 non-dominated bids, indicating the number of instances with the

same order-of-magnitude runtime — i.e., ⌊log10(runtime)⌋. Each instance of each

distribution had different parameters, each of which was sampled from a range of

acceptable values. Figure 3.5 contains the same data for the variable-size dataset.

We can see that several of the CATS distributions are quite easy for CPLEX,

and that others vary from easy to hard. It is interesting that most distributions

had instances that varied in hardness by several orders of magnitude, even when all

instances had the same problem size. This gives rise to the question of whether we can

tune CATS so that in addition to generating “realistic” instances, it also generates

the hardest possible instances? We present techniques that answer this question in

Section 2.4.3.

3.5.2 Linear Models

As a baseline for other learning approaches, we performed simple linear regression.

Besides serving as a baseline, insights into factors that influence hardness gained from

a linear model are useful even if other, more accurate models can be learned. For

and bids actually fell outside of these ranges.
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Figure 3.4: Gross Hardness, 1000 Bids/256 Goods.
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Figure 3.5: Gross Hardness, Variable Size.
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Data point Mean Abs. Err. RMSE Adj-R2

1000 Bids/256 Goods 0.4294 0.5666 0.9351
1000 Bids/144 Goods 0.4000 0.5344 0.9162
2000 Bids/64 Goods 0.3034 0.4410 0.9284
Variable Size 0.9474 1.2315 0.6881

Table 3.1: Linear Regression: Errors and Adjusted R2.
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Figure 3.6: Linear Regression: Squared
Error (test data, 1000 Bids/256
Goods).
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Figure 3.7: Linear Regression: Pre-
diction Scatterplot (test data, 1000
Bids/256 Goods).

this experiment we chose the exponential hypothesis with the logarithm of CPLEX

running time as our response variable — the value to be predicted — rather than

absolute running time, because we wanted the model to be penalized according to

whether the predicted and actual values had the same order of magnitude. If we had

tried to predict absolute running times then the model would have been penalized

very little for dramatically mispredicting the running time of very easy instances,

and would have been penalized heavily for slightly mispredicting the running time

of the hardest instances. Because of this motivation, we don’t apply the inverse

transformation h(y) when reporting error metrics. Recall, also, that linear models by

their nature have to provide a lot of negative predictions, which are clearly not very

accurate.

In Table 3.1 we report both RMSE and mean absolute error, since the latter is

often more intuitive. A third measure, adjusted R2, is the fraction of the original

variance in the response variable that is explained by the model, with a penalty for
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Figure 3.8: Linear Regression: Squared
Error (test data, Variable Size.)
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Figure 3.9: Linear Regression: Pre-
diction Scatterplot (test data, Variable
Size).

cases when the amount of training examples is comparable to the number of free

parameters in the model. Adjusted R2 is a measure of fit to the training set and

cannot entirely correct for overfitting; nevertheless, it can be an informative measure

when presented along with test set error. Figure 3.6 shows the cumulative distribution

of squared errors on the test set for the 1000 bids, 256 goods dataset. The horizontal

axis represents the squared error, and the vertical axis corresponds to the fraction of

instances that were predicted with error not exceeding the x-value. Figure 3.7 shows

a scatterplot of predicted log10 runtime vs. actual log10 runtime. Figures 3.8 and 3.9

show the same information for the variable-size data. We can see from these figures

that most instances are predicted very accurately, and few instances are dramatically

mispredicted. Overall, these results show that our linear models would be able to do

a good job of classifying instances into the bins shown in Figures 3.4 and 3.5, despite

the fact that they are not given the distribution from which each instance was drawn:

93% of the time the log running times of the data instances in our fixed-size test set

were predicted to the correct order of magnitude (i.e., with an absolute error of less

than 1.0). On the variable-size data, 62% of instances were predicted correctly to an

order of magnitude.
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Data point Mean Abs. Err. RMSE R2

1000 Bids/256 Goods 0.2043 0.3176 0.9849
1000 Bids/144 Goods 0.2471 0.3678 0.9725
2000 Bids/64 Goods 0.1974 0.3352 0.9652
Variable Size 0.4222 0.7245 0.9448

Table 3.2: Quadratic Regression: Errors and Adjusted R2.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.5 1 1.5 2 2.5 3 3.5 4
Squared Error

Fr
ac
tio
n 
Be
lo
w

Figure 3.10: Quadratic Regression:
Squared Error (test data, 1000
Bids/256 Goods).
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Figure 3.11: Quadratic Regression:
Prediction Scatterplot (test data, 1000
Bids/256 Goods).
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Figure 3.12: Quadratic Regression:
Squared Error (test data, Variable
Size).
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Figure 3.13: Quadratic Regression:
Prediction Scatterplot (test data, Vari-
able Size).
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3.5.3 Nonlinear Models

We tried quadratic regression as a more sophisticated machine learning technique5. In

order to construct these models, we first computed all pairwise products of features,

including squares, as well as retained the original features, for a total of 434 features

in the fixed-size datasets and 495 features in the variable-sized one. However, this

introduced a lot of redundant features, as even the original features had a lot of

correlation. In order to improve numerical stability and accuracy, we performed a

preprocessing step that allowed us to get rid of some of these useless features. For

this we employed the following iterative process. At each step for each feature we

constructed a regression model that predicted its value using the remaining features.

For some features this resulted in an almost perfect prediction accuracy on the training

set, indicating that they are redundant. We used R2 as a measure of this prediction

quality. At each step we dropped the feature that had the highest R2 and then

repeated the whole process. We stopped when all of the R2 values were below a

conservative threshold of 0.99999. Even with such a stopping criterion, this eliminated

a lot of features. On the 1000 bids, 256 goods dataset we were left with 312 features

out of 434, and on the variable-size dataset with 436 out of 495. In our experience,

this preprocessing step also resulted in better and more stable models.

For all of our datasets quadratic models gave considerably better error measure-

ments on the test set and also explained nearly all the variance in the training set,

as shown in Table 3.2. As above, Figures 3.10, 3.11, 3.12, and 3.13 show cumula-

tive distributions of the squared error and scatterplots of predicted log10 runtime vs.

actual log10 runtime for fixed-size and variable-size data. Comparing these figures

to Figures 3.6, 3.7, 3.8, and 3.9 confirms our judgment that quadratic models are

substantially better overall. The cumulative distribution curves clearly lie well above

the corresponding curves for linear models. In particular, quadratic models would

5We also explored another nonlinear regression technique, Multivariate Adaptive Regression
Splines (MARS) [Friedman 1991]. MARS models are linear combinations of the products of one
or more basis functions, where basis functions are the positive parts of linear functions of single
features. The RMSE on our MARS models differed from the RMSE on our second-order model only
in the second decimal place; as MARS models can be unstable and difficult to interpret, we focus
on our second-order model.
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classify 98% of test instances in the fixed-size dataset and 92% of instances in the

variable-sized dataset correctly to within an order of magnitude.

3.6 Analyzing the WDP Hardness Models

The results summarized above demonstrate that it is possible to learn a model of our

features that accurately predicts the logarithm of CPLEX’s running time on novel

instances. For some applications (e.g., predicting the time it will take for an auction to

clear; building an algorithm portfolio) accurate prediction is all that is required. For

other applications it is necessary to understand what makes an instance empirically

hard. In this section we set out to interpret our models according to the process

described in Section 2.3.

We used three subset selection techniques (forward and backward selection, and

sequential replacement) to obtain good subsets with given numbers of features. We

plotted subset size (from 1 to the total number of variables) versus the RMSE of the

best model built from a subset of each size. We then chose the smallest subset size at

which there was little incremental benefit gained by moving to the next larger subset

size. We examined the features in the model, and also measured each variable’s cost

of omission — the (normalized) difference between the RMSE of the model on the

original subset and a model omitting the given variable.

Despite the fact that our quadratic models strongly outperformed the linear mod-

els, we analyze both sets of models here. The reason for this is that we can learn

different things from the different models; for example, the linear models can some-

times give rise to simpler intuitions since they do not depend on products of features.

Linear Models

Figure 3.14 shows the RMSE of the best subset containing between 1 and 28 features

for linear models on the 1000 bids, 256 goods dataset. Due to our use of heuristic

subset selection techniques, the subsets shown in Figure 3.14 are likely not the RMSE-

minimizing subsets of the given sizes; nevertheless, we can still conclude that subsets

of these sizes are sufficient to achieve the accuracies shown here. We chose to examine
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Figure 3.14: Linear Regression: Subset
Size vs. RMSE (1000 bids/256 Goods).
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Figure 3.15: Linear Regression: Cost
of Omission for Subset Size 7 (1000
Bids/256 Goods).

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30
Subset Size

V
al
id
at
io
n 
Se
t R

M
SE

Subset size 7

Figure 3.16: Linear Regression: Subset
Size vs. RMSE (Variable Size).
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the model with seven features because it was the first for which adding another feature

did not cause a large decrease in RMSE. This suggests that the rest of the features

are relatively highly correlated with these seven. Figure 3.15 shows the features in

this model and their respective costs of omission (scaled to 100).

First, we must note that this set of features is rather different from the one de-

scribed in [Leyton-Brown et al. 2002]. This is due to the fact that in current work we

have employed a slightly different machine learning pipeline: we’ve added a couple

of extra features and used a small ridging parameter in regression. Also, because we

have switched our regression software, we were unable to run the exhaustive feature

selection algorithm. This observed difference stresses the important point discussed

in Section 2.3 of Chapter 2: good subsets of each size identified by our techniques

need not be unique. Nevertheless, by looking closer at the kinds of features that

comprise these subsets, we can clearly discern some common themes.

The most overarching conclusion we can draw from this data and our previous

observations is that structural features and features based on the LP relaxation are

the most important ones. The most important feature in the model analyzed in

Figure 3.15 appears to be the ℓ1 norm of the linear programming slack vector. This is

very intuitive; CPLEX employs LP relaxation as its guiding heuristic for the branch-

and-cut search. Thus, integrality gap represents the quality of the heuristic and,

consequently, the hardness of the problem. The closely related ℓ2 norm also appears

in the model. The second most important feature deals with actual weights in our

optimization problem; it looks at the spread of different prices. Intuitively, if bid

prices are close to each other it must be harder to choose one bid over the other,

and so optimization depends much more on the rest of the structure of the problem

instance. The remaining four features in this model all deal with this structure. The

average and the maximum number of goods contained in each bid, and the standard

deviation of the number of bids in which each good participates in some sense measure

the local structure of the bid-good graph. The average minimum path length in the

bid graph, on the other hand, is a more global measure of the constraint structure.

Qualitatively, this mix of LP relaxation features and both global and local structural

features is consistently present in every similarly-sized subset that our techniques
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have identified as being important.

Figures 3.16 and 3.17 demonstrate the linear model subset selection for our variable-

size dataset. For this dataset, we also picked a seven-variable model. Notice that while

the actual feature names are different, we can observe the same trends as we have

observed in the fixed-size case. We still see an LP-based feature, though it has now

been replaced with the ℓ∞ norm. We also see a feature that measures actual prices,

now normalized to better account for varying bid sizes. Clustering coefficient is a

measure of average cliquiness of BG; this feature gives an indication of how local the

problem’s constraints are. We also see structural features related to the number of

conflicts in the BG as well the maximum number of bids in which a good participates.

Since it is well-known that problem hardness depends on the input size, it is not

surprising to see size features appear in the model. The only size feature that made it

into the seven-variable model is the number of goods. This is not to be unexpected,

since it is actually known that complexity of the WDP can scale exponentially in

the number of goods, but only polynomially in the number of bids [Sandholm 2002].

While the number of bids definitely still has an effect on hardness, it appears much

smaller than the effect of problem structure6. We also note that these observations

indirectly validate our techniques: we were able to automatically identify the number

of goods as being a more fundamental factor than the number of bids in determining

problem hardness.

Nonlinear Models

We now consider second-order models. Figure 3.18 describes the best subsets con-

taining between 1 and 80 features for second-order models on the fixed-size dataset.

We observe that allowing interactions between features dramatically improved the

6When studying the effect of input size on runtime, we have attempted to conduct scaling ex-
periments, trying to increase problem size as much as possible. We have observed that for all input
sizes that we could reasonably attempt to solve runtimes varied for many orders of magnitude —
from less than a second to days or even weeks. It thus appears that for modern WDP algorithms
problem structure is paramount, and asymptotic complexity doesn’t strongly manifest itself till size
is increased well beyond what we would consider reasonable or feasible. In particular, this lead us
to treat problem size features as being fundamentally the same as structural features, rather than
come up with specialized hypotheses that treat input size separately.
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accuracy of our very small-subset models; indeed, our 4-feature quadratic model out-

performed the full linear model.

Figure 3.19 shows the costs of omission for the variables from the best eight-

feature subset. We first note that many second-order features were selected, with

only two being first-order. As in the case of our linear model, we observe that the

most critical features are structural. The clustering coefficient and node degrees are

very prominent; we also see a more global measure of constrainedness — average node

eccentricity of the BG. Interestingly, it appears that most important is the interaction

between LP relaxation features and features related to the BG node degrees.

Figures 3.20 and 3.21 show a similar picture for our variable-size dataset. On this

dataset a two-feature quadratic model slightly outperformed the full linear model.

These two features were the product of the number of bids with the ℓ1 norm of the

LP slack vector and the product of the average node eccentricity of the BG with the

standard deviation of the clustering coefficients of nodes in the BG.

For a more informative comparison, we selected a larger nine-feature model (Fig-

ure 3.21). The features present in this model exhibit many similarities to those in the

fixed-size dataset model and the linear model. We still see LP-based features, global

structural features such as BG radius and average minimum path lengths, as well

as more local node degree statistics. We also see some marked differences from the

linear model. Most importantly, the number of bids, once allowed to interact with

other features, becomes much more prominent. One possible explanation for this is

that the number of bids provides a unifying scaling factor for many features.

Discussion

We can look at the features that were important to our quadratic and linear models

in order to gain understanding about how these models work. The importance of the

LP relaxation norms is quite intuitive: the easiest problems can be completely solved

by LP, yielding a norm of 0; the norms are close to 0 for problems that are almost

completely solved by LP (and hence usually do not require much search to resolve),

and larger for more difficult problems. Various BG node degree features describe

the overall constrainedness of the problem. Generally, we would expect that very
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Figure 3.18: Quadratic Regression:
Subset size vs. RMSE (1000 Bids/256
Goods).
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Figure 3.19: Quadratic Regression:
Cost of Omission for Subset Size 8
(1000 Bids/256 Goods).
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Figure 3.20: Quadratic Regression:
Subset Size vs. RMSE (Variable Size).
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highly constrained problems would be easy, since more constraints imply a smaller

search space; however, our experimental results show that CPLEX takes a long time

on such problems. It seems that either CPLEX’s calculation of the LP bound at

each node becomes much more expensive when the number of constraints in the LP

increases substantially, or the accuracy of the LP relaxation decreases (along with the

number of nodes that can be pruned); in either case this cost overwhelms the savings

that come from searching in a smaller space. The node degree statistics describe

the max, min, average and standard deviation of the number of constraints in which

each variable is involved; they indicate how quickly the search space can be expected

to narrow as variables are given values (i.e., as bids are assigned to or excluded

from the allocation). Similarly, the clustering coefficient features measure the extent

to which variables that conflict with a given variable also conflict with each other,

another indication of the speed with which the search space will narrow as variables

are assigned. Thus, we can now understand the role of the most important feature in

our eight-feature fixed-size quadratic model: the product of the maximum BG node

degree and the integer slack ℓ1 norm. Note that this feature takes a large value only

when both components are large; the explanations above show that problems are easy

for CPLEX whenever either of these features has a small value. Since both features

are relatively uncorrelated on our data, their product gives a powerful prediction of an

instance’s hardness. Similar intuitions clearly also apply to the variable-sized models.

3.7 Applications of the WDP Hardness Models

The results in previous sections demonstrated that it is indeed possible to construct

accurate models of runtime according to the methodology of Chapter 2. We now to

the question of validating applications of these models, as described in Section 2.4.

3.7.1 Algorithm Portfolios

In this section, we consider portfolio performance on two datasets: the fixed size in-

stances with 1000 bids and 256 goods, and our variable size dataset. On the fixed



64 CHAPTER 3. THE COMBINATORIAL AUCTIONS WDP

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

Tim
e (
s)
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Figure 3.23: Portfolio Runtimes (1000
Bids/256 Goods).

size dataset we used CPLEX 7.1, GL, and CASS (see Section 3.2.1 for their descrip-

tions). For the variable-size dataset we only considered CPLEX 8.0 and CASS, since

it turned out that marginal utility of adding GL to a portfolio is low.

First, we used the methodology from Section 2.2 to build regression models for GL

and CASS. Figures 3.22, 3.23, compare the average runtimes of our three algorithms

(CPLEX, CASS, GL) to that of the portfolio on our fixed-size dataset.7. These

averages were computed over instances on which at least one of the algorithm didn’t

time out, and thus include some cap times. Therefore, the bars in reality represent

lower bounds on average runtimes on these datasets for constituent algorithms.

CPLEX would clearly be chosen under winner-take-all algorithm selection on both

datasets. The “Optimal” bar shows the performance of an ideal portfolio where

algorithm selection is performed perfectly and with no overhead. The portfolio bar

shows the time taken to compute features (light portion) and the time taken to run

the selected algorithm (dark portion). Despite the fact that CASS and GL are much

slower than CPLEX on average, the portfolio outperforms CPLEX by roughly a factor

of 3. Moreover, neglecting the cost of computing features, our portfolio’s selections

on average take only 8% longer to run than the optimal selections.

Figures 3.24 and 3.25 show the frequency with which each algorithm is selected in

the ideal portfolio and in our portfolio on the fixed-size dataset. They illustrate the

7Note the change of scale on the graph, and the repeated CPLEX bar
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GL 4%

CASS 14%

CPLEX 82%

Figure 3.24: Optimal Selection (1000
Bids/256 Goods).

GL 5%

CASS 15%

CPLEX 80%

Figure 3.25: Portfolio Selection (1000
Bids/256 Goods).

quality of our algorithm selection and the relative value of the three algorithms. It

turns out that CASS is often significantly uncorrelated with CPLEX, and that most

of the speedup in our portfolio comes from choosing CASS on appropriate instances.

Observe that the portfolio does not always make the right choice (in particular, it

selects GL and CASS slightly more often than it should). However, most of the

mistakes made by our models occur when both algorithms have very similar running

times; these mistakes are not very costly, explaining why our portfolio’s choices have

a running time so close to the optimal. It thus performs very well according to all

of the metrics mention in Section 2.4.2. This highlights an important point about

our portfolio methodology: algorithm selection is an easier problem than accurate

runtime prediction, since it’s relatively easy to discriminate among algorithms when

their runtimes differ greatly, and accuracy is less important when their runtimes are

similar.

Figures 3.26, 3.27, 3.28, and 3.29 show portfolio performance on the variable-size

dataset. At first glance, the average gain of using a portfolio appear less dramatic here.

This is partially caused by the fact that CPLEX is able to solve significantly harder

instances than CASS, and thus the average runtime for the portfolio tracks CPLEX’s

runtime much closer than that of CASS. However, as Figure 3.28 demonstrates, it

is still the case that CASS is faster on roughly a quarter of the instances, and the

portfolio often correctly selects CASS instead of CPLEX. When one is concerned with
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Figure 3.27: Portfolio Runtimes (Vari-
able Size).

solving a particular instance at hand, the average performance becomes a meaningless

metric, and employing a portfolio still makes sense.

Observe that our variable importance analysis from Section 3.6 gives us some

insight about why an algorithm like CASS is able to provide such large gains over

algorithms like CPLEX and GL on a significant fraction of instances. Unlike CASS,

both GL and CPLEX use an LP relaxation heuristic. It is possible that when the

number of constraints (and thus the bid graph node degree measures) increases, such

heuristics become less accurate, or larger LP input size incurs substantially higher

per-node costs. On the other hand, additional constraints reduce feasible search space

size. Like many search algorithms, CASS often benefits whenever the search space

becomes smaller; thus, CASS can achieve better overall performance on problems

with a very large number of constraints.

These results show that our portfolio methodology can work very well even with

a small number of algorithms, and when one algorithm’s average performance is

considerably better than the others’. We suspect that our techniques could be even

more effective in other settings.

We have also experimentally validated our methodology for smart feature compu-

tation. Figure 3.30 shows the performance of the smart feature computation discussed

in Section 2.4.2, with the upper part of the bar indicating the time spent computing

features. Compared to computing all features, we reduce overhead by almost half
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Figure 3.28: Optimal Selection (Vari-
able Size).
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Figure 3.29: Portfolio Selection (Vari-
able Size).
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Figure 3.31: Inducing Harder Distributions.

with nearly no cost in running time8.

3.7.2 Inducing Hard Distributions

Now that we have demonstrated that algorithms portfolios improve performance of

WDP algorithms, we turn to the question of testing new WDP algorithms, as de-

scribed in Section 2.4.3.

Due to the wide spread of runtimes in our composite distribution D (7 orders of

magnitude) and the high accuracy of our model hf , it is quite easy for our technique

to generate harder instances. We present the histograms of the optimal portfolio

runtimes on the 1000 bids, 256 goods dataset for the original and harder distribution

in Figure 3.319. Because our runtime data was capped, there is no way to know if

the hardest instances in the new distribution are harder than the hardest instances in

8This figure was obtained using models from [Leyton-Brown et al. 2002], which are slightly
different from the models used for the rest of the results in this chapter. The performance of those
models is virtually identical to that of the new ones.

9Because generating figures in this section requires collecting runtimes on newly generated in-
stances, these results are based on models used in [Leyton-Brown et al. 2002]. As mentioned
previously, the performance of those models is very similar to that of the newer ones. We also note
that while in Section 2.4.3 we suggested that for a composite distribution such as ours it is possible to
learn hardness models individually, for these results Hf was trained on the whole dataset. Learning
new models would probably yield even better results.
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Figure 3.32: Matching.

the original distribution; note, however, that very few easy instances are generated.

Instances in the induced distribution came predominantly from the CATS arbitrary

distribution, with most of the rest from L3.

To demonstrate that our technique also works in more challenging settings, we

sought a different distribution with small runtime variance. As described in Sec-

tion 3.5.1, there has been ongoing discussion in the WDP literature about whether

those CATS distributions that are relatively easy could be configured to be harder. We

consider two easy distributions with low variance from CATS, matching and schedul-

ing, and show that they indeed can be made much harder than originally proposed.

Figures 3.32 and 3.33 show the histograms of the runtimes of the ideal portfolio on

the 1000 bids, 256 goods dataset before and after our technique was applied. In fact,

for these two distributions we generated instances that were (respectively) 100 and 50

times harder than anything we had previously seen! Moreover, the average runtime

for the new distributions was greater than the observed maximum running time on

the original distribution.
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3.8 Conclusion

In this chapter, we performed an extensive experimental investigation into the em-

pirical hardness of the combinatorial auctions winner determination problem. We

identified structural, distribution-independent features of WDP instances and showed

that, somewhat surprisingly, they contain enough information to predict CPLEX’s

running time with high accuracy.

We demonstrated that a portfolio composed of CPLEX, CASS and GL outper-

formed CPLEX alone by a factor of 3 — despite the fact that CASS and GL are much

slower than CPLEX on average. We were also able to induce test data that was much

harder for our portfolio, and were even able to make specific CATS distributions much

harder.

Perhaps more importantly, results in this chapter experimentally validated method-

ologies proposed in Chapter 2.



Chapter 4

Understanding Random SAT:

Beyond the Clauses-to-Variables

Ratio

In this chapter we describe and analyze empirical hardness models for three SAT

solvers — kcnfs, oksolver and satz — and for two different distributions of in-

stances: uniform random 3-SAT with varying ratio of clauses-to-variables, and uni-

form random 3-SAT with fixed ratio of clauses-to-variables. Furthermore, we present

some interesting findings on which features are most useful in predicting whether an

instance will be hard to solve.

4.1 Introduction

SAT is among the most studied problems in computer science, representing a generic

constraint satisfaction problem with binary variables and arbitrary constraints. It is

also the prototypical NP-hard problem, and its worst-case complexity has received

much attention. Accordingly, it is not surprising that SAT has become a primary

platform for the investigation of average-case and empirical complexity. Particular

interest has been paid to randomly generated SAT instances. In this chapter we

concentrate on this distribution as it offers both a range of very easy to very hard

71
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instances for any given input size and the opportunity to make connections to a wealth

of existing work. In fact, this wealth of work on typical-case complexity of SAT

inspired our initial development of the empirical hardness methodology (Chapter 2),

with this chapter completing the circle.

This chapter has three goals. First, we aim to validate the methodology pre-

sented in Chapter 2 in yet another problem domain. We consider three different SAT

algorithms (kcnfs, oksolver, and satz– three state-of-the-art solvers for random

instances) and two different instance distributions. The first distribution contains

random 3-SAT instances with a varying ratio of clauses to variables, allowing us to

see whether our techniques automatically select the clauses-to-variables ratio as an

important feature, and also what other features are important in this setting. Our

second distribution contains random 3-SAT instances with the ratio of clauses-to-

variables held constant at the phase transition point. This distribution has received

much attention in the past; it gives us the opportunity to explain the orders-of-

magnitude runtime variation that persists in this so-called “hard region.”

Second, we show that empirical hardness models have other useful applications

for SAT. Most importantly, we describe a SAT solver, SATzilla, which uses hardness

models to choose among existing SAT solvers on a per-instance basis. We explain

some details of its construction and summarize its performance in Section 4.5.

Our final, and, perhaps, most important, goal is to offer concrete examples in

support of our abstract claim that empirical hardness models are a useful tool for

gaining understanding of the behavior of algorithms for solving NP-hard problems.

4.2 The Propositional Satisfiability Problem

Propositional Satisfiability (SAT) [Garey and Johnson 1979] is arguably the most

studied problem in computer science. It is the first problem that was proven to be

NP-complete [Cook 1971].Besides its considerable theoretical importance, it also has

numerous practical applications. SAT is used in areas from program verification to

planning and scheduling. SAT being NP-complete also means that efficient algo-

rithms for SAT can translate directly into efficient algorithms for a wide variety of
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other problems in NP.

Formally, let X = {x1, . . . , xv} be a set of v variables. This set induces a set of

2v literals L = {x1,¬x1, . . . , xv,¬xv}. A SAT instance consists of a set of c clauses,

where each clause Ci ⊆ L. Semantically, this defines a propositional formula in

conjunctive normal form: F (X) =
c
∧

i=1

∨

l∈Ci

l.

A truth assignment τ assigns a truth value (t or f) to each variable in X:

τ : X → {t, f}. We say that τ satisfies F (τ |= F ) if F evaluates to true according

to standard logical rules when each variable is assigned a value according to τ .

Problem 4.1 The SAT problem is the following: given a formula F represented by a

set of clauses C1, . . . , Cc over a set of variables x1, . . . , xv return “yes” if there exists

a truth assignment τ such that τ |= F , and return “no” otherwise.

By a k-SAT problem we mean a problem where |Ci| = k for all i. It is well-known

that the problem remains NP-complete for all k > 2. In this chapter we will be

mostly concerned with 3-SAT instances.

In order to perform empirical studies, we must define a distribution over instances.

The most widely studied distribution is called uniformly random k-SAT. An instance

with c clauses and v variables is generated as follows. For each clause Ci choose exactly

k variables (out of v total) uniformly at random, and then assign a positive or negative

sign to each variable with probability 1/2. Clauses that are trivial (i.e., contain a

literal and its negation) are usually discarded.

The reason why random k-SAT is so prominent in CS research is the discovery of

the phase transition in solvability and its apparent correlation with problem hardness.

See Section 2.5.1 of Chapter 2 for the overview of relevant literature.

4.2.1 SAT Algorithms

While the exact details of the algorithms are unimportant for the purposes of this

chapter, we briefly remind of the methods used to solve SAT instances.

Most of the current state-of-the-art SAT algorithms (with very few notable ex-

ceptions) can be divided into two classes. The first class of algorithms is based on
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the classical Davis-Putnam-Logemann-Loveland (DPLL) procedure [Davis and Put-

nam 1960; Davis et al. 1962]. This algorithm performs a depth-first search in the

space of all possible truth assignments to variables in X. Thus, in the worst case,

the search tree is a complete binary tree of depth v. However, this is implemented

so that once a variable xi and it’s value τ(xi) (t or f) are chosen, the set of clauses

is simplified so that it contains no mention of xi. This means that all clauses that

are made true by τ(xi) are marked as inactive, while xi literals are removed from

clauses where they evaluate to false. If all clauses have been thus eliminated, then a

satisfying assignment has been found. Conversely, if a clause becomes empty without

being eliminated, then a contradiction has been reached, and the search backtracks

to the previous untried value assignment. All DPLL algorithms augment this basic

procedure with two heuristics that greatly improve their performance. The first one

is the pure-literal heuristic: if there is some variable xi which occurs only as a positive

literal, or only as a negative literal, then it must be instantiated so that it evaluates

to true in all occurrences. The second heuristic is called unit propagation: if there is a

unit clause Ci = {l} (i.e., a clause of length one), then l must be assigned to be true.

This process is repeated until there are no more unit clauses left, or a contradiction

is reached.

The above describes the basic DPLL procedure. Modern DPLL-based solvers

differ in many additional heuristics that they introduce. For the most part these

heuristics decide which variable to assign next, and which value to try first. Some

also employ more complex techniques, such as clause learning. These algorithms are

complete — guaranteed to find a satisfying assignment if one exists, or return “no”

otherwise.

In this chapter we will study the behavior of DPLL-based procedures. However,

it is useful to review the second major class of SAT algorithms — stochastic local

search (SLS) procedures [Hoos and Stützle 2004]. While DPLL procedures look at

partial truth assignments, SLS methods search in the space of complete truth assign-

ments. Each SLS method includes a metric that evaluates the quality of the current

assignment. This is often simply the number of unsatisfied clauses, though mod-

ern algorithms often use a weighted version with the weight of each clause changing
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during the run of the algorithm. As a rule, they start with a random assignment

and then perform a greedy descent (sometimes including random moves) according

to their metric; the move in this space is usually defined as a flip of the truth assign-

ment to a single variable. SLS algorithms are inherently incomplete — sometimes

they may wander forever without finding a solution, and they can never prove that

an instance is unsatisfiable. Nevertheless, in practice, on satisfiable instances, they

usually outperform complete algorithms by orders of magnitude both in the running

time, and in the size of the instances that can be solved.

4.3 Describing SAT Instances with Features

Figure 4.1 summarizes the 91 features used by our SAT models. Since not every

feature is useful in every distribution, we discarded uninformative or highly correlated

features after fixing the distribution. For example, while ratio of clauses-to-variables

was important for SATzilla, it is not at all useful for the fixed-ratio dataset. In order

to keep values to sensible ranges, whenever it makes sense we normalize features by

either the number of clauses or the number of variables in the formula.

The features can be divided into nine groups. The first group captures problem

size, measured by the number of clauses, variables, and the ratio of the two. Because

we expect this ratio to be an important feature, we gave it additional expressive power

by including squares and cubes of both the ratio and its reciprocal. Also, because

we know that features are more powerful in simple regression models when they are

directly correlated with the response variable, we include a “linearized” version of the

ratio which is defined as the absolute value of the difference between the ratio and the

phase transition point, c/v = 4.26. It turns out that for variable-ratio data this group

of features alone suffices to construct reasonably good models. However, including the

rest of our features significantly improves these models. Moreover, in the presence of

other features, including higher-order features 4, 5, 7, 8, 10 and 11 does not improve

accuracy much and does not qualitatively change the results reported below. Thus,

for the rest of this chapter we focus on models that use all of the ratio features.

The next three groups correspond to three different graph representations of a
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Problem Size Features:

1. Number of clauses: denoted c

2. Number of variables: denoted v

3-5. Ratio: c/v, (c/v)2, (c/v)3

6-8. Ratio reciprocal: (v/c), (v/c)2, (v/c)3

9-11. Linearized ratio: |4.26 − c/v|, |4.26 −
c/v|2, |4.26− c/v|3

Variable-Clause Graph Features:

12-16. Variable nodes degree statistics:
mean, variation coefficient, min, max and
entropy.

17-21. Clause nodes degree statistics:
mean, variation coefficient, min, max and
entropy.

Variable Graph Features:

22-25. Nodes degree statistics: mean, varia-
tion coefficient, min, and max.

Clause Graph Features:

26-32. Nodes degree statistics: mean, varia-
tion coefficient, min, max, and entropy.

33-35. Weighted clustering coefficient sta-
tistics: mean, variation coefficient, min,
max, and entropy.

Balance Features:

36-40. Ratio of positive and negative lit-
erals in each clause: mean, variation
coefficient, min, max, and entropy.

41-45. Ratio of positive and negative oc-
currences of each variable: mean,
variation coefficient, min, max, and en-
tropy.

46-48. Fraction of unary, binary, and
ternary clauses

Proximity to Horn Formula

49. Fraction of Horn clauses

50-54. Number of occurrences in a Horn
clause for each variable : mean, vari-
ation coefficient, min, max, and entropy.

LP-Based Features:

55. Objective value of linear program-
ming relaxation

56. Fraction of variables set to 0 or 1

57-60. Variable integer slack statistics:
mean, variation coefficient, min, max.

DPLL Search Space:

61-65. Number of unit propagations: com-
puted at depths 1, 4, 16, 64 and 256

66-67. Search space size estimate: mean
depth to contradiction, estimate of the log
of number of nodes.

Local Search Probes:

68-71. Minimum fraction of unsat clauses
in a run: mean and variation coefficient
for SAPS and GSAT (see [Tompkins and
Hoos 2004]).

72-81. Number of steps to the best local
minimum in a run: mean, median, vari-
ation coefficient, 10th and 90th percentiles
for SAPS and GSAT.

82-85. Average improvement to best: For
each run, we calculate the mean improve-
ment per step to best solution. We then
compute mean and variation coefficient
over all runs for SAPS and GSAT.

86-89. Fraction of improvement due to
first local minimum: mean and vari-
ation coefficient for SAPS and GSAT.

90-91. Coefficient of variation of the num-
ber of unsatisfied clauses in each lo-
cal minimum: mean over all runs for
SAPS and GSAT.

Figure 4.1: SAT Instance Features.
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SAT instance. The variable-clause graph (VCG) is a bipartite graph with a node for

each variable, a node for each clause, and an edge between them whenever a variable

occurs in a clause. The variable graph (VG) has a node for each variable and an

edge between variables that occur together in at least one clause. The clause graph

(CG) has nodes representing clauses and an edge between two clauses whenever they

share a negated literal. Each of these graphs corresponds to a constraint graph for the

associated CSP; thus, each encodes aspects of the problem’s combinatorial structure.

For each graph we compute various node degree statistics1. For the CG we also

compute statistics of weighted clustering coefficients, which measure the extent to

which each node belongs to a clique. For each node the weighted clustering coefficient

is the number of edges among its neighbors (including the node itself) divided by

k(k + 1)/2, where k is the number of neighbors. Including the node when counting

edges has an effect of weighting the classical clustering coefficient by the node degree.

The fifth group measures the balance of a formula in several different (syntactical)

senses. Here we compute the number of unary, binary, and ternary clauses; statistics

of the number of positive vs. negative occurrences of variables within clauses and per

variable. The sixth group measures the proximity of the instance to a Horn formula,

motivated by the fact that such formulae are an important SAT subclass solvable in

polynomial time.

The seventh group of features is obtained by solving a linear programming relax-

ation of an integer program representing the current SAT instance (in fact, on occasion

this relaxation is able to solve the SAT instance!). Let xj denote both Boolean and

LP variables. Define v(xj) = xj and v(¬xj) = 1− xj . Then the program is

maximize:
c

∑

i=1

∑

l∈Ci

v(l)

subject to:
∑

l∈Ci

v(l) ≥ 1 ∀Ci

0 ≤ xj ≤ 1 ∀xj

The objective function prevents the trivial solution where all variables are set to 0.5.

1The variation coefficient is the ratio of the standard deviation and the mean.
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The eighth group involves running DPLL “probes.” First, we run a DPLL pro-

cedure to an exponentially-increasing sequence of depths, measuring the number of

unit propagations done at each depth. We also run depth-first random probes by

repeatedly instantiating random variables and performing unit propagation until a

contradiction is found. The average depth at which a contradiction occurs is an

unbiased estimate of the log size of the search space [Lobjois and Lemâıtre 1998].

Our final group of features probes the search space with two stochastic local search

algorithms, GSAT and SAPS [Hoos and Stützle 2004]. We run both algorithms many

times, each time continuing the search trajectory until a plateau cannot be escaped

within a given number of steps. We then average statistics collected during each run.

4.4 Empirical Hardness Models for SAT

The first dataset used in this chapter contained 20 000 uniform random 3-SAT in-

stances with 400 variables each. To determine the number of clauses in each in-

stance, we first chose the clauses-to-variables ratio by drawing a uniform sample from

[3.26, 5.26] (i.e., the number of clauses varied between 1 304 and 2 104). This range

was chosen symmetrically around the phase transition point, 4.26, to ensure that an

approximately equal number of satisfiable and unsatisfiable instances would be ob-

tained. The second dataset contained 20 000 uniform random 3-SAT instances with

400 variables and 1 704 clauses each, corresponding to a fixed clauses-to-variables ra-

tio of 4.26. On each dataset we ran three solvers — kcnfs, oksolver and satz—

which performed well on random instances in previous years’ SAT competitions. Our

experiments were executed on 2.4 GHz Xeon processors, under Linux 2.4.20. Our

fixed-ratio experiments took about four CPU-months to complete. In contrast, our

variable-ratio dataset took only about one CPU-month, since many instances were

generated in the easy region away from the phase transition point. Every solver was

allowed to run to completion on every instance.

Each dataset was split into 3 parts — training, test, and validation sets — in the

ratio 70 : 15 : 15. All parameter tuning was performed with the validation set; the

test set was used only to generate the graphs shown in this chapter. Machine learning
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and statistical analysis performed for this chapter were done with the R and Matlab

software packages.

4.4.1 Variable-Ratio Random Instances

We had three goals with this distribution. First, we wanted to show that our empirical

hardness model training and analysis techniques would be able to sift through all the

features provided and “discover” that the clauses-to-variables ratio was important to

the empirical hardness of instances from this distribution. Second, having included

nine features derived from this ratio among our 91 features — the clauses-to-variables

ratio itself, the square of the ratio, the cube of the ratio, its reciprocal (i.e., the

variables-to-clauses ratio), the square and cube of this reciprocal, the absolute value

minus 4.26, and the square and cube of this absolute value — we wanted to find

out which particular function of these features would be most predictive of hardness.

Third, we wanted to find out what other features, if any, were important in this

setting.

We begin by examining the clauses-to-variables ratio, c/v, in more detail. Fig-

ure 4.2 shows kcnfs runtime (log scale) vs. c/v for satisfiable and unsatisfiable in-

stances. First observe that, as expected, there is a clear relationship between runtime

and c/v. At the same time, c/v is not a very accurate predictor of hardness by itself:

particularly near the phase transition point, there are several orders of magnitude of

runtime variance across different instances. This is particularly the case for satisfi-

able instances around the phase transition; while the variation in runtime between

unsatisfiable instances is consistently much smaller. (This is not surprising, and been

studied in more detail in, e.g., [Gomes et al. 2004]). It may be noted that overall

our dataset is balanced in that it consists of 10 011 satisfiable and 9 989 unsatisfiable

instances. Another thing to note is that although most instances left of the phase

transition point are satisfiable and vice versa, this relationship is not strict.
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Figure 4.2: Runtime of kcnfs on Variable-Ratio Satisfiable (left) and Unsatisfiable
Instances (right).

Model Performance

To build models, we first considered linear, logistic and exponential models in our

91 features, evaluating the models on our validation set. Of these, linear were the

worst, and logistic and exponential were similar, with logistic being slightly better.

Next, we wanted to consider quadratic models under these same three transforma-

tions. However, a full quadratic model would have involved 4 277 features, and given

that our training data involved 14 000 different problem instances, training the model

would have entailed inverting a matrix of nearly sixty million values. In order to

concentrate on the most important quadratic features, we first used our variable im-

portance techniques to identify the best 30-feature subset of our 91 features. We

computed the full quadratic expansion of these features, then performed forward se-

lection — the only subset selection technique that worked with such a huge number

of features — to keep only the most useful features. We ended up with 360 features,

some of which were members of our original set of 91 features and the rest of which

were products of these original features. Again, we evaluated linear, logistic and ex-

ponential models; all three model types were better with the expanded features, and

again logistic models were best. Although the actual RMSE values obtained by three

different kinds of models were very close to each other, linear models tended to have

much higher prediction bias and many more outliers, especially among easy instances.

Figure 4.3 (left) shows the performance of our logistic models in this quadratic
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Figure 4.3: Actual vs. Predicted Runtimes for kcnfs on Variable-Ratio Instances
(left) and RMSE as a Function of Model Size (right).

case for kcnfs (evaluated for the first time on our test set). Note that this is a

very accurate model: perfect predictions would lie exactly on the line y = x, and

the vast majority of points lie on or very close to this line, with no significant bias

in the residuals.2 The plots for satz and oksolver look very similar; the RMSE

values for the kcnfs, satz and oksolver models are 13.16, 24.09, and 81.32 seconds,

respectively. We note, that the higher error exhibited by oksolver models may be

at least partially due to considerably higher average runtimes of oksolver compared

to those of other algorithms.

Analyzing Variable-Ratio Models

We now turn to the question of which variables were most important to our models.

For the remainder of this chapter we focus only on our models for kcnfs. We choose

to focus on this algorithm because it is currently the state-of-the-art random solver;

our results with the other two algorithms are comparable.

In order to analyze the models, we once again employed techniques described in

Section 2.3 of Chapter 2. Recall, that these techniques are only able to indicate which

variables are sufficient to approximate the performance of the full model, but we must

be very careful in drawing conclusions about the variables that are absent.

2The banding on very small runtimes in this and other scatterplots is a discretization effect due
to the low resolution of the operating system’s process timer.
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Variable Cost of Omission

|c/v − 4.26| [9] 100
|c/v − 4.26|2 [10] 69
(v/c)2× SAPS BestCoeffVar Mean [7 × 90] 53
|(c/v) − 4.26|× SAPS BestCoeffVar Mean [9 × 90] 33

Table 4.1: Variable Importance in Size-4 Model for Variable-Ratio Instances.

Figure 4.3 (right) shows the validation set RMSE of our best subset of each size.

Note that our best four-variable model achieves a root-mean-squared error of 19.42

seconds, while our full 360-feature model had an error of about 14.57 seconds. Ta-

ble 4.1 lists the four variables in this model along with their normalized costs of

omission. Note that the most important feature (by far) is the linearized version of

c/v, which also occurs (in different forms) in the other three features of this model.

Hence, our techniques correctly identified the importance of the clauses-to-variables

ratio, which satisfies our first goal. In terms of the second goal, these results indicate

that the simple absolute distance of the ratio c/v from the critical value 4.26 appears

to be the most informative variant of the nine related features we considered.

The third and fourth features in this model satisfy our third goal: we see that

c/v variants are not the only useful features in this model. Interestingly, both of

these remaining variables are based on a local search probing feature, the coefficient

of variation over the number of clauses unsatisfied in local minima found by SAPS, a

high-performance local search algorithm for SAT. It may appear somewhat surprising

that such a local search probing feature can convey meaningful information about the

runtime behavior of a DPLL algorithm. However, notice that deep local minima in

the space searched by a local search algorithm correspond to assignments that leave

few clauses unsatisfied. Intuitively, such assignments can cause substantial difficulties

for DPLL search, where the respective partial assignments may correspond to large

subtrees that do not contain any solutions. Nevertheless, our current understanding

of the impact of the features captured by local search probes on DPLL solver perfor-

mance is rather limited, and further work is needed to fully explain this phenomenon.

This is an example of how empirical hardness models can shine light on new and

possibly very important research questions.
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The Weighted Clustering Coefficient

While analyzing our variable-ratio models, we discovered that the weighted clause

graph clustering coefficient (33) was one of the most important features. In fact,

it was the most important feature if we excluded higher-order c/v and v/c features

from models. It turns out that the WCGCC is almost perfectly correlated with

v/c, as illustrated in Figure 4.6 (left). This is particularly interesting as both the

clustering coefficient and the connectivity of the constraint graph have been shown

to be important statistics in a wide range of combinatorial problems, such as graph

coloring and the combinatorial auctions WDP (see Chapter 3). This correlation

provides a very nice new structural insight into the clause-to-variables ratio: it shows

explicitly how constraint structure changes as the ratio varies. We should note, that

one must not get too attached to the connection based on clustering coefficient. We

have reasons to believe that at least in case of random SAT, the weight of these

coefficients (essentially, node degrees) plays a more prominent role in determining

hardness, whereas in other problems the clustering aspect might be more important.

Clearly, this is yet another worthwhile research direction. Overall, this discovery

demonstrates how our empirical hardness methodology can automatically help to

gain new understanding of the nature of NP-hard problems.

Satisfiable vs Unsatisfiable Instances

The previously mentioned similar performance of our predictive models for kcnfs,

satz and oksolver raises the question of whether the underlying reason simply lies

in a strong correlation between the respective runtimes. Figure 4.4 shows the corre-

lation of kcnfs runtime vs. satz runtime on satisfiable and unsatisfiable instances.

Note that there are two qualitatively different patterns in the performance correlation

for the two types of instances: runtimes on UNSAT instances are almost perfectly

correlated, while runtimes on SAT instances are almost entirely uncorrelated. We

conjecture that this is because proving unsatisfiability of an instance essentially re-

quires exploring the entire search tree, which does not differ substantially between the
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Figure 4.4: Runtime Correlation between kcnfs and satz for Satisfiable (left) and
Unsatisfiable (right) Variable-Ratio Instances.
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Figure 4.5: Actual vs. Predicted Runtimes for kcnfs on Satisfiable (left) and Unsat-
isfiable (right) Variable-Ratio Instances.

algorithms, while finding a satisfiable assignment depends much more on each algo-

rithm’s different heuristics. We can conclude that the similar model accuracy between

the algorithms is due jointly to the correlation between their runtimes on UNSAT in-

stances and to the ability of our features to express each algorithm’s runtime profile

on both SAT and UNSAT instances.

This separation of satisfiable and unsatisfiable regions of space has been indepen-

dently confirmed by Gomes et al. [2004]. They showed that runtime distributions

of DPLL solvers change regimes from extremely high variance (heavy-tailed) to low

variance, as one moves across the phase transition.

Motivated by qualitative differences between satisfiable and unsatisfiable instances,

we studied the subsets of all satisfiable and all unsatisfiable instances from our dataset
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separately. Analogously to what we did for the full dataset, we trained a separate

predictive model for each of these two subsets. Interestingly, as seen in Figure 4.5,

the predictions for unsatisfiable instances are much better than those for satisfiable

instances (RMSE 5.3 vs. 13.4). Furthermore, the ‘loss curves’, which indicate the

best RMSE achieved in dependence of model size (cf. Figure 4.3), are rather different

between the two subsets: For the satisfiable instances, seven features are required to

get within 10% of full model accuracy (in terms of RMSE), compared to only three

for the unsatisfiable instances. While the seven features in the former model are all

local search probe features (namely, in order of decreasing importance, features 68 ×

68, 68 × 70, 90, 70, 70 × 70, 90 × 71, and 71), the three features in the latter are

DPLL probe and constraint graph features (namely, features 66 × 66, 66, and 26 ×

27).

It must be noted that excluding all local search probe features (68-91 in Fig-

ure 4.1) in the process of model construction leads to models with only moderately

worse performance (RMSE 16.6 instead of 13.4 for satisfiable, 5.5 instead of 5.3 for

unsatisfiable, and 17.2 instead of 13.2 for all instances). Interestingly, in such models

for satisfiable instances, features based on LP relaxation (features 55–60 in Figure 4.1)

become quite important. Even when excluding all probing and LP features (features

55-91), reasonably accurate models can still be obtained (RMSE 14.7, 8.4, and 17.1

for satisfiable, unsatisfiable, and all instances, respectively); this indicates that com-

binations of the remaining purely structural features still provide a sufficient basis for

accurate runtime predictions on the variable-ratio instance distribution.

4.4.2 Fixed-Ratio Random Instances

According to a widely held (yet somewhat simplistic) belief, uniform random 3-SAT is

easy when far from the phase-transition point, and hard when close to it. In fact, while

the first part of this statement is generally true, the second part is not. Figure 4.6

(right) shows cumulative distributions of the kcnfs’s runtime per instance across

our second dataset, comprising 20 000 fixed-ratio uniform random 3-SAT instances

with 400 variables at c/v = 4.26, indicating substantial variation in runtime between
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Figure 4.6: Left: Correlation between CG Weighted Clustering Coefficient and v/c.
Right: Distribution of kcnfs Runtimes Across Fixed-Ratio Instances.

instances in the phase transition region. (Similar observations have been made pre-

viously for local search algorithms [Hoos and Stützle 1999].) Random-3-SAT at the

phase transition point is one of the most widely used classes of benchmark instances

for SAT; in the context of our study of empirical hardness models this instance dis-

tribution is particularly interesting since the most important features for predicting

instance hardness for the variable-ratio distribution, namely variants of c/v, are kept

constant in this case. Hence, it presents the challenge of identifying other features

underlying the observed variation in hardness.

We built models in the same way as described in Section 4.4.1, except that all

variants of c/v are constant and were hence omitted. Again, we achieved the best

(validation set) results with logistic models on a (partial) quadratic expansion of the

features; Figure 4.7 (left) shows the performance of our logistic model for kcnfs on test

data (RMSE = 35.23); similar results were obtained for oksolver and satz (RMSE

= 220.43 and 60.71, respectively; note that particularly for oksolver , the higher

RMSE values are partly due to overall higher runtimes). The shape of the scatter

plots can be visually misleading: although it appears to be not tight, there are many

more points that lie along the diagonal than outliers (this becomes evident when

plotting the data on a heat map).

Figure 4.7 (right) shows the validation set RMSE of the best model we found at

each subset size. Here, a 4-variable model obtains RMSE 39.02 on the validation set,

which is within 10% on the RMSE of the full model. The variables in the model,
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and RMSE as a Function of Model Size (right).

Variable Cost of Omission

SAPS BestSolution Mean2 [682] 100
SAPS BestSolution Mean × Mean DPLL Depth [68 × 66] 74
GSAT BestSolution CoeffVar × Mean DPLL Depth [71 × 66] 21
VCG CLAUSE Mean × GSAT FirstLMRatio Mean [17 × 88] 9

Table 4.2: Variable Importance in Size-4 Model for Fixed-Ratio Instances.

along with their costs of omission, are given in Table 4.2. Note that this model

is dominated by local search and DPLL probing features, and the most important

feature is the deepest local minimum reached on a SAPS trajectory (BestSolution),

which intuitively captures the degree to which a given instance has “almost” satisfying

assignments.

As for the variable-ratio set, we studied the subsets of all satisfiable and all un-

satisfiable instances from our fixed-ratio data set separately and trained separate

models for each of these subsets. Analogous to our results for the variable-ratio sets,

we found that our model for the former subset gave significantly better predictions

than that for the latter (RMSE 15.6 vs. 30.2). Surprisingly, in both cases, only a

single feature is required to get within 10% of full model accuracy (in terms of RMSE

on the training set): the product of the two SAPS probing features 69 and 82 in the

case of satisfiable instances, and the square of DPLL probing feature 66 in the case

of unsatisfiable instances.
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We also constructed models that do not use local search features and/or probing

features and obtained results that are qualitatively the same as those for the variable-

ratio data set. Furthermore, we have observed results on the correlation of runtimes

between solvers that are analogous to those reported in Section 4.4.1.

4.5 SATzilla: An Algorithm Portfolio for SAT

It is well known that for SAT (as for many other hard problems) different algorithms

often perform very differently on the same instances (cf. left side of Figure 4.4 which

shows that there is very weak correlation between the runtimes of kcnfs and satz on

satisfiable random 3-SAT instances). Thus, SAT seems well suited for our portfolio

methodology of Section 2.4.2.

SATzilla was our attempt in constructing such a portfolio for SAT. It was entered

in the 2003 and 2004 SAT competitions [Le Berre and Simon 2003]. In order to

participate in these competitions, SATzilla had to employ runtime models across

a much less structured distribution than uniformly random instances. Moreover,

during the competition it would face completely new instances, often of a previously

unseen kind. As a result, the models that we obtained had, in some parts of space,

predictive power that is far worse than that of the other models described in this

chapter. Nevertheless, SATzilla performed reasonably well. The reason for that

is that fairly inaccurate models often suffice to build good portfolios: if algorithms’

performances are close to each other, picking the wrong one is not very costly, while

if algorithms’ behaviors differ significantly, the discrimination task is relatively easy.

The version of SATzilla built for the 2003 competition consisted of 2clseq,

eqSatz, HeerHugo, JeruSat, Limmat, oksolver, Relsat, Sato, Satz-rand and zChaff.

The 2004 version dropped HeerHugo, but added Satzoo, kcnfs, and BerkMin, new

solvers that appeared in 2003 and performed well in the 2003 competition.

To construct SATzilla we gathered from various public websites a library of

about 5 000 SAT instances, for which we computed runtimes and the features de-

scribed in Section 4.3. We built models using ridge regression, a machine learning

technique that finds a linear model (a hyperplane in feature space) that minimizes a
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combination of root mean squared error and a penalty term for large coefficients. To

yield better models, we dropped from our dataset all instances that were solved by

all or none of the algorithms, or as a side-effect of feature computation.

Upon execution, SATzilla begins by running a UBCSAT [Tompkins and Hoos

2004] implementation of WalkSat for 30 seconds. In our experience, this step helps

to filter out easy satisfiable instances. Next, SATzilla runs the Hypre preproces-

sor [Bacchus and Winter 2003], which uses hyper-resolution to reason about binary

clauses. This step is often able to dramatically shorten the formula, sometimes result-

ing in search problems that are easier for DPLL-style solvers. Perhaps more impor-

tantly, the simplification “cleans up” instances, allowing the subsequent analysis of

their structure to better reflect the problem’s combinatorial “core”3. Third, SATzilla

computes its features. Sometimes, a feature can actually solve the problem; if this

occurs, execution stops. We found it worthwhile to train models on instances that

cannot be solved by features. Some features can also take an inordinate amount of

time, particularly with very large inputs. To prevent feature computation from con-

suming all of our allotted time, certain features run only until a timeout is reached,

at which point SATzilla gives up on computing the given feature. Fourth, SATzilla

evaluates a regression model for each algorithm in order to compute a prediction of

that algorithm’s running time. If some of the features have timed out, a different

model is used, which does not involve the missing feature and which was trained only

on instances where the same feature timed out. Finally, SATzilla runs the algorithm

with the best predicted runtime until the instance is solved or the allotted time is

used up.

As described in the official report written by the 2003 SAT competition organizers

[Le Berre and Simon 2003], SATzilla’s performance in this competition demonstrated

the viability of our portfolio approach. SATzilla qualified to enter the final round in

two out of three benchmark categories – Random and Handmade. Unfortunately, a

bug caused SATzilla to crash often on Industrial instances (due to their extremely

large sizes) and so SATzilla did not qualify for the final round in this category.

3Despite the fact that this step led to more accurate models, we did not perform it in our
investigation of uniform random 3-SAT because it implicitly changes the instance distribution. Thus,
while our models would have been more accurate, they would also have been less informative.
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Figure 4.8: SAT-2003 Competition,
Random Category.
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Figure 4.9: SAT-2003 Competition,
Handmade Category.

During the competition, instances were partitioned into different series based on

their similarity. Solvers were then ranked by the number of series in which they

managed to solve at least one benchmark. SATzilla placed second in the Random

category (the first solver was kcnfs, which wasn’t in the portfolio as it hadn’t yet

been publicly released). In the Handmade instances category SATzilla was third

(2nd on satisfiable instances), again losing only to new solvers.

Figures 4.8 and 4.9 show the raw number of instances (in tens) solved by the

top five solvers in each of the Random and Handmade categories. In general the

solvers that did well in one category did very poorly (or didn’t qualify for the final)

in the other. SATzilla was the only solver that achieved strong performance in both

categories.

During the 2003 competition, we were allowed to enter a slightly improved version

of SATzilla that was run as an hors concours solver, and thus was not run in the

finals. According to the competition report, this improved version was first in the

Random instances category both in the number of actual instances solved, and in

the total runtime used (though still not in the number of series solved). As a final

note, we should point out that the total development time for SATzilla was under a

month — considerably less than most world-class solvers, though of course SATzilla

relies on the existence of base solvers.

The 2004 competition involved a number of changes to the rules (some of which
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were announced during the competition!) that make drawing meaningful results

for that year difficult. The first problem was that the timeout used to terminate

solvers was eventually chosen to be shorter than expected, in order to cope with

limited computational resources and an increased number of submissions. SATzilla’s

performance was affected severely by this, as it consumed a very non-trivial portion

of its time evaluating features. With the new timeout SATzilla often had very little

time left to actually solve the problem — an effect that was particularly pronounced

on unsatisfiable instances. This effect was compounded by the new rule that all

solvers were now run together, and not grouped into incomplete and complete types.

As a result, a solver could advance to the second round either if it solved a large

number of instances quickly (which in practice only advanced incomplete solvers), or

if it did quite well on unsatisfiable instances (which essentially excluded SATzilla

for the reason above).

Although SATzilla didn’t advance to the second round, and hence we have lim-

ited data on its performance in 2004, we did observe a very interesting trend. In

the first round the solvers were clearly clustered in their performance according to

the number of instances solved. The cluster with the better performance consisted

exclusively of incomplete solvers and SATzilla (albeit, last among those). All of the

other complete solvers formed the second cluster. Therefore, we still strongly believe

that SATzilla is a very successful approach to SAT.

4.6 Conclusion and Research Directions

In this chapter we have once again validated the empirical hardness methodology

of Chapter 2. We have shown that empirical hardness models are a valuable tool

for the study of the empirical behavior of complex algorithms such as SAT solvers

by building accurate models of runtime on test distributions of fixed- and variable-

ratio uniform random-3-SAT instances. On the variable-ratio dataset, our techniques

were able to automatically “discover” the importance of the c/v ratio. Analysis in

this case provided insight into the structural variations in uniform random 3-SAT

formulae at the phase transition point that correlate with the observed dramatic
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variation in empirical hardness. Finally, we argued that our empirical hardness models

offer practical benefit in less well-controlled domains by presenting SATzilla, the

algorithm portfolio for SAT.

More importantly, the results presented highlight a number of avenues for future

research in both SAT and typical-case complexity communities. These are:

• Investigate the surprisingly close relationship between DPLL-type solvers and

stochastic local search methods on satisfiable instances.

• Further understand the apparently fundamental distinction between satisfiable

and unsatisfiable instances (which is already known in the local search commu-

nity, and partly explored by Gomes et al. [2004]).

• Understand the structural effect of the clustering coefficient and node degrees

of the clause graph on problem hardness, and especially investigate this as a

venue for relating SAT to other hard problems.

We strongly believe that by studying in more detail how some of the features

identified through the use of predictive statistical models cause instances to be easy

or hard for certain types of algorithms, our understanding of how to solve SAT most

efficiently will be further advanced.
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Chapter 5

Computational Game Theory

In this chapter we present some background on computational game theory that is

necessary for understanding chapters 6 and 7.

5.1 Game Theory Meets Computer Science

In recent years, researchers in artificial intelligence and, in fact, all of computer science

have become increasingly interested in game theory as a modeling tool.

A lot of research in AI focuses on the design of intelligent autonomous agents

that act (i.e., continuously make decisions) in simulated or real-world environments.

The common view that is taken (e.g., [Russel and Norvig 2003]) is that the agent

should act so as to maximize its expected utility. This is transplanted directly from

the classical decision theory. Famous representation theorems, such as the one due

to Savage [1954], indeed demonstrate that many decision-making situations can be

reduced to utility maximization.

However, one might argue that one mark of intelligence is its ability to be suc-

cessful in achieving its goals while co-existing with other similarly intelligent beings.

After all, short of an intelligent rover on a desert planet, a rational agent will likely

have to deal at least with humans in addition to other autonomous agents. Such

multiagent settings appear to be fundamentally different from the classical decision-

theoretic settings — the acts of different agents become intricately intertwined. As

94
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with general reactive environments, what an agent does now will effect whatever hap-

pens in the future. However, the actions of other agents may suddenly become much

less predictable. What an agent does may depend on what it believes others will do

in the future, which, in turn, may depend on what they believe the agent believes

about them, and so on, ad infinitum. As a simple example, consider driving agents

that must pick a side of the road to drive on. There is no intrinsic advantage to either

choice, i.e., there is no optimal choice. However, each agent wants to pick the same

side as everybody else. Similarly, the choice of the side for everybody else depends on

what they believe about our agent, and so on. As is common in dynamical systems,

in such multiagent systems the notion of optimality (e.g., utility maximization) has

to give way to the notion of an equilibrium. Game theory (see, e.g., [Osborne and

Rubinstein 1994] for an introduction) was developed by economists precisely to model

such interactions among small numbers of self-interested agents. Nash equilibrium

[Nash 1950] is the classical solution concept that, as a first approximation, generalizes

utility maximization.

Besides appearing extremely relevant to the AI researchers, game theory, and,

more generally, microeconomic models, came into sharp focus of general computer

science research with the rise of the Internet [Papadimitriou 2001]. Internet provides

an extremely complex environment in which lots of self-interested entities, such as

humans, corporations, web-crawler agents, network routers, etc. interact on a con-

tinuous basis. Such massive interaction poses a large number of important questions.

From the perspective of both an agent designer, or a human dealing with a website,

it is imperative to understand what is the best way to act in such an environment. A

protocol designer might ask what global behavior might emerge if everybody acts in

their own interest, rather than blindly executes prescribed actions (leading, e.g., to

the study of the price of anarchy [Roughgarden 2005]). Even more interestingly, one

might try to design protocols with just the right incentives for agents to follow them

and achieve desired global behavior (this sort of “inverse” game theory is the thriving

field called Mechanism Design). In fact, a lot of research in auctions, and combinato-

rial auctions in particular, got started precisely with these motivations. Our study of

empirical complexity for the combinatorial auctions WDP (see Chapter 3) was fueled
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by this interest in auctions.

These largely philosophical considerations explain why economic models are in-

teresting and relevant to CS researchers in many fields. However, these notions, with

game theory in particular, have been mostly developed by economists as modeling

tools, with almost complete disregard for the associated computational questions,

such as how one might automatically reason about these models and compute various

solution concepts, or what is the complexity of such computation. It turned out that,

regardless of practical applicability of game theory, these questions are very interest-

ing to computer scientists in their own right, as they often seem to be quite different

from our traditional areas of expertise.

5.2 Notation and Background

In this section we formally define basic game-theoretic notions and notation that will

be used throughout subsequent chapters.

First, we define the basic object of study in non-cooperative game-theory — a normal-

form game.

Definition 5.1 A finite, n-player, normal-form game is a tuple G = 〈N, (Ai), (ui)〉,

where

• N = {1, . . . , n} is the set of players.

• Ai = {ai1, . . . , aimi
} is a finite set of actions (also called pure strategies) avail-

able to player i, where mi is the number of available actions for that player.

• ui : A1× . . .×An → R is the utility function for each player i. It maps a profile

of actions to a value.

The idea behind this model is that all players simultaneously choose one of the

possible actions. Their utility then depends on the actions of all players together,

rather than only on their own. Although it might appear simple, such a model can in

principle capture a wide variety of strategic interactions, as long as the setting is com-

mon knowledge among players. For example, it is possible to represent a complicated
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Agent 1

Agent 2
L R

L 10, 10 −100,−100
R −100,−100 10, 10

Figure 5.1: A Coordination Game.

sequence of interactions that unfolds over time by having strategies that represent all

possible plans of action, contingent on all situations that might hypothetically arise.

The idea then is that all agents choose such a plan simultaneously in the beginning,

and the actual interaction is then executed by robots following pre-specified plans.

For a concrete example, consider the game in Figure 5.1. This game captures the

scenario of 2 agents choosing which side of the road to drive on, as described in the

previous section. Here their interests are aligned in principle, but they face a problem

of coordination. Rows represent possible strategies of the first player (drive on the

left or on the right), while columns represent those for the second player. Numbers

in each cell represent utility achieved by first and second player respectively if the

corresponding outcome is realized. This game encodes the fact that both players get

disastrous payoffs (−100) if they choose different driving convention, as that is very

likely to lead to an accident. On the other hand, choosing the same convention allows

them to get positive utility.

We will use ai as a variable that takes on the value of a particular action aij of

player i, and a = (a1, . . . , an) to denote a profile of actions, one for each player. Also,

let a−i = (a1, . . . , ai−1, ai+1, . . . , an) denote this same profile excluding the action of

player i, so that (ai, a−i) forms a complete profile of actions. We will use similar

notation for any profile that contains an element for each player.

A key notion that is used in game theory is that of a mixed strategy. A mixed

strategy for a player specifies the probability distribution used to select an action that

a player will play in a game.

Definition 5.2 A mixed strategy pi for a player i is a probability distribution over

Ai.
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We will denote by Pi the set of available mixed strategies for player i:

Pi = {pi : Ai → [0, 1]|
∑

ai∈Ai

pi(ai) = 1}

We will sometimes use ai to denote the mixed strategy in which pi(ai) = 1.

Definition 5.3 The support of a mixed strategy pi is the set of all actions ai ∈ Ai

such that pi(ai) > 0.

We will use x = (x1, . . . , xn) to denote a profile of values that specifies the size of

the support of each player.

Notice that each mixed strategy profile p = (p1, . . . , pn) induces a probability

distribution p(a) = Πi∈Npi(ai) over pure-strategy outcomes of the game. We can

thus extend ui to the mixed strategy profiles to denote expected utility for player i:

ui(p) =
∑

a∈A p(a)ui(a).

Now that we have defined the model of strategic interactions, it is natural to

ask how the agents should behave in such interactions. As was mentioned above,

agents now cannot simply optimize their expected utility, since that utility depends

on actions of other agents. Instead, we can talk about conditional optimality.

Definition 5.4 An action ai is a best-response of player i to the strategy profile

p−i of other players, if ui(ai, p−i) ≥ ui(a
′
i, p−i) for all a′

i ∈ Ai.

In other words, ai is the best action player i given that all other players play

according to p−i. We say that a mixed-strategy profile pi is a best response to p−i if

all actions in the support of pi are best responses.

Now we are ready to define the primary solution concept for a normal-form game:

the Nash equilibrium. The idea behind a Nash equilibrium is that if all players are

playing best-responses to the rest, then no agent has incentive to unilaterally deviate,

and thus the profile is stable.

Definition 5.5 A (mixed) strategy profile p∗ ∈ P is a Nash equilibrium (NE) if:

∀i ∈ N, ai ∈ Ai : ui(ai, p
∗
−i) ≤ ui(p

∗
i , p

∗
−i).
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The famous theorem due to Nash [1950] states that a mixed-strategy Nash equi-

librium exists for any normal-form game.

Theorem 5.6 (Nash 1950) Any finite n-player game G in normal form has a mixed-

strategy Nash equilibrium.

The proof of this theorem is based on classical fixed-point theorems from math-

ematical analysis (such as Kakutani’s or Brouwer’s) applied to best-response corre-

spondences. Unfortunately, such proofs are non-constructive.

5.3 Computational Problems

We now turn our attention to some interesting computational problems in game the-

ory. There are numerous questions one might ask about normal-form games: we

might try to determine which games are equivalent, look for solutions, eliminate re-

dundant and/or dominated strategies, etc. In this section we will briefly describe two

of them that will get mentioned subsequently in this thesis. These are the problems

of finding Nash equilibria and of adapting to unknown opponents.

5.3.1 Finding Nash Equilibria

The main problem to which the second part of this thesis is devoted is that of finding

a sample Nash equilibrium of a normal-form game.

Problem 5.7 Given a game G in normal form, compute some mixed-strategy profile

p which is a Nash equilibrium of G.

Despite the unquestionable importance of the Nash equilibrium concept in game

theory, remarkably little is known about this problem. Part of the difficulty lies

with the fact that existence proofs are non-constructive and don’t shed light onto the

question of computing a NE.

One technical hurdle is that Problem 5.7 does not fall into a standard complexity

class [Papadimitriou 2001], because it cannot be cast as a decision problem. We know



100 CHAPTER 5. COMPUTATIONAL GAME THEORY

that the answer to the existence question is “yes”. This makes this somewhat simi-

lar to the problem of factoring, complexity of which is also unknown. Megiddo and

Papadimitriou [1991] defined a new (but rather limited) complexity class, T FNP

(total functions NP), to encompass such “finding” problems. Nevertheless, we do

have a lot of evidence pointing to this being a hard problem [Gilboa and Zemel 1989;

Conitzer and Sandholm 2003]. It appears that any attempt to turn this into a deci-

sion problem, either by imposing restrictions on the kind of NE that is desired, or by

asking questions about properties of potential NEs, immediately renders the problem

to be NP- or coNP-hard. However, these results don’t have immediate implica-

tions for the complexity of finding any NE. Altogether, this state of affairs prompted

Papadimitriou to call the complexity of the problem of finding a sample Nash equi-

librium, together with factoring, “the most important concrete open question on the

boundary of P today” [Papadimitriou 2001].

From the mathematical programming point of view, Problem 5.7 can be formu-

lated in a number of ways [McKelvey and McLennan 1996]: optimization of a non-

linear function, finding a fixed-point of a correspondence or of a function, minimizing

a function on a polytope, semi-algebraic programming, or a non-linear complementar-

ity problem (NCP) (the problem of finding two orthogonal vectors satisfying certain

constraints). The non-linearity of the NCP formulation is due to computing product

probabilities over all but one players; it goes away in the case of only two players.

The complementarity constraint essentially arises because actions in the support of

each equilibrium strategy must be different from those outside of the support: each

agent must be indifferent among the actions in his support, and prefer them to any

action that is not included.

Existing Algorithms

Although the complexity of Problem 5.7 remains open, there exist a number of algo-

rithms for computing Nash equilibria. In this section, we provide a brief overview of

them. In addition to specific references given for each algorithm, further explanation

can be found in two thorough surveys on NE computation – [von Stengel 2002] and

[McKelvey and McLennan 1996]. One thing that is relatively common to all of these
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algorithms is that they are based on fairly deep mathematical insights into the nature

of Nash equilibria. For that reason, they tend to be hard to analyze. All of them

are known to have worst-case running times that are at least exponential; however,

precisely characterizing their running times remains elusive. More importantly, from

the point of view of this thesis, it is very hard to elicit connections between problem

structure and successes or failures of these algorithms.

The most commonly-used algorithm for finding a NE in two-player games is

the Lemke-Howson algorithm [Lemke and Howson 1964], which is a special case of

Lemke’s method [Lemke 1965] for solving linear complementarity problems. The

Lemke-Howson algorithm is a complementary pivoting algorithm, where an arbitrary

selection of an action for the first player determines the first pivot, after which every

successive pivot is determined uniquely by the current state of the algorithm, until

an equilibrium is found. Thus, each action for the first player can be thought of as

defining a path from the starting point (the extraneous solution of all players assign-

ing probability zero to all actions) to a NE. In the implementation of Lemke-Howson

in Gambit [McKelvey et al. 1992], used in experimental results in the subsequent

chapters, the first action of the first player is selected. Lemke-Howson is known to

take exponentially many pivoting steps in the worst case [Savani and von Stengel

2004].

For n-player games, until recently, Simplicial Subdivision [van der Laan et al.

1987], and its variants, were the state of the art. This approach approximates a fixed

point of a function (e.g., the best-response correspondence) which is defined on a

simplotope (a product of simplices). The approximation is achieved by triangulating

the simplotope with a mesh of a given granularity, and traversing the triangulation

along a fixed path. The worst-case running time of this procedure is exponential in

dimension and accuracy [McKelvey and McLennan 1996].

More recently, Govindan and Wilson [2003] introduced a continuation method

for finding a NE in an n-player game. Govindan-Wilson works by first perturbing

a game to one that has a known equilibrium, and then by tracing the solution back

to the original game as the magnitude of the perturbation approaches zero. The

structure theorem of Kohlberg and Mertens [1986] guarantees that it is possible to
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trace both the game and the solution simultaneously. This method has been efficiently

implemented by Blum et al. [2003], who also extended it to solve graphical games

and Multi-Agent Influence Diagrams [Koller and Milch 2001].

The algorithm that is described in Chapter 7 in spirit is closest to the proce-

dure described by Dickhaut and Kaplan [1991] for finding all NEs. Their program

enumerates all possible pairs of supports for a two-player game. For each pair of

supports, it solves a feasibility program (similar to the one we will describe below)

to check whether there exists a NE consistent with this pair. A similar enumeration

method was suggested earlier by Mangasarian [1964], based on enumerating vertices

of a polytope. Clearly, either of these two enumeration methods could be converted

into an algorithm for finding a sample NE by simply stopping after finding the first

NE. However, because the purpose of these algorithms is to instead find all NEs, no

heuristics are employed to speed the computation of the first NE.

The most recent algorithm, besides ours, for finding a NE was proposed in [Sand-

holm et al. 2005]. Their method is applicable only to the two-player games. It is

based on formulating the problem of finding a NE as a mixed-integer linear program

(in fact, a feasibility program). While the fact that it is easy in principle to use MIP to

solve this problem has been folk knowledge in the OR community for many years, this

work appears to be the first to provide an experimental evaluation of such methods.

In principle, their algorithm is quite similar to the algorithm described in Chapter 7.

Binary variables essentially enumerate all possible pairs of supports (cf. [Dickhaut

and Kaplan 1991]), while the rest of the constraints are the same as the ones utilized

explicitly in Chapter 7. The major difference is that [Sandholm et al. 2005] rely

on general-purpose MIP software (namely, CPLEX) to provide enumeration order,

rather than use domain specific heuristics. Unfortunately, their experimental results

show that this approach in general is not competitive with either Lemke-Howson, or

the algorithm of Chapter 7. It does have an advantage of being easy to modify in

order to find equilibria with desired properties.
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5.3.2 Multiagent Learning

Although the second part of this thesis is mostly devoted to the problem of finding

a sample Nash equilibrium, in Chapter 6 we will refer to another problem associated

with normal-form games — multiagent learning in repeated normal-form games. This

research area is still very young. One of the biggest challenges that this field is

currently facing is a precise definition of the problem, as different researchers often

strive to achieve slightly different objectives [Shoham et al. 2004].

For the purposes of this work we can informally state the problem as follows:

Problem 5.8 Devise an algorithm that, given a normal-form game G, own player’s

identity i, and a set of “black-box” non-static opponents, quickly starts achieving a

good payoff when playing G repeatedly against the given opponents.

This description is intentionally vague, and requires clarification on several points.

For example, there are several interpretations of what a “good payoff” might be. One

reasonable requirement is for the algorithm to play best-response to its opponents in

each stage of the repeated game. This can be problematic, however. If the game is re-

peated, opponent’s actions may depend on the whole past history of play, which means

that such a goal might be unachievable. More importantly, because of the repeated

nature, much better cumulative payoffs might be attainable by making occasional

concessions to the opponents. Therefore, a common requirement is to achieve a good

average payoff in the limit. Often, such an average is also computed in a discounted

fashion, in order to emphasize immediate rewards.

Problem 5.8 is unsolvable as stated. Another very reasonable restriction (as pro-

posed by [Powers and Shoham 2004; Powers and Shoham 2005]) is to require good

performance only against a specific class of opponents, and provide some minimum

payoff guarantees against the rest. A lot of work (e.g., [Bowling and Veloso 2001])

has also proposed an additional requirement of some form of convergence on the

algorithms. While this appears to be natural against opponents that themselves

eventually converge, we do not view this requirement as intrinsic to the problem.

In stating Problem 5.8 we have assumed that the game’s payoffs are known, and

the only thing that is not known to the agent is the behavior of its opponents. Thus,
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it might be more proper to call this the problem of online adaptation. In fact, a lot

of work in the field (with few notable exceptions), does make the same assumption.

Therefore, for historical reasons, we will continue to use the term multiagent learning.

The last few years have seen a surge of research into multiagent learning, resulting

in the recent proposal of many new algorithms. Here we briefly describe the few that

are mentioned in Chapter 6: Minimax-Q [Littman 1994], WoLF (Win or Learn Fast)

[Bowling and Veloso 2001], and Single-Agent-Q — a version of the original Q-learning

algorithm for single agent games [Watkins and Dayan 1992] modified for use by an

individual player in a repeated game setting. These algorithms have received much

study in recent years; they each have very different performance guarantees, strengths

and weaknesses. Single-agent Q-learning is simply the standard reinforcement learn-

ing algorithm forced to play in a repeated game. It is thus completely oblivious to

the existence of opponents and their payoffs, i.e., it assumes away the multiagent

component. Therefore, single-Agent-Q is not guaranteed to converge at all against

an adaptive opponent. Minimax-Q, one of the earliest proposed multiagent learn-

ing algorithms, is a slightly smarter adaptation of the classic Q-learning idea. The

major difference is the way the value of the current state is computed. Minimax-Q

assumes a safety-level (minimax) strategy. Thus, it does not necessarily converge to

a best response in general-sum games, though it converges in self-play in zero-sum

games. Finally, WoLF is a variable-learning-rate policy-hill-climbing algorithm that

is designed to converge to a best response, assuming its opponent stops adapting at

some point.



Chapter 6

Evaluating Game-Theoretic

Algorithms

Unlike many theoretical studies into the nature of computational problems, empirical

studies cannot be performed on a problem “as a whole”; they always require a precise

underlying distribution of problem instances. In this chapter we present GAMUT1,

a suite of game generators that became a definitive testbed for game-theoretic al-

gorithms. We explain why such a generator is necessary, offer a way of visualizing

relationships between the sets of games supported by GAMUT, and give an overview

of GAMUT’s architecture. Experimentally, we highlight the importance of using com-

prehensive test data by showing surprisingly large variation in algorithm performance

across different sets of games for the problem of finding a sample Nash equilibrium

and for multiagent learning.

6.1 The Need for a Testbed

One general lesson that has been learned in the past decade by researchers working

in a wide variety of different domains is that an algorithm’s performance can vary

substantially across different “reasonable” distributions of problem instances, even

when problem size is held constant (cf. results in chapters 3 and 4). When we examine

1Available at http://gamut.stanford.edu
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the empirical tests that have been performed on algorithms that take games as their

inputs, we find that they have typically been small-scale and involved very particular

choices of games. Such tests can be appropriate for limited proofs-of-concept, but

cannot say much about an algorithm’s expected performance in new domains. For

this, a comprehensive body of test data is required.

It is not obvious that a library of games should be difficult to construct. After

all, games (if we think for the moment about normal-form representations) are sim-

ply matrices with one dimension indexed by action for each player, and one further

dimension indexed by player. We can thus generate games by taking the number of

players and of actions for each player as parameters, and populate the correspond-

ing matrix with real numbers generated uniformly at random. Is anything further

required?

We set out to answer this question by studying sets of games that have been

identified as interesting by computer scientists, game theorists, economists, political

scientists and others over the past 50 years. Our attempt to get a sense of this huge

literature led us to look at several hundred books and papers, and to extract one or

more sets of games from more than a hundred sources2. To our surprise, we discovered

two things.

First, for all but a few of the sets of games that we encountered, the technique

described above would generate a game from that set with probability zero. More

formally, all of these sets are non-generic with respect to the uniform sampling pro-

cedure. It is very significant to find that an unbiased method of generating games

has only an infinitesimal chance of generating any of these games that have been

considered realistic or interesting. Since we know that algorithm performance can

depend heavily on the choice of test data, it would be unreasonable to extrapolate

from an algorithm’s performance on random test data to its expected performance

on real-world problems. It seems that test data for games must take the form of a

patchwork of generators of different sets of games.

Second, we were surprised to find very little work that aimed to understand,

2We compiled an extensive bibliography referencing this literature; it is available online in the
form of an interactive database. To learn more, please see Section 6.2.1.
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taxonomize or even enumerate non-generic games in a holistic or integrative way. We

came across work on understanding generic games [Kohlberg and Mertens 1986], and

found a complete taxonomy of two-player two-action games [Rapoport et al. 1976].

Otherwise, work that we encountered tended to fall into one or both of two camps.

Some work aimed to describe and characterize particular sets of games that were

proposed as reasonable models of real-world strategic situations or that presented

interesting theoretical problems. Second, researchers proposed novel representations

of games, explicitly or implicitly identifying sets of games that could be specified

compactly in these representations.

The work on GAMUT aimed to fill this gap: to identify interesting sets of non-

generic games comprehensively and with as little bias as possible. Indeed, immedi-

ately after its initial release in 2004 GAMUT was used by several researchers in the

field, demonstrating the real need for it.

In the next section we describe this effort, highlighting relationships between dif-

ferent sets of games we encountered in our literature search and describing issues

that arose in the identification of game generation algorithms. In Section 6.3 we give

experimental proof that a comprehensive test suite is required for the evaluation of

game-theoretic algorithms. For our two example problems, computing Nash equilibria

and learning in repeated games, we show that performance for different algorithms

varies dramatically across different sets of games even when the size of the game is

held constant, and that performance on random games can be a bad predictor of

performance on other games. Finally, in Section 6.4, we briefly describe GAMUT’s

architecture and implementation, including discussion of how new games may easily

be added.

6.2 GAMUT

For the current version of GAMUT we considered only games whose normal-form

representations can be comfortably stored in a computer. Note that this restriction

does not rule out games that are presented in a more compact representation such as

extensive form or graphical games; it only rules out large examples of such games. It
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also rules out games with infinite numbers of agents and/or of actions and Bayesian

games. We make no requirement that games must actually be stored in normal form;

in fact, GAMUT supports a wide array of representations (see Section 6.4). Some are

complete (able to represent any game) while other incomplete representations support

only certain sets of games. We will say that a given representation describes a set of

games compactly if its descriptions of games in the set are exponentially shorter than

the games’ descriptions in normal form.

In total we identified 122 interesting sets of games in our literature search, and

we were able to find finite time generative procedures for 71. These generative sets

ranged from specific two-by-two matrix games with little variation (e.g., Chicken) to

broad classes extensible in both number of players and number of actions (e.g., games

that can be encoded compactly in the Graphical Game representation).

6.2.1 The Games

To try to understand the relationships between these different sets of non-generic

games, we set out to relate them taxonomically. We settled on identifying subset

relationships between the different sets of games. Our taxonomy is too large to show

in full, but a fragment of it is shown in Figure 6.1. To illustrate the sort of information

that can be conveyed by this figure, we can see that all Dispersion Games [Grenager

et al. 2002] are Congestion Games [Rosenthal 1973] and that all Congestion Games

have pure-strategy equilibria.

Besides providing some insight into the breadth of generators included in GAMUT

and the relationships between them, our taxonomy also serves a more practical pur-

pose: allowing the quick and intuitive selection of a set of generators. If GAMUT is

directed to generate a game from a set that does not have a generator (e.g., supermod-

ular games [Milgrom and Roberts 1990] or games having unique equilibria) it chooses

uniformly at random among the generative descendants of the set and then generates

a game from the chosen set. GAMUT also supports generating games that belong to

multiple intersecting sets (e.g., symmetric games having pure-strategy equilibria); in

this case GAMUT chooses uniformly at random among the generative sets that are
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Figure 6.1: GAMUT Taxonomy (Partial).

descendants of all the named sets.

The data we collected in our literature search — including bibliographic references,

pseudo-code for generating games and taxonomic relationships between games — will

be useful to some researchers in its own right. We have gathered this information

into a database which is publicly available from http://gamut.stanford.edu as part

of the GAMUT release. Besides providing more information about references, this

database also allows users to navigate according to subset/superset relationships and

to perform searches.



110 CHAPTER 6. EVALUATING GAME-THEORETIC ALGORITHMS

6.2.2 The Generators

Roughly speaking, the sets of games that we enumerated in the taxonomy can be

partitioned into two classes, reflected by different colored nodes in Figure 6.1. For

some sets we were able to come up with an efficient algorithmic procedure that can,

in finite time, produce a sample game from that set, and that has the ability to

produce any game from that set. We call such sets generative. For others, we could

find no reasonable procedure. One might consider a rejection sampling approach that

would generate games at random and then test whether they belong to a given set

S. However, if S is non-generic — which is true for most of our sets, as discussed

above — such a procedure would fail to produce a sample game in any finite amount

of time. Thus, we do not consider such procedures as generators.

Cataloging the relationships among sets of games and identifying generative sets

prepared us for our next task, creating game generators. The wrinkle was that gen-

erative algorithms were rarely described explicitly in the literature. While in most

cases coming up with an algorithm was straightforward, we did encounter several

interesting issues.

Sometimes an author defined a game too narrowly for our purposes. Many tradi-

tional games (e.g., Prisoner’s Dilemma) are often defined in terms of precise payoffs.

Since our goal was to construct a generator capable of producing an infinite number

of games belonging to the same set, we had to generalize these games. In the case of

Prisoner’s Dilemma (Figure 6.2), we can generate any game

R, R S, T
T, S P, P

Figure 6.2: Generic Prisoner’s Dilemma.

which satisfies T > R > P > S and R > (S+T )/2. (The latter condition ensures that

all three of the non-equilibrium outcomes are Pareto optimal.) Thus, an algorithm

for generating an instance of Prisoner’s Dilemma reduces to generating four numbers

that satisfy the given constraints. There is one subtlety involved with this approach

to generalizing games. It is a well-known fact that a positive affine transformation of

payoffs does not change strategic situation modeled by the game. It is also a common
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practice to normalize payoffs to some standard range before reasoning about games.

We ensure that no generator ever generates instances that differ only by a positive

affine transformation of payoffs.

In other cases the definition of a set was too broad, and thus had to be restricted.

In many cases, this could be achieved via an appropriate parametrization. An inter-

esting example of this is the set of Polymatrix Games [Govindan and Wilson 2003].

These are n-player games with a very special payoff structure: every pair of agents

plays a (potentially different) 2-player game between them, and each agent’s utility

is the sum of all of his payoffs. The caveat, however, is that the agent must play the

same action in all of his two-player games. We realized that these games, though

originally studied for their computational properties, could be generalized and used

essentially as a compact representation for games in which each agent only plays

two-player games against some subset of the other agents. This led to a natural

parametrization of polymatrix games with graphs. Nodes of the graph now represent

agents, and edges are labeled with different 2-player games.3 Thus, though we still

can sample from the set of all polymatrix games using a complete graph, we are now

able also to focus on more specific and, thus, even more structured subsets.

Sometimes we encountered purely algorithmic difficulties. For example, in order

to implement geometric games [Ruckle 1983] we needed data structures capable of

representing and performing operations on abstract sets (such as finding intersection,

or enumerating subsets).

In some cases one parameterized generator was able to generate games from many

different sets. For example, we implemented a single generator based on work by

Rapoport [Rapoport et al. 1976] which demonstrated that there are only 85 strategi-

cally different 2x2 games, and so did not need to implement generators for individual

2x2 games mentioned in the literature. We did elect to create separate generators for

several very common games (e.g., Matching Pennies; Hawk and Dove). We also used

our taxonomy to identify similar sets of games, and either implemented them with the

same generator or allowed their separate generators to benefit from sharing common

3Note that this is a strict subset of graphical games, where payoffs for each player also depend only
on the actions of its neighbors, but it is not assumed that payoffs have the additive decomposition.
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Arms Race Grab the Dollar Polymatrix Game
Battle of the Sexes Graphical Game Prisoner’s Dilemma
Bertrand Oligopoly Greedy Game Random Games
Bidirectional LEG Guess 2/3 Average Rapoport’s Distribution

Chicken Hawk and Dove Rock, Paper, Scissors
Collaboration Game Local-Effect Game Shapley’s Game
Compound Game Location Game Simple Inspection Game
Congestion Game Majority Voting Traveler’s Dilemma

Coordination Game Matching Pennies Uniform LEG
Cournot Duopoly Minimum Effort Game War of Attrition
Covariant Game N-Player Chicken Zero Sum Game
Dispersion Game N-Player Pris Dilemma

Table 6.1: Game Generators in GAMUT.

algorithms and data structures. In the end we built 35 parameterized generators to

support all of the generative sets in our taxonomy; these are listed in Table 6.1.

The process of writing generators presented us with a nontrivial software engi-

neering task in creating a coherent and easily-extensible software framework. Once

the framework was in place, incrementally adding new generators became easy. Some

of these implementation details are described in Section 6.4.

6.3 Running the GAMUT

In Section 6.1 we stated that it is necessary to evaluate game-theoretic algorithms on a

wide range of distributions before empirical claims can be made about the algorithms’

strengths and weaknesses. Of course, such a claim can only be substantiated after a

test suite has been constructed. In this section we show that top algorithms for two

computational problems in game theory do indeed exhibit dramatic variation across

distributions, implying that small performance tests would be unreliable.

All our experiments were performed using a cluster of 12 dual-CPU 2.4GHz Xeon

machines running Linux 2.4.20, and took about 120 CPU-days to run. We capped

runs for all algorithms at 30 minutes (1800 seconds).

6.3.1 Computation of Nash Equilibria

The first problem that we used for validation is that of computing Nash equilibria

(see Section 5.3.1 of Chapter 5). In this section we use GAMUT to evaluate three
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algorithms’ empirical properties on this problem.

Experimental Setup

The best-known game theory software package is Gambit [McKelvey et al. 1992],

a collection of state-of-the-art algorithms. We used Gambit’s implementation of the

Lemke-Howson algorithm (LH) [Lemke and Howson 1964] or two-player games, and its

implementation of Simplicial Subdivision (SD) [van der Laan et al. 1987] for n-player

games. In both cases, Gambit performs iterative removal of dominated strategies as

a preprocessing step. For n-player games we have also considered the continuation

method introduced by Govindan and Wilson (GW) [Govindan and Wilson 2003]. We

used a recent optimized implementation, the GameTracer package [Blum et al. 2003].

GameTracer also includes speedups for the Govindan-Wilson algorithm on the special

cases of compact graphical games and MAIDs, but because we expanded all games

to their full normal forms Govindan-Wilson did not benefit from these extensions in

our experiments.

One factor that can have a significant effect on an algorithm’s runtime is the size

of its input. Since our goal was to investigate the extent to which runtimes vary as the

result of differences between distributions, we studied fixed-size games. To make sure

that our findings were not artifacts of any particular problem size we compared results

across several fixed problem sizes. We ran the Lemke-Howson algorithm on games

with 2 players, 150 actions and 2 players, 300 actions. Because Govindan-Wilson is

very similar to Lemke-Howson on two-player games and is not optimized for this case

[Blum et al. 2003], we did not run it on these games. We ran Govindan-Wilson and

Simplicial Subdivision on games with 6 players, 5 actions and 18 players, 2 actions.

For each problem size and distribution, we generated 100 games.

Both to keep our machine-time demands manageable and to keep the graphs

in this chapter from getting too cluttered, we chose not to use all of the GAMUT

generators. Instead, we chose a representative slate of 22 distributions from GAMUT.

Some of our generators (e.g., Graphical Games, Polymatrix games, and Local Effect

Games – LEGs) are parameterized by graph structure; we split these into several

sub-distributions based on the kind of graph used. Suffixes “-CG”, “-RG”, “-SG”,
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“-SW” and “-Road” indicate, respectively, complete, random, star-shaped, small-

world, and road-shaped (see [Vickrey and Koller 2002]) graphs. Another distribution

that we decided to split was the Covariant Game distribution, which implements the

random game model of [Rinott and Scarsini 2000]. In this distribution, payoffs for

each outcome are generated from a multivariate normal distribution, with correlation

between all pairs of players held at some constant ρ. With ρ = 1 these games are

common-payoff, while ρ = −1
n−1

yields minimum correlation and leads to zero-sum

games in the two-player case. Rinott and Scarsini show that the probability of the

existence of a pure strategy Nash equilibrium in these games varies as a monotonic

function of ρ, which makes the games computationally interesting. For these games,

suffixes “-Pos”, “-Zero”, and “-Rand” indicate whether ρ was held at 0.9, 0, or drawn

uniformly at random from [ −1
n−1

, 1]. Chapter 7 has more intuitions as to why these

games are particularly interesting.

As mentioned in Chapter 5, Lemke-Howson, Simplicial Subdivision and Govindan-

Wilson are all very complicated path-following numerical algorithms that offer vir-

tually no theoretical guarantees. They all have worst-case running times that are at

least exponential, but it is not known whether this bound is tight. On the empiri-

cal side, very little previous work has attempted to evaluate these algorithms. The

best-known empirical results [McKelvey and McLennan 1996; von Stengel 2002] were

obtained for generic games with payoffs drawn independently uniformly at random

(in GAMUT, this would be the RandomGame generator). The work on GAMUT may

therefore have been the first systematic attempt to understand the empirical behavior

of these algorithms on non-generic games.

Experimental Results

Figure 6.3 shows each algorithm’s performance across distributions for two different

input sizes. The Y -axis shows CPU time measured in seconds and plotted on a log

scale. Column height indicates median runtime over 100 instances, with the error

bars showing the 25th and 75th percentiles. The most important thing to note about

this graph is that each algorithm exhibits highly variable behavior across our distri-

butions. This is less visible for the Govindan-Wilson algorithm on 18-player games,
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Figure 6.3: Effect of Problem Size on Solver Performance.
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only because this algorithm’s runtime exceeds our cap for a majority of the prob-

lems. However, even on this dataset the error bars demonstrate that the distribution

of runtimes varies substantially with the distribution of instances. Moreover, for all

three algorithms, we observe that this variation is not an artifact of one particular

problem size. Thus, GAMUT distributions are indeed structurally different. This

result is even more surprising since, on the face of it, none of the three algorithms are

directly affected by the structure of the game.

Figure 6.4 illustrates runtime differences both across and among distributions for

6-player 5-action games. (We observed very similar results for different input sizes

and for the Lemke-Howson algorithm; we do not include those here as they don’t

yield qualitatively new information.) Each dot on the graph corresponds to a single

run of an algorithm on a game. This graph shows that the distribution of algorithm

runtimes varies substantially from one distribution to another, and cannot easily be

inferred from 25th/50th/75th quartile figures such as Figure 6.3. The highly similar

Simplicial Subdivision runtimes for Traveler’s Dilemma and Minimum Effort Games

are explained by the fact that these games can be solved by iterated elimination of

dominated strategies — a step not performed by the GameTracer implementation of

Govindan-Wilson. We note that distributions that are related to each other in our

taxonomy (e.g., all kinds of Graphical Games, LEGs, or Polymatrix Games) usu-

ally give rise to similar — but not identical — algorithmic behavior. The fact that

these related distributions are not identical implies that the underlying graph struc-

ture does carry influence on the algorithms, even though the games are represented

explicitly in normal form. We conjecture that for games of larger sizes, as the differ-

ences among different graph structures become more pronounced, the differences in

runtimes among these distributions will also increase.

Figure 6.4 makes it clear that algorithms’ runtimes exhibit substantial variation

and that algorithms often perform very differently on the same distributions. How-

ever, this figure makes it difficult for us to reach conclusions about the extent to which

the algorithms are correlated. For an answer to this question, we turn to Figure 6.5.

Each data point represents a single 6-player, 5-action game instance, with the X-axis

representing runtime for Simplicial Subdivision and the Y -axis for Govindan-Wilson.



6
.3

.
R

U
N

N
IN

G
T

H
E

G
A

M
U

T
117

0.01

0.1 1 10

100

1000

10000

1.51

Time (s): Simplicial Subdivision0.01

0.1 1 10

100

1000

10000

Time (s): Govindan-Wilson

BertrandOligopoly
BidirectionalLEG-CG
BidirectionalLEG-RG
BidirectionalLEG-SG
CovariantGame-Pos
CovariantGame-Rand
CovariantGame-Zero
DispersionGame

GraphicalGame-RG
GraphicalGame-Road
GraphicalGame-SG
GraphicalGame-SW
MinimumEffortGame
PolymatrixGame-CG
PolymatrixGame-RG
PolymatrixGame-Road
PolymatrixGame-SW

RandomGame
TravelersDilemma
UniformLEG-CG
UniformLEG-RG
UniformLEG-SG

F
igu

re
6.4:

R
u
n
tim

e
D

istrib
u
tion

for
6-p

layer,
5-action

G
am

es.



118 CHAPTER 6. EVALUATING GAME-THEORETIC ALGORITHMS

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000
Simplicial Subdivision Time

G
ov
in
da
n 
W
ils
on
 T
im
e

Figure 6.5: Govindan-Wilson Runtimes vs. Simplicial Subdivision Runtimes, 6-
player, 5-action.

Both axes use a log scale. This figure shows that when we focus on instances rather

than on distributions, these algorithms are very highly uncorrelated. Simplicial Sub-

division does strictly better on 67.2% of the instances, while timing out on 24.7%.

Govindan-Wilson wins on 24.7% and times out on 36.5%. It is interesting to note

that if a game is easy for Simplicial Subdivision, then it will often be harder for

Govindan-Wilson, but in general neither algorithm dominates.

The fact that algorithms’ runtimes appear to be largely uncorrelated implies that

some benefit could be derived in combining these algorithms into a portfolio, in the

spirit of the results in Section 3.7 in Chapter 3. Figure 6.6 provides a closer look at

the optimal portfolio, with the view similar to that of Figure 6.3. We see that indeed,

a portfolio of algorithms could improve average runtimes on some, though not all,

distributions. However, the effect is not as dramatic as in Chapter 3.
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Figure 6.6: Optimal Portfolio, 6-player, 5-action.

6.3.2 Multiagent Learning in Repeated Games

Results in the previous section convincingly demonstrate the need for GAMUT; we

now turn to another problem of computational game theory, namely, multiagent learn-

ing (see Chapter 5), in order to demonstrate that this variation across distributions

is not an artefact of any particular domain. This research area is still at a very early

stage, particularly with respect to the identification of the best metrics and standards

of performance to use for evaluating algorithms. As a result, we do not claim that

our results demonstrate anything about the relative merit of the algorithms we study.

We simply demonstrate that these algorithms’ performance depends crucially on the

distributions of games on which they are run.

Experimental Setup

We used three learning algorithms: Minimax-Q [Littman 1994], WoLF [Bowling and

Veloso 2001], and single-agent Q-learning [Watkins and Dayan 1992] described in

Section 5.3.2 of Chapter 5. Previous work in the literature has established that each

of these algorithms is very sensitive to its parameter settings (e.g., learning rate) and

that the best parameter settings usually vary from one game to the next. Since it
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is infeasible to perform per-game parameter tuning in an experiment involving tens

of thousands of games, we determined parameter values that reproduced previously-

published results from [Littman 1994; Bowling and Veloso 2001; Watkins and Dayan

1992] and then fixed these parameters for all experiments.

In our experiments we chose to focus on a set of 13 distributions. As before, we

kept game sizes constant, this time at 2 actions and 2 players for each game. Although

it would also be interesting to study performance in larger games, we decided to

focus on a simpler setting in which it would be easier to understand the results of

our experiments. Indeed, even with this small game size, we observed that different

distributions gave rise to qualitatively different results. For each distribution we

generated 100 game instances. For each instance we performed nine different pairings

(each possible pairing of the three algorithms, including self-pairings, and in the

case of non-self-pairings also allowing each algorithm to play once as player 1 and

once as player 2). We ran the algorithms on each pairing ten times, since we found

that algorithm performance varied based on their random number generators. On

each run, we repeated the game 100,000 times. The first 90,000 rounds allowed the

algorithms to settle into their long-run behavior; we then computed each algorithm’s

payoff for each game as its average payoff over the following 10,000 rounds. We did

this to approximate the offline performance of the learned policy and to minimize the

effect of relative differences in the algorithms’ learning rates.

Experimental Results

There are numerous ways in which learning algorithms can be evaluated. In this

section we focus on just two of them. A more comprehensive set of experiments

would be required to judge the relative merits of algorithms, but this smaller set of

experiments is sufficient to substantiate our claim that algorithm performance varies

significantly from one distribution to another.

Figure 6.7 compares the pairwise performance of three algorithms. The height

of a bar along the Y -axis indicates the (normalized) fraction of games in which the

corresponding algorithm received a weakly greater payoff than its opponent. In this

metric we ignore the magnitude of payoffs, since in general they are incomparable
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Figure 6.7: Pairwise Comparison of Algorithms.

across games: even though we normalized payoffs to lie in the [−1, 1] interval, things

like payoff in the best equilibrium, or the ratio of payoffs between best and second

best outcome are not constant across distributions (and, to a lesser extent, within a

distribution).

The overall conclusion that we can draw from Figure 6.7 is that there is great

variation in the relative performance of algorithms across distributions. There is no

clear “winner”; even Minimax-Q, which is usually outperformed by WoLF, manages

to win a significant fraction of games across many distributions, and dominates it on

Traveler’s Dilemma. WoLF and Single-Agent-Q come within 10% of a tie most of the

time — suggesting that these algorithms often converge to the same equilibria — but

their performance is still far from consistent across different distributions.

Figure 6.8 compares algorithms using a different metric. Here the Y -axis indicates

the average payoff for an algorithm when playing as player 1, with column heights

indicating the median and error bars indicating 25th and 75th percentiles. Since all

algorithms we ran against everybody else, including self-play, payoffs can be thought

as averaging across the fixed population of three opponents. Payoffs are normalized to

fall on the range [−1, 1]. Despite this normalization, it is difficult to make meaningful

comparisons of payoff values across distributions. This graph is interesting because,
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Figure 6.8: Median Payoffs as Player 1.

while focusing on relative performance rather than trying to identify a “winning”

algorithm, it demonstrates again that the algorithms’ performance varies substan-

tially along the GAMUT. Moreover, this metric shows Minimax-Q to be much more

competitive than was suggested by Figure 6.7.

6.4 GAMUT Implementation Notes

The GAMUT software was built as an object-oriented framework and implemented

in Java4. Our framework consists of objects in four basic categories: game generators,

graphs, functions, and representations. Our main design objective was to make it as

easy as possible for end users to write new objects of any of the four kinds, in order

to allow GAMUT to be extended to support new sets of games and representations.

Currently, GAMUT contains 35 implementations of Game objects, which corre-

spond to the 35 procedures we identified in Section 6.2.2. They are listed in Ta-

ble 6.1. While the internal representations and algorithms used vary depending on

the set of games being generated, all of them must be able to return the number of

players, the number of actions for each player, and the payoff for a each player for

4See http://gamut.stanford.edu for detailed software documentation.
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GAMUT Graph Classes:

Barabasi-Albert PLOD Power-Law Out-Degree
Complete Graph Random Graph

N-Ary Tree Ring Graph
N-Dimensional Grid Small World Graph

N-Dimensional Wrapped Grid Star Graph

GAMUT Function Classes:

Exponential Function Polynomial Function
Log Function Table Function

Decreasing Wrapper Increasing Polynomial

GAMUT Outputter Classes:

Complete Representations Incomplete Representations

Default GAMUT Payoff List Local-Effect Form
Extensive Form Two-Player Readable Matrix Form

Gambit Normal Form
Game Tracer Normal Form

Graphical Form

Table 6.2: GAMUT Support Classes.

any action profile. Outputter classes then encode generated games into appropriate

representations.

Many of our generators depend on random graphs (e.g., Graphical Games, Lo-

cal Effect Games, Polymatrix Games) and functions (e.g., Arms Race, Bertrand

Oligopoly, Congestion Games). Graph and Function classes, listed in Table 6.2, have

been implemented to meet these needs in a modular way. As with games, additional

classes of functions and graphs can be easily added.

Outputter classes encapsulate the notion of a representation. GAMUT allows for

representations to be incomplete and to work only with compatible generators; how-

ever, most output representations work with all game generators. Table 6.2 lists the

complete and incomplete representations that are currently supported by GAMUT.

In keeping with our main goal of easy extensibility, GAMUT also implements a

wide range of support classes that encapsulate common tasks. For example, GAMUT

uses a powerful parameter handling mechanism. Users who want to create a new gen-

erator can specify types, ranges, default values and help strings for parameters. Given
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this information, user help, parsing, and even randomization will all be handled auto-

matically. Since a large (and mundane) part of the user’s job now becomes declarative,

it is easy to focus on the more interesting and conceptual task of implementing the

actual generative algorithm.

Other support utilities offer the ability to convert games into fixed-point arithmetic

and to normalize payoffs. The former, besides often being more efficient, sometimes

makes more sense game-theoretically: the notion of a Nash equilibrium can become

muddy with floating point, since imprecision can lead to equilibrium instability. As

mentioned in Section 6.2.2, games’ strategic properties are preserved under positive

affine transformations. Normalization allows payoff magnitudes to be compared and

can help to avoid machine precision problems.

6.5 Conclusion

GAMUT, a comprehensive game-theoretic test-suit, is interesting in its own right.

It was built based on a thorough survey of hundreds of books and papers in game-

theoretic literature. GAMUT includes a comprehensive database of structured non-

generic games and the relationships between them. It is built as a highly modular

and extensible software framework, which is used to implement generators for the

sets of games in its database. Experimental results in this chapter demonstrated the

importance of comprehensive test data to game-theoretic algorithms by showing how

performance depends crucially on the distribution of instances on which an algorithm

is run. GAMUT is rapidly becoming an indispensable tool for researchers working at

the intersection of game theory and computer science.

More importantly for the purposes of this thesis, GAMUT now provides us with

a definitive distribution of normal-form games that we will study in more detail in

the next chapter.



Chapter 7

Simple Search Methods For

Finding A Nash Equilibrium

Now that we have an interesting instance distribution (GAMUT), we need a tool

that allows us to examine games in GAMUT in more detail. As described in Chap-

ter 5, despite several decades of research into the problem of finding a sample Nash

equilibrium of a normal-form game, it remains thorny; its precise computational com-

plexity is unknown, and new algorithms have been relatively few and far between.

In this chapter we present two very simple search methods for computing a sample

Nash equilibrium in a normal-form game: one for 2-player games and one for n-player

games. The work presented in this chapter makes two related contributions to the

problem, both bringing to bear fundamental lessons from computer science. In a

nutshell, they are:

• The use of heuristic search techniques in algorithms.

• The use of an extensive test suite to evaluate algorithms.

The surprising result of applying these insights is that, for games in GAMUT, even

very simple heuristic methods are quite effective, and significantly outperform the

state of the art Lemke-Howson, Simplicial Subdivision and Govindan-Wilson algo-

rithms. More importantly, their simplicity allows us to pinpoint exactly why they can

be so fast, allowing us to draw an interesting conclusion about games in GAMUT.

125
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7.1 Algorithm Development

In the developments of novel algorithms, one can identify two extremes. The first

extreme is to gain deep insight into the structure of the problem, and craft highly

specialized algorithms based on this insight. The other extreme is to identify relatively

shallow heuristics, and hope that these, coupled with the ever increasing computing

power, are sufficient. While the first extreme is certainly more appealing, the lat-

ter often holds the upper hand in practice.1 For example, a deep understanding

of linear programming yielded polynomial-time interior point methods [Karmarkar

1984], though in practice one tends to use methods based on the exponential Simplex

algorithm [Wood and Dantzig 1949]. In reality, neither extreme is common. It is

more usual to find a baseline algorithm that contains many choice points based on

some amount of insight into the problem, and then apply heuristics to making these

choices. For example, for the problem of SAT (Chapter 4), the current state of the art

solvers apply heuristics to search the space spanned by the underlying Davis-Putnam

procedure [Cook and Mitchell 1997].

The use of heuristics, while essential, raises the question of algorithm evaluation.

The gold standard for algorithms is trifold: soundness, completeness, and low com-

putational complexity. An algorithm is sound if any proposed solution that it returns

is in fact a solution, and it is complete if, whenever at least one solution exists, the

algorithm finds one. Low computational complexity is generally taken to mean that

the worst-case running time is polynomial in the size of the input.2

Of course, in many cases, it is not possible (or has turned out to be extremely

difficult) to achieve all three simultaneously. This is particularly true when one uses

1Of course, there is no difference in kind between the two extremes. To be effective, heuristics
too must embody some insight into the problem. However, this insight tends to be limited and local,
yielding a rule of thumb that aids in guiding the search through the space of possible solutions or
algorithms, but does not directly yield a solution.

2In rare cases this is not sufficient. For example, in the case of linear programming, Khachiyan’s
ellipsoid method [Khachiyan 1979] was the first polynomial-time algorithm, but, in practice, it could
not compete with either the existing, exponential simplex method [Wood and Dantzig 1949], or
polynomial interior point methods [Karmarkar 1984] that would later be developed. However, this
will not concern us here, since there is no known worst-case polynomial-time complexity algorithm for
the problem in question — computing a sample Nash equilibrium — and there are strong suspicions
that one does not exist.
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heuristic methods. In this chapter we focus on approaches that sacrifice the third

goal, that of low worst-case complexity. Without a worst-case guarantee (and even

worse, when one knows that the running time is exponential in the worst case), an

algorithm must be evaluated using empirical tests, in which case the choice of problem

distributions on which it is tested becomes critical. This is another important lesson

from computer science—one should spend considerable effort devising an appropriate

test suite, one that faithfully mirrors the domain in which the algorithms will be

applied. The complexity sacrifice of our heuristic methods is not in vain, however.

Their simplicity allows for an easy and intuitive characterization of the kinds of

games on which they can perform well. In that sense, these algorithms will become

magnifying lenses, through which we’ll see a glimpse of structure in games from

GAMUT.

With these computer science lessons in mind, let us recap (see Chapter 5) the

extant game theoretic literature on computing a sample Nash equilibrium. Algorithm

development has clearly been of the first kind, namely exploiting insights into the

structure of the problem. For 2-player games, the problem can be formulated as a

linear complementarity problem (LCP). The Lemke-Howson algorithm [Lemke and

Howson 1964] is based on a general method for solving LCPs. Despite its age, this

algorithm has remained the state of the art for 2-player games. For n-player games,

the best existing algorithms are Simplicial Subdivision [van der Laan et al. 1987] and

Govindan-Wilson[Govindan and Wilson 2003]. Each of these algorithms is based on

non-trivial insights into the mathematical structure of the problem.

From the evaluation point of view, these algorithms are all sound and complete,

but not of low complexity. Specifically, they all have a provably exponential worst-

case running time. The existing literature does not provide a useful measure of their

empirical performance, because most tests are only on so-called “random” games,

in which every payoff is drawn independently from a uniform distribution. This is

despite the fact that this distribution is widely recognized to have rather specific

properties that are not representative of problem domains of interest.

Work described in this chapter diverges from the traditional game-theoretic ap-

proach in two fundamental ways: (1) we propose new algorithms that are based on
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(relatively) shallow heuristics, and (2) we test our algorithms, along with existing

ones, extensively through the use of GAMUT, a comprehensive testbed. The result

is a pair of algorithms (one for 2-player games, and another for n-player games, for

n > 2) that we show to perform very well in practice. Specifically, they outperform

previous algorithms, Lemke-Howson on 2-player games, and Simplicial Subdivision

and Govindan-Wilson on n-player games, sometimes dramatically.

The basic idea behind our two search algorithms is simple. Recall that the general

problem of computing a Nash equilibrium is a complementarity problem. It turns

out that the source of the complementarity (orthogonality) constraint lies in fixing

supports for each player; basically, an action that is played with non-zero probability

must yield a certain payoff. As a consequence, computing whether there exists a

NE with a particular support for each player is a relatively easy feasibility program.

Our algorithms explore the space of support profiles using a backtracking procedure

to instantiate the support for each player separately. After each instantiation, they

prune the search space by checking for actions in a support that are strictly dominated,

given that the other agents will only play actions in their own supports.

Both of the algorithms are biased towards simple solutions through their prefer-

ence for small supports. Our surprising discovery was that the games drawn from

classes that researchers have focused on in the past (i.e., those in GAMUT) tend to

have (at least one) “simple” Nash equilibrium; hence, our algorithms are often able

to find one quickly. Thus, utilizing these very simple heuristic approaches allows to

get a better feel for the properties of equilibria in games of interest.

The rest of this chapter is organized as follows. First, we formulate the basis for

searching over supports. We then define our two algorithms. The n-player algorithm

is essentially a generalization of the 2-player algorithm, but we describe them sep-

arately, both because they differ slightly in the ordering of the search, and because

the 2-player case admits a simpler description of the algorithm. Then, we describe

our experimental setup, and separately present our results for 2-player and n-player

games. We then describe the nature of the equilibria that are found by different

algorithms on our data.
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7.2 Searching Over Supports

The basis of our two algorithms is to search over the space of possible instantiations

of the support Si ⊆ Ai for each player i. Given a support profile S = (S1, . . . , Sn)

as input, Feasibility Program 1, below, gives the formal description of a program for

finding a Nash equilibrium p consistent with S (if such an strategy profile exists).

In this program, vi corresponds to the expected utility of player i in an equilibrium.

The first two classes of constraints require that each player must be indifferent among

all actions within his support, and must not strictly prefer an action outside of his

support. These imply that no player can deviate to a pure strategy that improves his

expected utility, which is exactly the condition for the strategy profile to be a Nash

equilibrium.

Because p(a−i) =
∏

j 6=i pj(aj), this program is linear for n = 2 and nonlinear (in

fact, multilinear) for all n > 2. Note that, strictly speaking, we do not require that

each action ai ∈ Si be in the support, because it is allowed to be played with zero

probability. However, player i must still be indifferent between action ai and each

other action a′
i ∈ Si; thus, simply plugging in Si = Ai would not necessarily yield a

Nash equilibrium as a solution.

Feasibility Program 1

Input : S = (S1, . . . , Sn), a support profile
Output : NE p, if there exists both a strategy profile p = (p1, . . . , pn) and

a value profile v = (v1, . . . , vn) such that:

∀i ∈ N, ai ∈ Si :
∑

a
−i∈S

−i

p(a−i)ui(ai, a−i) = vi

∀i ∈ N, ai ∈/ Si :
∑

a
−i∈S

−i

p(a−i)ui(ai, a−i) ≤ vi

∀i ∈ N :
∑

ai∈Si

pi(ai) = 1

∀i ∈ N, ai ∈ Si : pi(ai) ≥ 0

∀i ∈ N, ai ∈/ Si : pi(ai) = 0
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7.3 Algorithm for Two-Player Games

In this section we describe Algorithm 1, our 2-player algorithm for searching the space

of supports. There are three keys to the efficiency of this algorithm. The first two are

the factors used to order the search space. Specifically, Algorithm 1 considers every

possible support size profile separately, favoring support sizes that are balanced and

small. The motivation behind these choices comes from work such as [McLennan and

Berg 2002], which analyzes the theoretical properties of the Nash equilibria of games

drawn from a particular distribution. Specifically, for n-player games, the payoffs

for an action profile are determined by drawing a point uniformly at random in a

unit sphere. Under this distribution, for n = 2, the probability that there exists a

NE consistent with a particular support profile varies inversely with the size of the

supports, and is zero for unbalanced support profiles.

The third key to Algorithm 1 is that it separately instantiates each players’ sup-

port, making use of what we will call “conditional (strict) dominance” to prune the

search space.

Definition 7.1 An action ai ∈ Ai is conditionally dominated, given a profile of

sets of available actions R−i ⊆ A−i for the remaining agents, if the following condition

holds: ∃a′
i ∈ Ai ∀a−i ∈ R−i : ui(ai, a−i) < ui(a

′
i, a−i)

Observe, that this definition is strict, because, in a Nash Equilibrium, no action

that is played with positive probability can be conditionally dominated given the

actions in the support of the opponents’ strategies.

The preference for small support sizes amplifies the advantages of checking for

conditional dominance. For example, after instantiating a support of size two for

the first player, it will often be the case that many of the second player’s actions

are pruned, because only two inequalities must hold for one action to conditionally

dominate another.

Pseudo-code for Algorithm 1 is given below. Note that this algorithm is complete,

because it considers all support size profiles, and because it only prunes actions that

are strictly dominated.
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Algorithm 1

for all support size profiles x = (x1, x2), sorted in increasing order of, first, |x1−x2|
and, second, (x1 + x2) do

for all S1 ⊆ A1 s.t. |S1| = x1 do
A′

2 ← {a2 ∈ A2 not conditionally dominated, given S1 }
if ∄a1 ∈ S1 conditionally dominated, given A′

2 then
for all S2 ⊆ A′

2 s.t. |S2| = x2 do
if ∄a1 ∈ S1 conditionally dominated, given S2 then

if Feasibility Program 1 is satisfiable for S = (S1, S2) then
Return the found NE p

7.4 Algorithm for N-Player Games

Algorithm 1 can be interpreted as using the general backtracking algorithm to solve a

constraint satisfaction problem (CSP) for each support size profile (for an introduction

to CSPs, see, for example, Dechter [2003]). The variables in each CSP are the supports

Si, and the domain of each Si is the set of supports of size xi. While the single

constraint is that there must exist a solution to Feasibility Program 1, an extraneous,

but easier to check, set of constraints is that no agent plays a conditionally dominated

action. The removal of conditionally dominated strategies by Algorithm 1 is similar to

using the AC-1 algorithm to enforce arc-consistency with respect to these constraints.

We use this interpretation to generalize Algorithm 1 for the n-player case. Pseudo-

code for Algorithm 2 and its two procedures, Recursive-Backtracking and Iterated

Removal of Strictly Dominated Strategies (IRSDS) are given below3.

IRSDS takes as input a domain for each player’s support. For each agent whose

support has been instantiated, the domain contains only that instantiated support,

while for each other agent i it contains all supports of size xi that were not eliminated

in a previous call to this procedure. On each pass of the repeat-until loop, every action

found in at least one support in a player’s domain is checked for conditional domi-

nation. If a domain becomes empty after the removal of a conditionally dominated

3Even though our implementation of the backtracking procedure is iterative, for simplicity we
present it here in its equivalent, recursive form. Also, the reader familiar with CSPs will recognize
that we have employed very basic algorithms for backtracking and for enforcing arc consistency; we
return to this point in the conclusion.
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action, then the current instantiations of the Recursive-Backtracking are inconsis-

tent, and IRSDS returns failure. Because the removal of an action can lead to further

domain reductions for other agents, IRSDS repeats until it either returns failure or

iterates through all actions of all players without finding a dominated action.

Algorithm 2

for all x = (x1, . . . , xn), sorted in increasing order of, first,
∑

i xi and, second,
maxi,j(xi − xj) do
∀i : Si ← NULL //uninstantiated supports

∀i : Di ← {Si ⊆ Ai : |Si| = xi} //domain of supports

if Recursive-Backtracking(S, D, 1) returns a NE p then
Return p

Procedure 1 Recursive-Backtracking.

Input : S = (S1, . . . , Sn): a profile of supports
D = (D1, . . . , Dn): a profile of domains
i: index of next support to instantiate

Output : A Nash equilibrium p, or failure
if i = n + 1 then

if Feasibility Program 1 is satisfiable for S then
Return the found NE p

else
Return failure

else
for all di ∈ Di do

Si ← di

Di ← Di − {di}
if IRSDS(({S1}, . . . , {Si}, Di+1, . . . , Dn)) succeeds then

if Recursive-Backtracking(S,D, i + 1) returns NE p then
Return p

Return failure

Finally, we note that Algorithm 2 is not a strict generalization of Algorithm 1,

because it orders the support size profiles first by size, and then by a measure of

balance. The reason for the change is that balance (while still significant) is less

important for n > 2 than it is for n = 2. For example, under the model of McLennan
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Procedure 2 Iterated Removal of Strictly Dominated Strategies (IRSDS).

Input : D = (D1, . . . , Dn): profile of domains
Output : Updated domains, or failure
repeat

changed← false
for all i ∈ N do

for all ai ∈
⋃

di∈Di

di do

for all a′
i ∈ Ai do

if ai is conditionally dominated by a′
i, given

⋃

d
−i∈D

−i

d−i then

Di ← Di − {di ∈ Di : ai ∈ di}
changed← true
if Di = ∅ then

Return failure
until changed = false
Return D

and Berg [2002], for n > 2, the probability of the existence of a NE consistent with a

particular support profile is no longer zero when the support profile is unbalanced.4

7.5 Empirical Evaluation

It is very clear from the description of our algorithms that they can be quite inefficient:

in the worst case they have to enumerate all possible supports before finding a NE, of

which there are exponentially many. Therefore, a natural question to ask is whether

this can every work well in practice. From the design of these algorithms, it is clear

that there are only two possible ways in which this can happen. First, it might be

possible that removing of conditionally dominant strategies does a lot of pruning,

allowing the algorithms to zoom fast through lots of supports. This is unlikely,

however, as even in such a case exponentially many supports have to be considered.

4While this change of ordering does provide substantial improvements, the algorithm could cer-
tainly still be improved by adding more complex heuristics. For example, McKelvey and McLennan
[1997] show that, in a generic game, there cannot be a totally mixed NE if the size of one player’s
support exceeds the sum of the sizes of all other players’ supports. However, we believe that han-
dling cases such as this one would provide a relatively minor performance improvement, since our
algorithm often finds a NE with small support.
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The only alternative lies with the termination condition. Since we terminate as soon

as the first equilibrium is found, these algorithms may be fast if most games actually

have small balanced supports.

It is worth noting that, while the different distributions in GAMUT vary in their

structure, some randomness must be injected into the generator in order to create a

distribution over games of that structure. Our results then show that games drawn

from GAMUT are similar to those generated uniformly at random in that they are

likely to have a pure strategy equilibria, or equilibria with small balanced supports

despite the imposed structure. Thus, the success of our algorithms is a reflection on

the structure of games of interest to researchers as much as it is a demonstration of

the techniques we employ.

7.5.1 Experimental Setup

To evaluate the performance of our algorithms we ran several sets of experiments

on a representative subset of the distributions from GAMUT. To make figure labels

readable, we use non-descriptive tags for each distribution. Table 7.1 provides a

legend for these labels. Chapter 6 has more information about GAMUT.

A distribution of particular importance is the one most commonly tested on in

previous work: D18, the “Uniformly Random Game”, in which every payoff in the

game is drawn independently from an identical uniform distribution. Also important

are distributions D5, D6, and D7, which fall under a “Covariance Game” model stud-

ied by Rinott and Scarsini [2000], in which the payoffs for the n agents for each action

profile are drawn from a multivariate normal distribution in which the covariance ρ

between the payoffs of each pair of agents is identical. When ρ = 1, the game is

common-payoff, while ρ = −1
N−1

yields minimal correlation, which occurs in zero-sum

games. Thus, by altering ρ, we can smoothly transition between these two extreme

classes of games.

Our experiments were executed on a cluster of 12 dual-processor, 2.4GHz Pen-

tium machines, running Linux 2.4.20. We capped runs for all algorithms at 1800

seconds. When describing the statistics used to evaluate the algorithms, we will use
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D1 Bertrand Oligopoly D2 Bidirectional LEG, Complete Graph

D3 Bidirectional LEG, Random Graph D4 Bidirectional LEG, Star Graph

D5 Covariance Game: ρ = 0.9 D6 Cov. Game: ρ ∈ [−1/(N − 1), 1]

D7 Covariance Game: ρ = 0 D8 Dispersion Game

D9 Graphical Game, Random Graph D10 Graphical Game, Road Graph

D11 Graphical Game, Star Graph D12 Graphical Game, Small-World

D13 Minimum Effort Game D14 Polymatrix Game, Complete Graph

D15 Polymatrix Game, Random Graph D16 Polymatrix Game, Road Graph

D17 PolymatrixGame, Small-World D18 Uniformly Random Game

D19 Travelers Dilemma D20 Uniform LEG, Complete Graph

D21 Uniform LEG, Random Graph D22 Uniform LEG, Star Graph

D23 Location Game D24 War Of Attrition

Table 7.1: GAMUT Distribution Labels.

“unconditional” (on having solved the instance) to refer to the value of the statistic

when timeouts are counted as 1800 seconds, and “conditional” to refer to its value

excluding timeouts.

When n = 2, we solved Feasibility Program 1 using CPLEX 8.0’s callable library

[ILOG 2004]5. For n > 2, because the program is nonlinear, we instead solved each

instance of the program by executing AMPL, using MINOS [Murtagh and Saunders

2004] as the underlying optimization package. Obviously, we could substitute in any

nonlinear solver; and, since a large fraction of our running time is spent on AMPL

and MINOS, doing so would greatly affect the overall running time.

Before presenting the empirical results, we note that a comparison of the worst-

case running times of our two algorithms and the three we tested against does not

distinguish between them, since they all have exponential worst-case complexity.

5We note that the implementation of Lemke-Howson that we used employs a mathematical
software that is less efficient than CPLEX, which undoubtedly has an effect on the running time
comparisons between the two algorithms. However, the difference is not nearly great enough to
explain the observed gap between the algorithms.
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Figure 7.1: Unconditional Median Running Times for Algorithm 1 and Lemke-
Howson on 2-player, 300-action Games.

7.5.2 Results for Two-Player Games

In the first set of experiments, we compared the performance of Algorithm 1 to that

of Lemke-Howson (implemented in Gambit, which added the preprocessing step of

iterated removal of weakly dominated strategies) on 2-player, 300-action games drawn

from 24 of GAMUT’s 2-player distributions. All algorithms were executed on 100

games drawn from each distribution. The time is measured in seconds and plotted

on a logarithmic scale.

Figure 7.1 compares the unconditional median running times of the algorithms,

and shows that Algorithm 1 outperforms Lemke-Howson on all distributions.6 How-

ever, this does not tell the whole story. For many distributions, it simply reflects

the fact that there is a greater than 50% chance that the distribution will generate

a game with a pure strategy NE, which Algorithm 1 will then find quickly. Two

other important statistics are the percentage of instances solved (Figure 7.2), and

6Obviously, the lines connecting data points across distributions for a particular algorithm are
meaningless — they were only added to make the graph easier to read.
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Figure 7.2: Percentage Solved by Algorithm 1 and Lemke-Howson on 2-player, 300-
action Games.

the average running time conditional on solving the instance (Figure 7.3). Here, we

see that Algorithm 1 completes far more instances than Lemke-Howson on several

distributions, and solves fewer on just a single distribution (6 fewer, on D23).

Figure 7.3 further highlights the differences between the two algorithms. It demon-

strates that even on distributions for which Algorithm 1 solves far more games, its

conditional average running time is 1 to 2 orders of magnitude smaller than that of

Lemke-Howson.

Clearly, the hardest distribution for both of the algorithms is D6, which consists

of “Covariance Games” in which the covariance ρ is drawn uniformly at random from

the range [−1, 1]. In fact, neither of the algorithms solved any of the games in another

“Covariance Game” distribution in which ρ = −0.9, and these results were omitted

from the graphs, because the conditional average is undefined for these results. On

the other hand, for the distribution “CovarianceGame-Pos” (D5), in which ρ = 0.9,

all algorithms perform well.

To further investigate this continuum, we sampled 300 values for ρ in the range
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Figure 7.3: Average Running Time on Solved Instances for Algorithm 1 and Lemke-
Howson on 2-player, 300-action Games.
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Figure 7.4: Running Time for Algorithm 1 and Lemke-Howson on 2-player, 300-action
“Covariance Games”.
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Figure 7.5: Unconditional Average Running Time for Algorithm 1 and Lemke-Howson
on 2-player “Uniformly Random Games” vs. the Number of Actions.

[−1, 1], with heavier sampling in the transition region and at zero. For each such

game, we plotted a point for the running time of Algorithm 1, Lemke-Howson in

Figure 7.4.7

The theoretical results of Rinott and Scarsini [2000] suggest that the games with

lower covariance should be more difficult for Algorithm 1, because they are less likely

to have a pure strategy NE. Nevertheless, it is interesting to note the sharpness of

the transition that occurs in the [−0.3, 0] interval. More surprisingly, a similarly

sharp transition also occurs for Lemke-Howson, despite the fact that it operates in an

unrelated way to Algorithm 1. It is also important to note that the transition region

for Lemke-Howson is shifted to the right by approximately 0.3 relative to that of

Algorithm 1, and that on instances in the easy region for both algorithms, Algorithm

1 is still an order of magnitude faster.

Finally, we explored the scaling behavior of all algorithms by generating 20 games

from the “Uniformly Random Game” distribution (D18) for each multiple of 100 from

7The capped instances for Algorithm 1 were perturbed slightly upward on the graph for clarity.
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100 to 1000 actions. Figure 7.5 presents the unconditional average running time, with

a timeout counted as 1800s. While Lemke-Howson failed to solve any game with more

than 600 actions and timed out on some 100-action games, Algorithm 1 solved all

instances, and, without the help of cutoff times, still had an advantage of 2 orders of

magnitude at 1000 actions.

7.5.3 Results for N-Player Games

In the next set of experiments we compared Algorithm 2 to Govindan-Wilson and

Simplicial Subdivision (which was implemented in Gambit, and thus combined with

iterated removal of weakly dominated strategies). First, to compare performance on a

fixed problem size we tested on 6-player, 5-action games drawn from 22 of GAMUT’s

n-player distributions.8 While the numbers of players and actions appear small,

note that these games have 15625 outcomes and 93750 payoffs. Once again, Figures

7.6, 7.7, and 7.8 show unconditional median running time, percentage of instances

solved, and conditional average running time, respectively. Algorithm 2 has a very

low unconditional median running time, for the same reason that Algorithm 1 did for

two-player games, and outperforms both other algorithms on all distributions. While

this dominance does not extend to the other two metrics, the comparison still favors

Algorithm 2.

We again investigated the relationship between ρ and the hardness of games under

the “Covariance Game” model. For general n-player games, minimal correlation under

this model occurs when ρ = − 1
n−1

. Thus, we can only study the range [−0.2, 1] for

6-player games. Figure 7.9 shows the results for 6-player 5-action games. Algorithm

2, over the range [−0.1, 0], experiences a transition in hardness that is even sharper

than that of Algorithm 1. Simplicial Subdivision also undergoes a transition, which

is not as sharp, that begins at a much larger value of ρ (around 0.4). However, the

running time of Govindan-Wilson is only slightly affected by the covariance, as it

neither suffers as much for small values of ρ nor benefits as much from large values.

8Two distributions from the tests of 2-player games are missing here, due to the fact that they
do not naturally generalize to more than 2 players.
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Figure 7.6: Unconditional Median Running Times for Algorithm 2, Simplicial Subdi-
vision, and Govindan-Wilson on 6-player, 5-action Games.

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

%
 S
olv
ed

Alg2
SD
GW

Figure 7.7: Percentage Solved by Algorithm 2, Simplicial Subdivision, and Govindan-
Wilson on 6-player, 5-action Games.
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Figure 7.8: Average Running Time on Solved Instances for Algorithm 2, Simplicial
Subdivision, and Govindan-Wilson on 6-player, 5-action Games.
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Figure 7.9: Running Time for Algorithm 2, Simplicial Subdivision, and Govindan-
Wilson on 6-player, 5-action “Covariance Games”.
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Figure 7.10: Unconditional Average Time for Algorithm 2, Simplicial Subdivision,
and Govindan-Wilson on 6-player “Uniformly Random Games” vs. the Number of
Actions.

Finally, Figures 7.10 and 7.11 compare the scaling behavior (in terms of uncondi-

tional average running times) of the three algorithms: the former holds the number

of players constant at 6 and varies the number of actions from 3 to 8, while the latter

holds the number of actions constant at 5, and varies the number of players from 3 to

8. In both experiments, both Simplicial Subdivision and Govindan-Wilson solved no

instances for the largest two sizes, while Algorithm 2 still found a solution for most

games.

7.5.4 On the Distribution of Support Sizes

It is clear from the performance of Algorithm 1 and Algorithm 2 that many games in

GAMUT must have small balanced Nash equilibria. We now take a closer look at the

nature of these equilibria by examining the kinds of equilibria discovered by different

algorithms.
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Figure 7.11: Unconditional Average time for Algorithm 2, Simplicial Subdivision,
and Govindan-Wilson on 5-action “Uniformly Random Games” vs. the Number of
Players.
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Pure-Strategy Equilibria

By definition, the first step of both Algorithm 1 and Algorithm 2 is to check whether

the input game has a pure-strategy Nash equilibrium (PSNE). This step can be per-

formed very fast even on large games. It is interesting to see just how much of

performance of these algorithms is due to the existence of pure-strategy equilibria.

Figures 7.12 and 7.13 show the fraction of games in each distribution that posses

a PSNE, for 2-player, 300-action and 6-player, 5-action games, respectively. These

figures demonstrate that a pure-strategy equilibrium is present in many, though not

all, games generated by GAMUT. We note, however, that our algorithms often per-

form well even on distributions that don’t all have a PSNE, as they sometimes find

equilibria of larger sizes.

These graphs thus demonstrate that looking for pure strategy Nash equilibria

could be a useful preprocessing step for Lemke-Howson, Simplicial Subdivision , and

Govindan-Wilson, but that at the same time, even with such a preprocessing step,

these algorithms would not catch up with Algorithm 1 and Algorithm 2. This step

is essentially the first step of our algorithms, but in the cases that are not caught by

this step, our algorithms degrade gracefully while the others do not.

Support Sizes Found

Many researchers feel that equilibria with small support sizes are easier to justify. It

is, therefore, interesting to see what kinds of equilibria that different algorithms find

in games of interest. Specifically, we would like to see whether other algorithms find

equilibria that correspond to our own heuristics of small and balanced supports.

Figures 7.14 and 7.15 show the average total size of the support (i.e.,
∑

i xi) of

the first equilibrium found by each algorithm on 2-player, 300-action and 6-player, 5-

action games, respectively. Total size 2 in Figure 7.14, and total size 6 in Figure 7.15,

correspond to a pure-strategy equilibrium. As expected, our algorithms tend to find

equilibria with much smaller supports than those of other algorithms, even on dis-

tributions where pure-strategy Nash equilibria often exist. Notice, however, that all

of the algorithms have a bias towards somewhat small support sizes. On average,
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Figure 7.12: Percentage of Instances Possessing a Pure-Strategy NE, for 2-player,
300-action Games.
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Figure 7.13: Percentage of Instances Possessing a Pure-Strategy NE, for 6-player,
5-action Games.
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Figure 7.14: Average of Total Support Size for Found Equilibria, on 2-player, 300-
action Games.

the equilibria found by Lemke-Howson in 2-player games have at most 10 actions

per player (out of 300), while the equilibria found by Govindan-Wilson on 6-player

games have on average 2.3 actions per player out of 5. For comparison, the absolute

largest equilibrium found by Govindan-Wilson across all instances had between 3 and

5 actions for each player (4.17 on average). The games with these large equilibria all

came from Covariance Game distributions. They all also possessed either a PSNE,

or a NE with at most 2 actions per player, and were all quickly solved by Algorithm

2. The largest equilibrium among 2-player games that was found by Lemke-Howson

had 122 actions for both players. That game came from distribution D23.

The second search bias that our algorithms employ is to look at balanced supports

first. Figure 7.16 shows the average measure of support balance (i.e., maxi,j(xi −

xj)) of the first equilibrium found by each algorithm on 6-player, 5-action games.

We omit a similar graph for 2-player games, since almost always perfectly balanced

supports were found by both Algorithm 1 and Lemke-Howson. The only exception was

distribution D24, on which Lemke-Howson found equilibria with average (dis)balance
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Figure 7.15: Average of Total Support Size for Found Equilibria, on 6-player, 5-action
Games.

of 13.48. On 6-player games, as again expected, Algorithm 2 tends to find equilibria

that are almost balanced, while the other two algorithms find much less balanced

supports. Nevertheless, it is important to note that the balance of the supports found

by Algorithm 2 is not uniformly zero, suggesting that it still finds many equilibria

that are not pure-strategy. Thus, once again, we see that using the preprocessing

step of finding PSNEs first, while greatly improving previous algorithms, would not

be enough to close the gap between them on the one hand and Algorithm 2 on the

other.

7.6 Conclusion

In this chapter, we presented a pair of algorithms for finding a sample Nash equilib-

rium. Both employ backtracking approaches (augmented with pruning) to search the

space of support profiles, favoring supports that are small and balanced. We showed

that they outperform the current state of the art on games drawn from GAMUT.
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Figure 7.16: Average of Support Size Balance for Found Equilibria, on 6-player, 5-
action Games.

Another approach that we have tried, and found to be successful, is to overlay a

particular heuristic onto Lemke-Howson. Recall (Chapter 5) that, in the execution

of Lemke-Howson, the first pivot is determined by an arbitrary choice of an action

of the first player. This initial pivot then determines a path to a NE. Thus, we

can construct an algorithm that, like our two algorithms, is biased towards “simple”

solutions through the use of breadth-first search — initially, it branches on each

possible starting pivot; then, on each iteration, it performs a single pivot for each

possible Lemke-Howson execution, after which it checks whether a NE has been found.

This modification significantly outperforms the standard Lemke-Howson algorithm on

most classes of games. However, it still performs worse than our Algorithm 1.

The most difficult games we encountered came from the “Covariance Game”

model, as the covariance approaches its minimal value, and this is a natural tar-

get for future algorithm development. We expect these games to be hard in general,

because, empirically, we found that as the covariance decreases, the number of equi-

libria decreases as well, and the equilibria that do exist are more likely to have support
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sizes near one half of the number of actions, which is the support size with the largest

number of supports.

It is certainly possible to improve on the methods presented here. For instance,

one might employ more sophisticated CSP techniques. Another promising direction

to explore is local search, in which the state space is the set of all possible supports,

and the available moves are to add or delete an action from the support of a player.

While the fact that no equilibrium exists for a particular support does not give any

guidance as to which neighboring support to explore next, one could use a relaxation

of Feasibility Program 1 that penalizes infeasibility through an objective function.

Our results show that AI techniques can be successfully applied to this problem, and

we have only scratched the surface of possibilities along this direction.

However, the most important lesson that can be drawn from this work, is that

games in GAMUT, most of which were proposed to model interesting strategic sit-

uations, tend to have Nash equilibria with small and balanced supports. This may

be very reassuring to game-theory researchers: pure-strategy equilibria, or “simple”

equilibria, seem to be more justifiable; philosophically, using mixed strategies often

appears to be problematic. We have demonstrated that it pays off for the algorithms

to have strong bias towards such solutions, and that researchers of this problem

should think more about distributions and structure of Nash equilibria. On a higher

level, this work demonstrated how empirical evaluation of simple algorithms can bring

forth new understanding of the underlying problem that would have been impossible

to obtain theoretically.
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