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Abstract. Adenomatous polyps in the colon have a high probability of
developing into subsequent colorectal carcinoma, the second leading cause of
cancer deaths in United States. In this paper, we propose a new method for
computer-aided diagnosis of polyps. Initial work with shape detection has shown
high sensitivity for polyp detection, but at a cost of too many false positive
detections. We present a statistical approach that uses support vector machines to
distinguish the differentiating characteristics of polyps and healthy tissue, and
subsequently uses this information for the classification of the new cases. One of
the main contributions of the paper is a new 3-D pattern analysis approach,
which combines the information from many random images to generate reliable
signatures of the shapes. The proposed system has a good polyp detection rate
with the false positive rate reduced by 80 percent compared to previous work.

1 Introduction

Colon cancer is the second leading cause of cancer deaths in the United States.
American adults have 1/20 chance of developing and 1/40 chance of dying from this
disease [1]. Previous research has shown that adenomatous polyps, particularly those
larger than 1 cm in diameter, have a high probability of developing into subsequent
colorectal carcinoma [2]. Detection and removal of small polyps can totally eliminate
the disease. Unfortunately, colon cancer is most often discovered after the patient
develops symptoms, and by then, the likelihood of a cure has diminished substantially.
Therefore, a cost-effective and patient-comfortable screening procedure is desirable in
order to diagnose the disease in an earlier stage.

Optical colonoscopy is considered the definitive diagnostic test as it affords direct
visualization and the opportunity for biopsy or removal of suspicious lesion [6]. This
method involves an optical probe being inserted into the colon in order to examine the
interior. An alternative, non-invasive method has recently been proposed: Computed
tomography colonography (CTC) or virtual colonscopy is a technique that combines
axial spiral CT data acquisition of the air-filled and cleansed colon with 3-dimensional
imaging software to create endoscopic images of the colonic surface [3]. The initial
clinical results are quite promising, yet the technique is still impractical due, in part, to
the extensive amount of radiologist time involved in the process, which typically
requires viewing over 300 512 by 512 images per patient study. In order to help the
radiologist be more time efficient and accurate, an automated screening method for
computer-aided diagnosis of polyps is necessary.



Fig. 1. (a),(b),(c) are polyps, (d) is a normal thickened fold (e) is retained stool.

Fig. 2. (a) Two different 3-D views of a polyp. (b-d) Perpendicular images through the
same polyp.

Automated polyp detection is a very recently growing area of research. The problem
of identifying colonic polyps is very challenging because they come in various sizes
and shapes, and because thickened folds and retained stool may mimic their shape and
density. Figure 1 demonstrates the appearance of polyps and other tissue as they appear
in a virtual colonoscopy study.

Initial studies concerning automated polyp detection have started from the intuitive
observation that the shape of a polyp is similar to a hemisphere. In [4], Summers et. al.
computes the minimum, maximum, mean and Gaussian curvatures at all points on the
colon wall. Following discrimination of polypoid shapes by their principal minimum
and maximum curvatures, more restrictive criteria are applied in order to eliminate
non-spherical shapes.

In [5], Paik et. al. introduced a method based on the concept that normals to the
colon surface will intersect with neighboring normals depending on the local curvature
features of the colon. Polyps have 3D shape features that change rapidly in many
directions, so that normals to the surface tend to intersect in a concentrated area. By
contrast, haustral folds change their shape rapidly when sampled transversely, resulting
in convergence of normals, but change shape very slowly when sampled
longitudinally. As a result, the method detects the polyps by giving the shapes a score
based on the number of intersecting normal vectors.

In [7], Gokturk and Tomasi designed a method based on the observation that the
bounding surfaces of polyps are usually not exact spheres, but are often complex
surfaces composed by small, approximately spherical patches. In this method, a sphere
is fit locally to the isodensity surface passing through every CT voxel in the wall
region. Densely populated nearby sphere centers are considered as polyp candidates.

Due to the large number of false positive detections, all of the methods mentioned
above can be considered more as polyp candidate detectors than polyp detectors. This
paper presents a statistical method to differentiate between polyps and normal tissue.
The input to the system is a set of small candidate volumes, which may or may not
contain polypoid shapes. This set can be computed by one of the methods just



discussed. Our novel volume processing technique generates shape-signatures for each
candidate volume. The signatures are then fed to a support vector machine (SVM)
classifier for the final diagnosis of the volume.

The paper is organized as follows: Section 2 explains both the volume processing
and support vector classifier in detail. Section 3 describes the experimental setup and
discusses our preliminary results. Section 4 gives some conclusions and possible
directions for future work.

2 Our Method

Many radiologists prefer to view colon CT images through three perpendicular image
planes aligned with the transaxial, sagittal, and coronal anotomical directions[3].
Figure 2 shows a polyp in 3-D and 3 perpendicular views through it in 2-D. These
perpendicular planes capture substantial information about the shape, yet they are
incomplete by themselves. A more accurate signature of the volume can be obtained by
collecting statistics over several triples of mutually orthogonal planes, oriented along
other than the anatomical directions. We use a histogram of several geometric
attributes obtained from many triples of perpendicular random images as a feature-
vector to represent the shape.

Computing shape features on triples of planes, rather than on individual planes,
captures 3D shape aspects more completely. Taking histograms of these features over
several random triples makes the resulting signatures invariant to rotations and
translations. More details on our signatures are given sections 2.1 and 2.2. Support-
vector machines, described in section 2.3, are then trained with signatures computed
from an initial set, and are subsequently used to classify new volumes into polyps and
normal tissues.

2.1 Image Processing

Each candidate volume is sliced with several triples of perpendicular planes. A polyp
may not occupy the resulting images entirely. As a consequence, images are
segmented, so as to disregard tissues surrounding the putative polyp. This
segmentation process is described in section 2.1.1. Shape and intensity features are
then computed in the resulting sub-windows, as discussed in section 2.1.2.

2.1.1 Segmentation
The size of the critical region varies depending on the size and the shape of the
suspicious lesion. Here, we aim to discover the best square window that would capture
the essentials of the shape. Figure 3 depicts the critical window for different shapes.

A window is considered good when it contains a shape that is approximately
circular and has a small radius. Because elongated folds are common in the colon, it
was found to be useful to also explicitly rule out elongated regions. To find an optimal
window size w, an image is first binarized, and the following target function is
computed for each window of size w and centered in the middle of the image:
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Here, r is the radius of the circle that best fits the edges in the binarized image, ecircle

is the residue to the best fitting circle, eline is the residue to the best fitting line, and a1

and a2 are constants. Details of the fitting are described in the next section. The value
of w that yields the smallest f(w) is chosen as the best window size.

2.1.2 Image Features
Image features should capture representative information about the candidate shape.
Primitive shapes such as circle, quadric curve, and line (figure 4. d,e,f) are fit to the
largest connected edge component, i.e. boundary of the shape.

A random slice of a sphere is a circle. Thus, fitting circles is a means of measuring
the sphericity of the 3-D shape. When doing so, the residuals at each pixel on the
boundary are first weighted with a Gaussian located at the image center, and shown in
image 4(c). The purpose of these weights is to give more importance to boundary
points of the shape than to those of the surrounding colon wall. The weighted residuals
are then added together, and the least square solution gives the optimum circle. The
residual to the least square solution is recorded as well.

Similarly, the residual to the optimum fitting line gives information on the flatness
of the surface. Quadratic curves include any second order equation system of two
variables. By fitting a quadratic curve to the boundary of the image, the ellipsoidal
structure of the shape can be measured, thereby helping to capture similarity to a
pedunculated polyp.

In order to extract information on higher order frequency characteristics of the
boundary, 3rd order moment invariants are computed as well[10]. Specifically, given
the coordinates of points on the plane, a (p,q)th moment and the third order moment
invariant M are given by,
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Fig. 3. 2-D images of five different suspicious lesions, with the size of the critical region varying
from image to image.

Fig. 4. (a) Sample image. (b) Edges. (c) Gaussian mask to weight the edge points on
the image. (d) The circle fitted to the weighted edge points. (e) The quadratic fitted to
the weighted edge points. (f) The line fitted to the edge points.



In addition to these shape features, intensity features are extracted from the tissue
part of the image. The colon tissue is first separated away from the interior of the colon
(air) by intensity thresholding. The mean and the standard deviation of the remaining
intensity values are recorded as intensity measurements in the feature vector.

All the attributes mentioned so far are calculated for each random triple of images.
The three images in each triple are sorted in the order of increasing radius of curvature,
and the features above are listed into a vector in this order. This vector represents the
signature of the shape, relative to that particular triple of perpendicular planes.

2.2 Vector Quantization

The features computed from each triple of perpendicular planes depend on the
position and orientation of that particular triple. However, if histograms of feature
distributions are computed from sufficiently many triples with random positions and
orientations, the histograms themselves are essentially invariant to position and
orientation. Explicit histograms, on the other hand, are out of the question, since the
high dimension of the underlying feature space would imply prohibitive amounts of
storage. A more efficient solution, proposed here, represents a histogram by first
computing the representatives for the main clusters of features over a large collection
of vectors. New feature vectors are then assigned to these clusters, rather than to fixed
bins. This method is called vector quantization and is described in more detail in [11].

Let Xij be the n-vector obtained from the jth random triple of perpendicular planes
extracted from the ith shape. Having obtained Xij’s from all of the shapes, the k-means
algorithm [11] is used to compute vector clusters. Let X be the matrix each column of
which contains one particular Xij. The cluster centers are initialized to be the principal
component directions of X. Subsequent iterations of the k-means algorithm then
alternately reassign vectors to clusters and recompute cluster centers, resulting
eventually into the optimum cluster centers Bi.

When forming feature histograms, the simplest strategy would be to have each
vector increment a counter for the nearest cluster center. This method, however, is
overly sensitive to the particular choice of clusters. We adopted a more robust solution,
in which each feature vector partitions a unit vote into fractions that are inversely
proportional to the vector’s distances to all cluster centers. The histograms thus
obtained, one per candidate volume, are the shape signatures used for classification as
described in the next section.

2.3 Support Vector Machines

A classifier learning algorithm takes a training set as input and produces a classifier as
its output. In our problem, a training set is a collection of candidate volumes that a
radiologist has individually labeled as polyps or non-polyps. A classifier is a function
that, for any new candidate volume, tells whether it is a polyp or not.

Mathematically, a classifier can also be viewed as a hypersurface in feature space,
that separates polyps from non-polyps. Support vector machines (SVM) [8] implicitly
transform the given feature vectors x into new vectors φ(x) in a space with more
dimensions, such that the hypersurface that separates the x, becomes a hyperplane in
the space of φ(x)’s. This mapping from x to φ(x) is used implicitly in that only inner



products of the form K(xi,xj)=φ(xi)
Tφ(xj) need ever to be computed, rather than the high

dimensional vectors φ(x) themselves. In these so-called kernels, the subscripts i,j refer
to vectors in the training set. In the classification process, only the vectors that are very
close to the separating hypersurface need to be considered when computing kernels.
These vectors are called the support vectors. Suppose that vector xi in the training set is
given (by the radiologist) a label yi =1 if it is a polyp and yi =-1 if it is not. Then the
optimal classifier has the form:
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Where SV denotes the set of support vectors, and the constants αi and b are
computed by the classifier-learning algorithm. See [8] for details. Computing the
coefficients αi,b is a relatively expensive (but well understood) procedure, but needs to
be performed only once, on the training set. During volume classification, only the
very simple expression (A) needs to be computed.

SVMs minimize the structural risk, given as the probability of misclassifying
previously unseen data. In addition, SVMs pack all the relevant information in the
training set into a small number of support vectors and use only these vectors to
classify new data. This makes support vectors very appropriate for polyp recognition.
More generally, using a learning method, rather than hand-crafting classification
heuristics, exploits all of the information in the training set optimally, and eliminates
the guess work from the task of defining appropriate discrimination criteria.

3 Experiments

We used a data set consisting of small candidate volumes from the CT scans of
subjects enrolled in our CT colonography study comprising of 47 known colonic
polyps and 250 other regions containing tissue from healthy mucosal surface. These
healthy tissues were all false positives obtained in previous work [5,7], and essentially
look quite like the true positive polyps. All the polyps were bigger than 5 mm in their
principal radius. 150 random triples of perpendicular images were extracted from each
candidate shape. A 30-vector was obtained for each triple, and 32 clusters were used in
k-means clustering, resulting into a 32-vector signature per candidate shape. Figure 5
shows examples of two polyps and one thickened, yet normal fold along with their
corresponding signatures.

Fig. 5. Two polyps (left) and a very similarly shaped fold structure (right). As expected, the
signatures are very similar, yet distinguishable.



Linear, polynomial and exponential radial basis functions[8] were used as kernel
functions in different experiments with support vector machine classifiers. To test for
each candidate shape, the classifier was first trained with all the other shapes and then
used to test the shape. This cross-validation scheme was repeated for each candidate
shape in the data set. Table 1 summarizes the results obtained from different kernel
functions. The main objective of this work is to be able to achieve an accuracy of 80-
90% with a minimum number of false positives(FPs). In previous work, comparable
accuracy was obtained with about 100 FPs per colon for polyps of size 5mm or greater,
and our approach is shown to be able to reduce the false positive rate by 80%, which
inherently reduces the radiologist’s interpretation time by the same amount.

A more quantitative analysis of the experiments can be achieved by replacing the
zero-crossing (“sign”) in expression (A), with a level crossing. As the level is
decreased, more true polyps are detected, but at a cost of more false positives. The
percentage of true polyp detections versus false positive detections is given in figure
6(a).

Finally, we have analyzed the response of the system to different sizes of polyps. In
previous studies, it has been shown that, polyps less than 1 cm in size are rarely
malignant, with an incidence of carcinoma of only 1% [9]. However, the incidence of
carcinoma increases to 37% in polyps greater than 2 cm in size [9]. Therefore, it is of
critical importance to remove adenomatous polyps as small as 1 cm to impact the
mortality of this disease. In figure 6(b), we illustrate the corresponding performance
curves for polyps of size greater than 1 cm and smaller than 1 cm separately. The
worse performance on smaller polyps can be explained by two reasons: First, folds in
the human colon look similar to smaller polyps. Second and mainly, the resolution of
current CT technology (voxel size is about .7 x .7 x 3.5 mm) is not high enough to
capture shape descriptors for small objects. The results for bigger sized polyps were
obtained using a 10-big-polyp training set. Since our methods rely on previous
statistics, a bigger training set will improve the sensitivity of the system.

Kernel Function Linear Polynomial Exponential
% of Eliminated FPs for 80% polyp detection 28.51 24.89 18.87
% of Eliminated FPs for 90% polyp detection 38.15 31.32 33.33

Table 1. Improvements obtained by different kernel functions.

Fig. 6. Sensitivity vs. number of false positive detections. (a) Comparison between various
kernel types. (b) Comparison between various polyp sizes.



4 Conclusions and Future Work

Virtual colonoscopy is a promising new medical imaging technique to evaluate the
human colon for precancerous polyps. Due to the large amount of radiologist time
involved in reviewing hundreds of images in a search for small lesions, computer aided
diagnosis is necessary to make the approach efficient and cost-effective. Previous
automated detection methods had a high sensitivity for polyp detection, but relied on
human observations to differentiate polyps from normal folds or retained fecal
material. To be more accurate, we need a method that is capable of differentiating
polyps from other normal healthy structures in the colon. In this study, we proposed a
learning approach that yields a good polyp detection rate with a reasonable number of
false positives, thereby showing the feasibility of computer-based screening. One of
the main contributions of the paper is the new 3-D pattern analysis approach, which
combines the information from many random images to generate reliable shape
signatures. We also show that the use of support vector machines is capable of
distinguishing implicitly the differentiating characteristics of polyps and healthy tissue,
thus improving classification rates.

There are many possible directions for future investigation. First, we would like to
analyze support vectors to observe the differentiating characteristics of polyps and
healthy tissue. These observations might give valuable feedback in designing new
features for the system. In addition, while the results reported in this paper are
promising, more extensive case studies need to be carried out, and more
comprehensive statistics must be collected. Finally, studies integrating these computer
aided detection schemes with radiologist readers will be used to measure potential
improvements in sensitivity and efficiency compared with unassisted radiologist
interpretation.
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