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Abstract

To utilize CT or MRI images for computer aided diag-
nosis applications, robust features that represent 3-D im-
age data need to be constructed and subsequently used by
a classification method. In this paper, we present a com-
puter aided diagnosis system for early diagnosis of colon
cancer. The system extracts features by a new 3-D pat-
tern processing method and processes them using a sup-
port vector machine classifier. Our 3-D pattern processing
method, called Random Orthogonal Shape Section(ROSS)
mimics the radiologist’s way of viewing these images and
combines information from many random triples of mutu-
ally orthogonal sections going through the volume. Another
contribution of this paper is a new feedback framework be-
tween the classification algorithm and the definition of the
features. This framework, called Distinctive Component
Analysis combines support vector samples with linear dis-
criminant analysis to map the features of clustered support
vectors to a lower dimensional space where the two classes
of objects of interest are optimally separated so as to ob-
tain better features. We show that the combination of these
better features with support vector machines classification
provides a good recognition rate.

1. Introduction

Colon cancer is the second leading cause of cancer deaths
in the USA [16]. Previous research has shown that adeno-
matous polyps in the human colon have a high probability
of developing into subsequent colorectal carcinoma [13].
Detection and removal of small polyps can totally eliminate
the disease. Unfortunately, endoscopic diagnosis is both in-
vasive and expensive. Without systematic screening, colon
cancer is most often discovered after the patient develops
symptoms, and by then, the likelihood of a cure has dimin-
ished substantially.

Computerized tomography (CT) is a promising, non-
invasive procedure for screening [1, 15], as long as, auto-

matic diagnosis software assists the radiologist, thereby re-
ducing the cost of analysis. Automated polyp detection in
3-D CT images is a challenging problem because of both the
large volume of data and the high variety of polyp shapes.
First of all, a CT scan typically involves searching through
several hundreds of images. Therefore, a two stage system
is necessary where the first stage efficiently preprocesses the
data and generates polyp candidates, and the second stage
performs an elaborate analysis of the remaining candidates
for a final decision.

More fundamentally, the diversity of polyp shapes is a
major challenge to computer-aided diagnosis, particularly
when contrasted with the similarity that polyps can exhibit
with normal anatomical structures or residues of stool in
the intestine (Figure 1). A method that automatically ex-
tracts subtle differentiating characteristics of both polyps
and healthy tissue is needed.

Initial studies concerning automated polyp detection have
started from the intuitive observation that the shape of a
polyp is similar to a hemisphere. In [12], Summerset al.
compute the minimum, maximum, mean, and Gaussian cur-
vatures at all points on the colon wall and then use more re-
strictive criteria in order to eliminate non-spherical shapes.
In [9], Paik et al. use a Hough transform method based
on the concept that normals to the colon surface intersect
neighboring normals depending on the local curvature of the
colon. This method detects the polyps by giving the small
volumes a score based on the number of intersecting normal
vectors, a criterion which gets its maximum value when the
candidate shape is a perfect hemisphere. In [6], G¨oktürk and
Tomasi propose a method based on the observation that the
bounding surfaces of polyps are usually not exact spheres,
but are often well described by the superposition of small,
approximately spherical patches. In this method, a sphere
is fit locally to the isodensity surface passing through every
CT voxel in the wall region. Group of voxels that originate
densely populated nearby sphere centers are considered as
polyp candidates.

Due to the large number of false positive detections, all
of the methods mentioned above should be considered polyp
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Figure 1. (a-c) Examples of polyps (d-e) examples of
healthy tissue that have similar shapes.
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Figure 2. Flow diagram of the system

candidate detectors rather than polyp detectors,i.e., they
provide the first stage of a two-stage system. This paper
presents a statistical method that captures the more subtle
distinctions that differentiate between polyps and normal tis-
sue,i.e., the second stage of a two-stage system. The input
to this stage is a set of small candidate volumes, which may
or may not contain polypoid shapes. Our novel 3-D pattern
processing technique (ROSS) generates shape-signatures for
each candidate volume. The signatures are then fed to a Sup-
port Vector Machine (SVM) classifier for the final diagnosis
of the volume. SVMs identify the elements, so called the
support vectors, that carry the distinguishing characteristics
between the two classes in the training set. In order to get
further intuition, one way of explicitly obtaining these fea-
tures is through looking at 3-D renderings of the support
vectors. Here, we propose an automatic way of obtaining
these features. In addition, and in clear contrast with previ-
ous statistical classification work, we present a framework
where we use feedback from the classification algorithm in
order to obtain distinguishing features of the volume by a
concept called Distinctive Component Analysis (DCA). Us-
ing the feedback framework, we show that improved fea-
tures can be attained for classification purposes. More im-
portantly, DCA might be used to understand the differenti-
ating characteristics between similar polyps and healthy tis-
sue.

The paper is organized as follows: Section 2 explains
our methods, including the ROSS technique, SVM classi-
fier, and DCA in detail. Section 3 describes the experimental
setup and discusses our results. Section 4 gives our conclu-
sions and possible directions for future work.

2. Methods

Figure 2 gives the flow diagram of our system. We pro-
pose not only a good selection of features and a statistical
classification method, but also present a framework where
we use feedback from the classification method to obtain a

better combination of these features. The system consists
mainly of three components: ROSS method for feature cre-
ation, a SVM classifier as the statistical classifier, and DCA
as the feedback mechanism between them.

The flow diagram of the ROSS method is given in Fig-
ure 3. Here, we mimic the way the radiologists view colon
CT images. Instead of using 3-D renderings of the tissue,
they prefer to view the images through three perpendicu-
lar planes aligned with the transaxial, sagittal, and coronal
anatomical directions[3] (Figure 4). Viewing through these
three main axes gives substantial information about the 3-
D shape, but is incomplete by itself. To be more accurate,
we get a sufficiently large number of random triples of mu-
tually orthogonal planes through the volume. Having ob-
tained many triples of planes, geometric attributes are calcu-
lated from each random plane. We use a histogram of these
geometric attributes obtained from each triple as a feature-
vector to represent the shape. Taking histograms of these
geometric attributes over several random triples makes the
resulting signatures invariant to rotations and translations.
In addition, the right choice of the geometric attributes gives
robust signatures of the volume. In this work we have cho-
sen to sample through the 3-D shape in the form of 2-D sec-
tions. The statistics of the geometric information on these
triples of sections potentially represent many variations of
the shape. In order to cover as many variations by using 3-D
data directly, one needs to fit prohibitive amount ellipsoids
or other primitive objects to the shape. Alternatively, one
could use the histogram of local structures such as the cur-
vature. However, this choice is not diagnostic enough since
different shapes might often have similar distribution of lo-
cal information. As discussed in Section 2.1, ROSS method
goes through random samples of mutually orthogonal 2-D
sections and does not involve these problems, thus is an ef-
ficient and effective way to process the 3-D data.

SVMs are then trained with volume signatures computed
from an initial set, and are subsequently used to classify new
volumes into polyps and normal tissues. As discussed in
Section 2.2, support vectors are essentially the vectors that
carry the most distinguishing components between polyps
and healthy tissue. We explicitly obtain these components
by DCA, as described in Section 2.3, and subsequently im-
prove our features using these distinctive components.

2.1. Random Orthogonal Shape Sections Method

Each candidate volume is sliced with several triples of
perpendicular planes. Since a polyp may not occupy the
resulting image entirely, the images are first segmented to
disregard tissues surrounding the putative polyp.
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Figure 3. Overflow of the ROSS method.
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Figure 4. (a-c) Three views of the body through the
anatomical directions. (d) 3-D rendering of a polyp (e-g)
A randomly oriented, mutually orthogonal triple of planes

Figure 5. Optimum segmentation window in various im-
ages .

Segmentation

The size of the critical region varies depending on the size
and the shape of the suspicious lesion. Here, we aim to dis-
cover the best square window that would capture the essen-
tials of the shape. Figure 5 depicts the critical window for
different shapes. A window is considered good when it con-
tains a shape that is approximately circular and has a small
radius. To find an optimal window sizew, an image is first
binarized, and the following function is computed for each
window of size w and centered in the middle of the image:

f(w) = a1r(w) + ecircle(w) � a2eline(w) (1)

Here,r(w) is the radius of the circle that best fits the edges
in the binarized image,ecircle(w) is the residue to the best
fitting circle, eline(w) is the residue to the best fitting line,
anda1 anda2 are constants. The value ofw that yields the

smallestf(w) is chosen as the best window size.

Image Based Geometric Features

Once we find the optimal subwindow in a particular im-
age, we find some geometric features related to shape and
intensity in the segmented image. First of all, these fea-
tures should be able to capture representative information
about the candidate shape. For this purpose, we fit prim-
itive shapes such as circle, quadratic curve, and line (Fig-
ure 6 (d,e,f)) to the largest connected edge component, i.e.
boundary of the shape.

A random slice of a sphere is a circle. Thus, fitting
circles is a means of measuring the sphericity of the 3-
D shape.When doing so, the residuals at each pixel on
the boundary are first weighted with a Gaussian located at
the image center, and shown in Figure 6(c). By weight-
ing with this Gaussian mask, we give more importance to
boundary points of the shape than to those of the surround-
ing colon wall. The weighted residuals are then added to-
gether, and the least square fit gives the optimum circle. The
residual,ecircle, to the least square solution is recorded as
well.

Similarly, the residual,eline to the optimum fitting line
gives information on the flatness of the surface. Quadratic
curves include any second order equation system of two
variables. By fitting a quadratic curve to the boundary of
the image, the ellipsoidal structure of the shape can be mea-
sured.

The projection of a fold onto the image contains parallel
lines.To capture this structure, we apply parallel lines analy-
sis, which includes fitting lines to the two largest connected
components of the boundary points. We record the residual
to these lines and the angle between them.

In order to extract information on higher order frequency
characteristics of the boundary, 3rd order moment invariants
are computed as well [7]. In addition to all of these shape
based features, intensity features are extracted from the tis-
sue part of the image. For this, the tissue part is first seg-
mented by an intensity thresholding, and next, the intensity

3
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Figure 6. Illustration of the primitive shapes: (d) circle,
(e) quadric (f) line (h) parallel lines. Each shape is weighted
by the Gaussian given in (c)

mean and standard deviation of the tissue is recorded.
All the attributes mentioned so far are calculated for each

random triple of images. The three images in each triple are
sorted in the order of increasing radius of curvature, and the
features above are listed into a vector in this order. Often,
one plane out of these three planes does not contain useful
geometric information, i.e. it might be totally tissue, or to-
tally air region. Thus, we eliminate the features from that
plane, and the vector containing attributes from the remain-
ing two planes represents the signature of the shape, relative
to that particular triple of perpendicular planes (triple vec-
tor).

Obtaining the Histograms in High Dimensional Space

The features computed from each triple of perpendicular
planes depend on the position and orientation of that particu-
lar triple. However, if histograms of feature distributions are
computed from sufficiently many triples with random posi-
tions and orientations, the histograms themselves are essen-
tially invariant to position and orientation while characteriz-
ing many variations of shapes with a few numbers.

Here, we would like to mention that getting histograms
of data in high dimensional space is difficult. First of all,
uniform histograms are out of the question, since the high
dimension of the underlying feature space would imply pro-
hibitive amounts of storage. A more efficient solution, pro-
posed here, represents a histogram by first computing the
representatives for the main clusters of features over a large
collection of vectors. New feature vectors are then assigned
to these clusters, rather than to fixed uniform bins. This
method is called vector quantization and is described in [5].

In order to obtain the histogram bin centers, the k-means
clustering algorithm is applied on a training set of triple vec-
tors. Once the representative histogram bin centers are deter-
mined, a histogram of feature vectors belonging to each par-
ticular shape is calculated. When forming these feature his-
tograms, the simplest strategy would be to have each triple
vector increment a counter for the nearest cluster center.

Figure 7. Two polyps (left) and a very similarly shaped
fold structure (right). As expected, the signatures are very
similar, yet distinguishable.

(a) (b) (c)

Figure 8. Illustration of a specific case where a clustering
method with nearest neighbor distortion measure would fail.

This method, however, is overly sensitive to the particular
choice of clusters. We adopted a more robust solution, in
which each triple vector partitions a unit vote into fractions
that are inversely proportional to the vector’s distances to all
histogram bin centers. The histograms thus obtained, one
per candidate volume, are the rotation and translation invari-
ant shape signatures. In figure 7, examples of signatures
obtained for various shapes are illustrated.

As one might guess, performance of the system is closely
related to how well the representative histogram bin centers
are chosen. A clustering algorithm with nearest neighbor
distortion measure (such as k-means clustering algorithm)
would fail in some situations. Figure 8 gives such an ex-
ample. In (a), let the square and diamond points belong to
two different classes. Although it seems to be an easy case
to distinguish, when the k-means algorithm is executed, the
two cluster centers are obtained as in Figure 8(b), by cir-
cles. In brief, the two clusters are not correctly identified
because the spread of each cluster greatly exceeds the inter-
cluster distance. We will address this problem by extracting
the distinctive components in Section 2.3 through linear dis-
criminant analysis.

2.2 Support Vector Machine Classification

Given a training set of representative vectors for polyps
and healthy tissue, an optimum classifier is obtained, and
subsequently used for the classification of new test data. A
classifier learning algorithm takes this training set as input
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and produces a classifier as its output. The learned classifier
is then a function that, for any new candidate volume, tells
whether it is a polyp or not.

The goal is then to find a separation function between
the polyps and the healthy tissue that can be induced from
the known data points and generalizes well on the unknown
examples. Proposed first by Vapnik [14], the SVM classi-
fier aims to find the optimal differentiating hypersurface be-
tween the two classes. The optimal hypersurface is the one
that not only correctly classifies the data, but also maximizes
the margin of the closest data points to the hyperplane.

Mathematically, we consider the problem of separating
the training setS of pointsxi 2 R

n with i = 1; 2; : : : ; N .
Each pointxi belongs to either class and is accordingly
given a labelyi 2 f�1; 1g. SVMs [14, 11] implicitly trans-
form the given feature vectorsx into new vectors�(x) in
a space with more dimensions, such that the hypersurface
that separates thex, becomes a hyperplane in the space
of �(x)’s. Finding the optimal hyperplane is an optimiza-
tion problem where the distance of the margin points to
the hyperplane is maximized. This optimization problem
has been well studied in the literature [14, 11]. During
the optimization problem, only inner products of the form
K(xi; xj) = �(xi)�(xj ), called Kernels, need ever to be
computed, rather than the high dimensional vectors�(x)
themselves. In the classification process, only the vectors
that are very close to the separating hypersurface need to
be considered when computing kernels. These vectors are
called the support vectors. In other words, support vectors
are essentially the closest points to the optimal separating
hyperplane. An explanatory description of the support vec-
tors then would be, ’the data points that carry the differen-
tiating characteristics between the two classes’. Once we
obtain the support vectors, the distance of a vector x from
the optimal classifier has the following form:

d(x) =
b+
P

xi2SV
0s
�iyiK(xi; x)

jwj
(2)

where the constants�i; b are computed by the classifier-
learning algorithm. See [11] for details. The sign of this
distance gives the decision of the SVM classifier. Comput-
ing the coefficients�i; b is a relatively expensive (but well
understood) procedure, but needs to be performed only once,
on the training set.

Different from other statistical classification methods,
SVMs minimize the structural risk, given as the probability
of misclassifying previously unseen data. Thus SVM is the-
oretically well generalizable to test data. In addition, SVMs
pack all the relevant information in the training set into a
small number of support vectors and use only these vectors
to classify new data. This way, the distinguishing features of
the two classes are implicitly identified. These features can
explicitly be obtained by further observations on the support
vector shapes as shown in next section.

More generally, using a learning method is necessary for
a complex problem such as polyp recognition where it is not
quite possible to find the distinguishing components of the
two classes. Using SVM rather than hand-crafting classifi-
cation heuristics, exploits all of the information in the train-
ing set optimally, and eliminates the guess work from the
task of defining appropriate discrimination criteria.

2.3 Feedback Framework - Distinctive Compo-
nent Analysis

SVM identify the support vectors, the data that carries the
distinctive characteristics in both of the classes, and implic-
itly uses this information in the classification process. Be-
cause of the great number of dimensions of the underlying
feature space, the data vectors themselves are the result of
the clustering methods described in section 2.1. Clustering,
in turn, suffers from the problems shown at the end of that
section.

To address these problems, we have developed a feed-
back framework that uses support vectors in order to obtain
the distinctive components more explicitly, yielding better
clusters in turn. In addition, our feedback framework pro-
vides an explanation to what aspect of a feature is particu-
larly distinctive, and can therefore provide insights to feature
designers.

Data vectors that become support vectors come in shapes
that are simultaneously similar to both polyps and healthy
tissue. It therefore makes sense that analyzing the differ-
ences between nearby support vectors on opposite sides of
the classification boundary provides information on how
features can be improved. In this section, we describe a new
approach, calledDistinctive Component Analysis (DCA),
that uses linear discriminant analysis (LDA) [3] to em-
ploy the first-iteration feature vectors to produce new, low-
dimensional feature vectors that are best at discriminating
between positive and negative examples in small neighbor-
hoods of the classification surface.

As an example, consider the clustering failure given in
Figure 8. As it turns out, linear discriminant analysis will
define a new feature as the projection of the data to the ver-
tical line in Figure 8(c).

Without loss of generality, let us now consider the two-
class clustering problem. We assume that several labeled
data vectors for each class are available, and that these were
constructed with the clustering methods described in section
2.1. The objective of DCA is then to find a projection of the
data vectors onto a lower dimensional space where the two
classes become well separated.

Mathematically, this amounts to finding the best low-
dimensional space, where the intra-class variation of the pro-
jected vectors is minimized, while the inter-class variation is
maximized. Linear discriminant analysis is one of the meth-
ods to obtain this low dimensional domain[3]. Without loss
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of generality, let us develop the model for projecting the data
from its original space (of dimensionn) onto a single dimen-
sion (line). LetN1 of xi

1
’s be the instances of the first class

andN2 of xi
2
’s be the instances of the second class where

N1 andN2 are the number of instances in each class. Let
~xi
1

and~xi
2

be the projection of the vectors on to the distin-
guishing line. That is, given ann � 1 projection vector�,
~xi
1
= �

T
x
i

1
and ~xi

2
= �

T
x
i

2
. The distinctive component

is then determined by the value of the projection vector�,
where the following cost function is minimized:

C(�) = �1

X

8~x
i

1

k~xi
1
� ~x1k

2

+ �2

X

8~x
i

2

k~xi
2
� ~x2k

2

� k~x2 � ~x1k
2

(3)
where~x1 = 1

N1

P
8~x

i

1

~xi
1
, ~x2 = 1

N2

P
8~x

i

2

~xi
2
, and�1 and�2

are constants. We observed that0:1 � �1 = �2 = � � 0:5
gave similar results. The optimization problem can also be
written in the following form,

C(�) = �
T
H� (4)

whereH is given by:

H = �1

X1X
T

1

N1

+ �2

X2X
T

2

N2

+
X11112

T
X

T

2
+X21211

T
X

T

1

N1N2

� (1 + �1)
X11111

T
X

T

1

N
2

1

� (1 + �2)
X21212

T
X

T

2

N
2

2

whereX1 is the matrix with each column containing anx i
1

and similarly forX2. 11 and12 are column vectors of size
N1 andN2 with all 1’s as elements. Observe thatH is sym-
metric and thus has the same left and right eigenvectors,
i.e. H = U

T�U , where� is the diagonal matrix of sorted
eigenvalues andU is the matrix of eigenvectors. Assum-
ing thatk�k = 1, the expression (4) achieves its minimum
value when� = Un, the eigenvector ofH associated with its
smallest eigenvalue. The solution of LDA proposed here is
slightly different and more flexible than the traditional LDA
solution. In this proposed solution, by varying� 1 and�2,
one could evaluate the trade off between the summation in
equation 3 (the difference of intra-class and inter-class vari-
ations) versus the ratio of inter-class variance to intra-class
variance.

One could conceivably generalize this solution to map-
pings to higher dimensions than individual lines, by using
the lastm eigenvectors, rather than the last one. However,
the eigenvectors other thanUn, are perpendicular toUn.
Thus, the addition of these vectors is not of much practical
importance, sinceUn already captures the most distinctive
information.

An analysis that identifies the distinctive components of
the objects helps by not only distinguishing these important
features, but also eliminating the distracting features that a

(a) (b)

Figure 9. (a) Results obtained by SVM Classifier (b) Im-
provements obtained using further analysis by DCA .
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(c)

Figure 10. (a) Rendering of a polyp(top) and rendering
of a similar healthy tissue(bottom) (b) Examples of two mu-
tually orthogonal planes(the ones that were used out of the
triple to obtain the planar attributes). (c) Distinctive com-
ponent. First 12 attributes belong to the first (more curvy)
image, and the next 12 attributes belong to the second im-
age. The parallel line analysis in the second image and also
the circle error and quadratic invariants are the distinctive
components.

clustering algorithm would misinterpret. Even more impor-
tantly, it helps us interpret those important features that dis-
tinguish between the two classes and design new systems
using this information.

In the original form proposed here, the DCA uses linear
discriminant analysis that extracts local components (sepa-
rable components), rather than components that refer to the
entire space of polyps and healthy tissue. Thus, we propose
to apply DCA to small clusters of support vectors, as dis-
cussed more thoroughly in the experiments.

3. Experiments and Discussion

We used a data set consisting of small candidate vol-
umes from the CT scans of subjects enrolled in our CT
colonography study comprising 30 known polyps and 212
other regions containing tissue from healthy surface. These
healthy tissues were all false positives obtained in previous
work [6, 9], and essentially look quite like the true posi-
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(c)

Figure 11. (a) Rendering of a polyp(top) and rendering
of a similar healthy tissue(bottom) (b) Examples of two mu-
tually orthogonal planes(the ones that were used out of the
triple to obtain the planar attributes). (c) Distinctive compo-
nent. The intensity average and also error to the best fitting
line in the second image are the distinctive components.

Correct Wrong
Polyps 24 6
Normal Tissue 186 26
Total 210 32

Table 1. Correct and wrong detections in a preliminary
cross-validation experiment. See text for a more informative
analysis.

tive polyps (Some examples were shown in Figure 1). All
the polyps had a principal radius greater than 5 mm. 150
random triples of perpendicular images were extracted from
each candidate shape. A 24-vector was obtained for each
triple which measures the following features on the random
planes: Best fit circle’s radius, residue to the best fit circle,
line and quadratic curve, quadratic shape invariants, moment
invariants, angle between parallel lines (if there are parallel
lines in the image), total residue to line fit in the pair of par-
allel lines. Having obtained 24-vector for each triple of mu-
tually orthogonal images, 43 clusters were used in k-means
clustering, resulting into a 43-vector signature per candidate
shape.

The resulting signature vectors were used as feature vec-
tors by the SVM classification algorithm with exponential
radial basis functions as kernels [2]. We applied a 10-fold
cross validation study. In this study, we divided the polyps
and the healthy tissue into 10 disjoint sets and conducted
10 experiments. In each experiment, one of the 10 sets was
used as the test set, and the rest as the training set. Table
1 shows the classification results. The total performance of
the system was 87%.

A more meaningful analysis of our classification re-
sults can be conducted by considering the requirements of
colonoscopy screening. A moderate number of false pos-
itives is acceptable for screening: a radiologist examines
each polyp reported by the automatic procedure, and false

positives merely increase the time the radiologist spends
on each case. A large number of false positives, however,
would nullify the advantages of an automatic procedure,
since it may then take as much for the radiologist to exam-
ine the reported instances as it would take her to examine a
CT scan from scratch. False negatives, on the other hand,
must be avoided, since a missed polyp can not be caught
without the radiologist looking at the entire data set. Conse-
quently, an automatic system must have no more false nega-
tives than a human radiologist. [10], [4] and [8] report that
radiologists examining CT scans miss about 18-35 percent
of polyps of size 5mm or above. This is, therefore, our ref-
erence figure for false negatives. Algorithms that perform at
this level can then be compared to each other in terms of the
rate of false positives.

To examine this trade-off more quantitatively, we have
analyzed what happens when the zero-crossing (”sign” func-
tion) in expression 2 is replaced by a level crossing. As the
level is decreased, more true polyps are detected, but at a
cost of more false positives. The percentage of true polyp
detections versus false positive detections is given in Figure
9(a). The main objective of this work is to be able to achieve
an accuracy of 80% or more with an acceptable number of
false positives(FPs). In previous work, comparable accu-
racy was obtained with about 100 FPs per colon for polyps
of size 5mm or greater, and our approach is shown to be able
to reduce the false positive rate by 85% and 75% for accu-
racy levels of 85% and 95%, which inherently reduces the
radiologist’s interpretation time by the same amount.

The performance of the system can be further increased
if the aforementioned problems with the vector quantization
clustering are resolved. For this, we propose to use DCA
when the system is not certain about its decision. Having
obtained the support vectors from the previous analysis, the
margin between the support vectors and the optimum hyper-
plane gives the region where the decision of the system is
in the suspicious region for a test case. Thus for that par-
ticular case, we use the local distinguishing characteristics
of support vectors near that test case. More explicitly, we
obtain the closest k (k=2 in our experiment) polyp and non-
polyp support vectors to the test case, and apply the lin-
ear discriminant analysis to the geometric attribute vectors
of many triples of mutually orthogonal planes belonging to
those support vector shapes. This way, a distinctive� vec-
tor is found between the support vector cases close to the
test shape case. The distinctive components (�’s) have been
very informative in interpreting the distinguishing planar ge-
ometric attributes between the support vectors belonging to
polyps and support vectors belonging to healthy tissue. For
example, the distinctive components of the tissues given in
Figure 10 are the angle between the parallel lines, and total
fitting error to the parallel lines in the second plane (plane
where parallel lines are present) and error to the best fit-
ting circle and quadratic in the first (more curved) and sec-
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ond planes. A similar example is also given in Figure 11
where the distinctive component takes in the form of the in-
tensity attributes in the images. We think that DCA gives
valuable feedback even to the radiologists regarding these
distinguishing planar attributes.

The above mentioned 10 fold study is repeated for eval-
uating the DCA. For each experiment, if the test case falls
between the support vectors(suspicious region where the ex-
pression in 2 gets values in(�jwj; jwj)), further local anal-
ysis of the nearby support vector cases is conducted using
DCA. This analysis results in an optimum mapping� be-
tween the geometric triple attribute vectors of the nearby
support vectors. Finally, this mapping is applied to the ge-
ometric triple attribute vectors of the test case and the loca-
tion of the average mapping with respect to the mappings of
the polyp and non-polyp nearby support vectors is used as a
measure of polypness. The measure thus obtained is linearly
combined with the SVM’s measure obtained by expression
2 and final decision regarding the test case is given.

The results of the same 10-fold cross validation study
with DCA are summarized in Figure 9(b). The addition
of DCA improves the previous results by a considerable
amount. The ratio of False Positive detections is further re-
duced from 24% to 18% and 33% to 29% for sensitivity lev-
els of 90% and 100% respectively.

4. Summary and Conclusions

In order to process the 3-D medical images, we need to
develop 3-D pattern processing methods. In this paper, we
proposed a new 3-D pattern processing method called ROSS
method that mimics the radiologists’ way of viewing the im-
ages. We attain planar attributes from many randomly ori-
ented triples of mutually orthogonal planes and use vector
quantization to obtain histograms of these planar attributes
as invariant signatures of the shape. ROSS method is po-
tentially applicable to any shape recognition problem, since
it does not make any explicit assumptions about the shape.
We combine our signatures with SVM classification and im-
prove the results obtained by the previous study on human
colon cancer detection.

Another major contribution of this paper is the idea of
feedback framework between the SVM classification algo-
rithm and the features. This framework, called Distinctive
Component Analysis, uses linear discriminant analysis to
map the features to a lower-dimensional space where the
two class of objects are optimally separated so as to obtain
better features. This analysis has been informative in under-
standing the nature of distinguishing characteristics between
polyps and normal tissue that have similar shapes. Finally,
we show that the combination of these better attributes with
SVM classification provides a good recognition rate with a
reasonable ratio of false positive detections.

There are many possible directions for future investiga-
tion. The ROSS method can be applied to the output of any
high-sensitivity algorithm to reduce the ratio of false posi-
tive detections. Thus, we would like to apply the new 3-D
pattern recognition approach to other medical areas such as
lung nodule detection. In addition, we would like to conduct
more experiments with DCA. For this, any application area
where two classes of similar objects need to be distinguished
is appropriate.
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