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Abstract

Facial expression recognition is necessary for designing any
realistic human-machine interfaces. Previous published facial ex-
pression recognition systems achieve good recognition rates, but
most of them perform well only when the user faces the camera
and does not change his 3D head pose. In this study, we propose
a new method for robust, view-independent recognition of facial
expressions that does not make this assumption. The system uses
a novel 3D model-based tracker to extract simultaneously and ro-
bustly the pose and shape of the face at every frame of a monocular
video sequence. There are two main contributions of this paper.
First, we demonstrate that the 3D information extracted through
3D tracking enables robust facial expression recognition in spite
of large rotational and translational head movements (up to 90 de-
grees in head rotation). Second, we show that Support Vector Ma-
chine is a suitable engine for robust classification. Recognition
rates as high as 98 percent are achieved at classifying 3 distinct
emotional expressions (neutral, smile, surprise) and 91 percent
at classifying 5 distinct dynamic facial motions (neutral, open-
ing/closing mouth, smile, raising eyebrow).

1 Introduction and Previous work

In search for the “perfect” human-machine interface,
many computer vision researchers have been working on
automatic detection, tracking and recognition of the whole
or parts of the face [16, 9]. Most facial expression recogni-
tion systems developed so far require that the subject faces
the camera and does not change his 3D pose. In this paper,
we propose a novel scheme for facial expression recognition
that is coupled with a novel 3D model-based face tracker in
a monocular video sequence. This technique enables clas-
sification of dynamic facial expressions while the subject is
free to move his head in front of the camera. Following this
approach, pose and shape characteristics are naturally fac-
tored into two separated signature vectors through tracking,
leading to good facial expression classification rates even
under extreme head pose configurations.

The initial 2D methods for facial expression recognition

suffer from a high degree of dependence upon camera view-
ing angle [12, 1]. In [3], Chen et al. use learning subspace
method on features obtained from images of subparts of the
face. In [18], Wang et al. use 19 point 2D feature tracker
for the recognition of three emotional expressions. In [9],
Lien et al. use feature tracking with partial affine transfor-
mation compensation in order to recognize the movement
directions of action units. In [13], Sako and Smith use color
matching and template matching to find the positions of
important 2D features on the face and use the dimension
and position information about these features for expres-
sion recognition. Another 2D method is due to Hara and
Kobayashi in [8] where they use scanline brightness distri-
bution to detect six different expressions. One of the main
motivations behind 3D techniques for face or expression
recognition is to be able to succeed in a broader range of
camera viewing angles. In [6], Essa and Pentland devel-
oped a system for observing dynamic facial motions using
model based optical flow method. They show that their sys-
tem is suitable for coding, analysis and recognition of facial
expressions. In [5, 4, 11] a model based face tracking sys-
tem is used for facial deformation analysis. These 3D meth-
ods have potential to produce view-independent recognition
systems.

We introduced a model-based, markerless face tracker
in [11]. Here, we propose to apply this tracker for the pur-
pose of classifying facial expressions. The recognition sys-
tem consists mainly of two components: a training stage
and a testing stage. In the training stage, the three dimen-
sional deformable model of the subject’s face is built using
a stereo system. The shape vectors obtained through this
stage are used to train the support vector machine classifier.
In the testing stage, the face of the subject is tracked through
a monocular sequence in three dimensions using the com-
pact deformable shape model computed after training. The
3D deformation of the face is then encoded in a form of
a small vector of scalars (also called shape vector) that is
used by the support vector machine classifier to recognize
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Figure 1. The main components of the algorithm.

the facial expression at every frame of the sequence.
The rest of the paper is organized as follows. In Sec-

tion 2, we describe the components of the system. In Sec-
tion 3, two set of experiments, one with five dynamic facial
motions and the other with three emotional expressions are
presented. In Section 4, we discuss possible directions for
future work and conclude.

2 Description of the System

Figure 1 shows the flowchart of the system. Similar to
other statistical models, the system is composed of train-
ing and testing stages. Stereo tracking serves as a basis
for building the three dimensional deformable model of the
subject’s face. Inherently, the learned models serve as the
training data for support vector machine classifier. Monoc-
ular tracking uses the learned model for robust tracking of
face pose and shape. The shape vector is subsequently used
by the support vector machine classifier to assign particular
probability of each expression.

An overview of the face model used for tracking is given
in Section 2.1. We describe the details of the tracking sys-
tem in Sections 2.2 and 2.3. Section 2.4 describes the Sup-
port vector machine classifier, and presents its application
to our multi-class problem.

2.1 Deformable Face Model

The face is modeled by a collection of N = 19 points
Pi (i = 1; : : : ; N ). See Figure 2. We define the face ref-
erence frame as a reference frame attached to the head of
the user. LetXi(n) andXi

c(n) be the coordinate vectors of
a generic point Pi at frame n in the face and camera refer-
ence frames respectively. Those two 3-vectors are related to
each other through a rigid body transformation characteriz-
ing the pose of the user’s face with respect to the camera:
Xi
c(n) = R(n)Xi(n) + t(n), where R(n) and t(n) are

the rotation matrix and translation vector defining respec-
tively the orientation and the absolute position of the center
of the face in the camera reference frame. Of course, since
R(n) is a rotation matrix, it is uniquely parameterized by a

3-vector !(n) also known as rotation vector(see [7]). The
problem of tracking the face in a monocular sequence corre-
sponds then to estimating the quantitiesXi(n) (shape), and
!(n) and t(n) (pose) for all points Pi (i = 1; : : : ; N ) for
all frame numbers n.

As expressed in its most general form, it is easy to show
that this estimation problem is unsolvable from a monocular
observation. For example, one may pick any rigid pose pa-
rameters f!(n); t(n)g, and there will always exist a shape
fXi(n)g that will result into the same projected points on
the image. However, we can assume some more constraints
on the shape unknown in order to make the problem solv-
able. Let X(n) be the resulting 3N � 1 vector after stack-
ing the coordinatesXi(n) of all of the points at time n such
that X(n) = [X1(n) : : :XN (n)]T . The key constraint that
makes monocular tracking possible is to assume that at any
time n in the sequence, the whole shape coordinate vector
X(n) is a linear combination of a small number of (known)
3N�vectorsX0;X1; : : : ;Xp (p� 3N ):

X(n) = X0 +

pX
k=1

�k(n)Xk ; (1)

where the vectors Xk, (k = 0; : : : ; p) are not func-
tions of the frame number n. The p scalar coefficients
�k(n) are the only entities that allow for non-rigidity of
the 3D shape across time. As a result, the p�vector
�(n) = [�1(n) �2(n) : : : �p(n)]

T is called the shape
vector. The integer p is referred to as the dimensionality of
the deformation space. The shape X0 is referred to as the
‘neutral shape’ (at resting position) and the other p vectors
Xk as the principal movement directions. The shape vector
�(n) carries the facial expression information independent
of 3D pose, thus will be our main resource for facial expres-
sion recognition.

In this present work, we propose to use a different mean
shape vector X0 per subject to account for intrinsic geo-
metric variations between faces, but the same set principal
movement direction vectors X1; : : : ;Xp for every individ-
ual. This corresponds to assuming that after subtraction
of the mean shape, every individual has approximately the
same modes of facial deformation. As a result, when deal-
ing with a generic user u, we will sometimes denote his
corresponding mean shapeXu

0
.

Given this new formalism, the monocular tracking algo-
rithm answers the problem of estimating the deformation
vector �(n), and the pose parameters !(n) and t(n) at ev-
ery frame. This procedure is described in Section 2.3.
However, prior to monocular tracking, it is necessary to
compute the average shape (X0), and the principal move-
ment direction vectors (Xk’s) as discussed in Section 2.2.

2.2 Stereo Tracking

We propose to estimate the principal movement direc-
tion vectors Xk, k = 0; : : : ; p from real tracked stereo
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Figure 2. (a) The N = 19 point mesh and the two vectors used
to align the mesh across subjects. (b) The mesh projected on the
image of the face.

data. Here, a stereo sequence is captured while the user
makes a variety of facial expressions without changing his
head pose. Having initialized the 19 point mesh given in
figure 2, the points are tracked on the stereo image streams
using standard optical flow techniques [10, 15] constrained
by space energy functions as described in [11]. The out-
come of this procedure is the 3D trajectory of each point P i

throughout the entire sequence.
After stereo tracking, the p shape basis vectors Xk,

k = 0; : : : ; p are computed using the Singular Value De-
composition (SVD) [2] of the 3D shape trajectory matrix
Here, we choose to compute the basis shape vectors from
several individuals. For this purpose, each subject is tracked
in separate stereo sequences, and then all shape trajectories
are registered (or aligned) in a consistent reference frame
(figure 2). Once the shape sequences ofK users are aligned,
each neutral shape Xu

0
(u = 1; : : : ;K) is estimated as the

initial face shape of the sequence belonging to individual u:
X
u
0
= X

u(1). where Xu(n) is now the 3D mesh that be-
longs to individual u at frame n (after 3D alignment). Ob-
serve that this way, we assume that every stereo sequence
starts with the user being at rest position. Next, the neu-
tral shape is subtracted from the whole aligned trajectory of
user u. Each resulting residual shape trajectory ~Xu(n) for
user u becomes ~Xu(n) = X

u(n) � Xu
0

. The new shape
trajectory ~Xu(n) is then used to build the following matrix:

M =
h
~X1(1) ~X1(2) � � � ~X1(N1) ~X2(1) � � � ~XK(NK)

i
;

where Nu is the length of the tracked sequence correspond-
ing to user u. Next, applying Singular Value Decomposition
(SVD) onM, we obtainM = USVT whereU andV are
two unitary matrices andS is the diagonal matrix of the pos-
itive and monotonically decreasing singular values �k. The
first p column vectors of U give the principal movement di-
rections Xk (k = 1; : : : ; p). Following this decomposition,
we approximate the generic shape X of user u as the sum
of its neutral shape Xu

0
and a linear combination of the p

principal movement direction vectors

X = Xu
0
+

pX
k=1

�kXk: (2)

Once the basis shape vectors are computed, it is straight-
forward to compute the blending coefficients �k(n) corre-
sponding to every frame number n. This is done by project-
ing orthogonally each residual shape ~Xu(n) onto the basis
vectorsXk (k = 1; : : : ; p) by a standard scalar product op-
erator:

�k(n) = h ~Xu(n);Xki;

The sequence of shape vectors (�k(i)
0s) associated with ev-

ery frame i of the stereo sequence is then used to train the
Support Vector Machine classifier (Section 2.4).

2.3 Model-Based Monocular Tracking

In its original form, optical flow tracking computes the
translational displacement of a particular point in the im-
age given two successive frames (see [10, 15]). In the case
of model-based tracking, all the points in the model are
linked to each other through the parameterized 3D model
(given here by Equation (1)), and the parameters defining
the model configuration are estimated all at once from im-
age measurements. In our case, those parameters are �(n)
for shape and f!(n); t(n)g for pose. Assuming that the
face model has been tracked from the first frame of the se-
quence I1 to the (n�1)th frame In�1, the objective is to es-
timate the optimal pose f!(n) = !(n�1)+d!(n); t(n) =
t(n�1)+dt(n)g and deformation�(n) = �(n�1)+d�(n)
of the face model that best fit the subsequent frame In. For
that purpose, let us define a cost function Cn whose mini-
mum is achieved at the tracking solution

Cn =
X
i;ROI

(
(1� �)

�
In(x

i
n)� In�1(x

i
n�1)

�2
+�
�
In(x

i
n)� I1(x

i
1
)
�2

)
(3)

x
i
n = �i (�(n); !(n); t(n)) ; (4)

where �i is the model-based image projection map of the
face mesh vertex Pi (pinehole model) that is function only
of the shape and pose parameters f�(n); !(n); t(n)g. The
summation in Equation (3) is done over small pixel win-
dows (ROI) around every image point x in, xin�1 and xi

1
.

Observe that the first term in Equation (3) is the stan-
dard matching cost used in the Shi-Tomasi-Kanade feature
tracker [10, 15] (tracking cost). The second term however
measures the image mismatch between the current image
In and the first image I1 in the sequence enforcing every
facial feature to appear the same from the beginning to the
end of the sequence (monitoring cost). For all experiments,
we kept � = 0:2 to emphasize standard tracking cost over
monitoring cost. Tracking is equivalent to estimating the
optimal pose and deformation update vectors d!(n), dt(n)
and d�(n). This is done by setting the derivative ofCn with
respect to d�(n), d!(n) and dt(n) to zero

@Cn

@s
= 0; where s =

2
4 d�(n)

d!(n)

dt(n)

3
5 : (5)
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Figure 3. Five different expressions with the corresponding shape
vectors.

Input Expression Decision
N. O. M. C. M. S. R. E.

Neutral(N.)(44) 32 6 3 0 3
Opening Mouth(O.M.)(80) 0 76 4 0 0
Closing Mouth(C.M.)(50) 0 1 49 0 0
Smile(S.)(87) 2 0 0 81 4
Raise Eyebrow(R.E.)(21) 3 0 0 0 18

Table 1. The input expression vs the decision of the system

The solution to Equation (5) is obtained by gradient de-
scent iterations as discussed in detail in [11]. The vector
[d�(n) d!(n) dt(n)]T provides a solution that character-
izes the differential of pose and deformation between frame
n � 1 and frame n. It has to be noted that this tracking
method solves for the shape vector � independently from
the pose of the subject. This makes the 3D tracking ap-
proach very suitable for facial expression recognition.

2.4 Statistical Classi�cation Using Sup-
port Vector Machine Classi�cation

For recognizing dynamic expressions (e.g. open-
ing/closing month), it is necessary to augment the shape
vector �(n) with its first temporal derivative _�(n). Numeri-
cally, a finite difference equation is used to approximate the
derivative operator. The resulting 2p � 1 feature vector at
frame n is:

x(n) =

�
�(n)
_�(n)

�
=

�
�(n)

�(n)� �(n� 3)

�
: (6)

Observe that, in order to remain robust with respect to noise
in tracking, the difference is calculated using a baseline of
three frames. In practice, other kernels for differentiation
could be applied. The resulting vectors x(n) are the feature
vectors for support vector machine classifier. For clarity
purposes, we will sometimes drop the frame number n in
this section to denote the feature vector.

The first step of statistical classification is to identify
the optimum classifier that corresponds to the facial feature
vectors x(n) calculated from the stereo sequences (training
data). The goal is then to find a separation function that
can be induced from the known data points (feature vectors
from stereo tracking) and generalizes well on the unknown

examples (feature vectors from monocular tracking). With-
out loss of generality, let us first consider two-class clas-
sification problem, i.e. classification between a particular
expression vs. all other expressions. Proposed first by Vap-
nik [17], the SVM classifier aims to find the optimal dif-
ferentiating hyperplane between the two classes. The opti-
mal hyperplane is the one that not only correctly classifies
the data, but also maximizes the margin of the closest data
points to the hyperplane.

Mathematically, we consider the problem of separating
the training set S of points xi 2 Rn with i = 1; 2; : : : ; N .
Each data point xi belongs to either class and thus is
given a label yi 2 f�1; 1g. Support vector machines
(SVM) [17, 14] implicitly transform the given feature vec-
tors xi into new vectors �(x) in a space with more dimen-
sions, such that the hypersurface that separates the x be-
comes a hyperplane in the space of �(x)’s. Finding the
optimal hyperplane is then an optimization problem where
the distance of the margin points to the hyperplane is max-
imized. In this optimization problem, only inner products
of the form K(xi; xj) = �(xi)�(xj) ever need to be com-
puted, rather than the high dimensional vectors �(x) them-
selves [14]. In our study, we used exponential radial basis
functions (erbf) and radial basis functions (rbf) which are
explicitly given by:

Kerbf (xi; xj) = e
�

jxi�xj j

2�2 ; Krbf (xi; xj) = e
�

(xi�xj )
2

2�2

where �2 is the variance parameter. In the classification
process, only the vectors that are very close to the sepa-
rating hypersurface need to be considered when computing
kernels. These vectors are called the support vectors. Once
the support vectors, xk’s are computed, the distance of a
vector x from the optimal classifier has the following form:

z(x) =

P
xk2SV 0s �k ykK(xk; x) + b

jwj
(7)

Observe that the summation is done over the support vec-
tors only. Computing the coefficients �k; b is a relatively
expensive procedure (see [17]), but needs to be performed
only once during training. During the classification process,
only Equation (7) needs to be computed.

In order to apply support vector machines to expression
recognition problem, we need to generalize the method to
more than two classes. Let Ci be the class belonging to the
ith expression. Using SVM, the best differentiating hyper-
surface can be deduced for each class. This hypersurface is
the one that optimally differentiates the data belonging to
the particular class Ci , from the rest of the data belonging
to any Cj where j 6= i.

Having obtained the hypersurface for each class, a test
shape vector (coming from monocular face tracking) is clas-
sified. First, the location of the new data is determined with
respect to each hypersurface. For this, the learnt SVM for
the particular hyperplane is used to find the distance of the
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SVM with SVM with Clustering N-Nearest N-Nearest
kernel erbf kernel rbf with N=9 with N=5

Same Person 176/182 170/182 161/182 173/182 173/182
Total Performance 256/282 253/282 242/283 255/282 253/282

Table 2. The total number of correctly classified frames for five different classification algorithms.

(a) (b) (c) (d)

Figure 4. (a) An example of missclassification (b-d) Examples of
correct classifications with various head poses.

(a) (b) (c) (d)

Figure 5. (a-d) Examples of correct classifications with various
head poses.

new data to that hypersurface using the distance measure in
equation (7). Let zi be the distance of the new data point to
the ith class’s hyperplane. The probability that the new data
belongs to the ith class is then given by Pi:

Pi =
eziP
j e

zj
: (8)

Once the probability function is obtained for each class, the
most probable expression is given as the final decision of
the system.

3 Experiments

In this section, we present and discuss results achieved
on two sets of experiments: recognition of dynamical mo-
tions and recognition of emotional expressions. Three sub-
jects were used in both experiments. Two of these subjects
were included in the training set (stereo tracking) and all
three were included in the test set (monocular tracking).

In the first set of experiments, we aimed to differenti-
ate between the five distinct facial movements: Opening
mouth, closing mouth, smile, raise eyebrow and neutral
shape. The training set (sequences) included a total of 235
frames from the stereo sequences of two subjects. After
training of the SVM, the number of support vectors were
82(35%),51(22%),54(23%),53(23%) and 74(31%) for neu-
tral shape, opening mouth, closing mouth, smiling and rais-
ing eyebrow respectively. The observation that more sup-
port vectors are needed for characterizing the neutral shape
class reflects the fact that this class is the most ‘difficult’ to
separate from the other four. Intuitively, this comes from

(a) (b) (c) (d)

Figure 6. (a-d) Examples of correct classifications with various
head poses.

(a) (b) (c) (d)

Figure 7. (a) An example of opening mouth, correctly classified. (b-
d) Correct classifications with smile expressions at various depths
with respect to the camera.

the fact that in the training sequences, the face often takes
its neutral shape during the transitions between the other
expressions.

The test data included monocular sequences of the three
subjects. Figure 3 shows examples of the five dynamical
motions along with the corresponding shape vectors x(n).
Here, the first five components correspond to the shape vec-
tor �(n) and the remaining five components correspond to
its derivative (p = 5 in Equation 2). Table 1 summarizes the
results of the experiments in categories of different expres-
sions. Exponential radial basis function (erbf) with standard
deviation of � = 4 was used in this experiment. These re-
sults show that all the movements are easy to distinguish
except for the neutral shape. The neutral shape is some-
times confused with the expression that occurs just before
or just after in the sequence.

Figures 4-7 show several examples of facial expression
classifications. The probabilities assigned to each expres-
sion are also given in a form of a bar plot below each picture
with the following order of expressions(left to right): neu-
tral, opening mouth, closing mouth, smiling, raising eye-
brows. The set of experiments demonstrates that our recog-
nition system is robust to changes in head pose. Indeed,
Figure 4b shows that the system classifies correctly even
when the subject faces away from the camera (rotation of
nearly 90 degrees). The system is also able to recognize fa-
cial expressions in the case where some of the features are
not fully visible. For example, in Figure 4d, in spite of the
fact that the right corner of the mouth and half of the eye-
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SVM with SVM with
kernel erbf kernel rbf

Same Person 164/165 165/165
Total Performance 222/228 223/228

Table 3. Performance of the system with the three emotional ex-
pressions

brow are not visible, the raised eyebrow movement is still
correctly identified. In Figure 4a, however, a misclassifica-
tion occurs mainly since a transition of expressions occurs
at this frame. In Figures 5a and 6d, two examples of tran-
sitions between two expressions are given. In these cases,
the system assigns nearly equal probabilities to the two ex-
pressions. On Figures 7bcd the same correctly classified
expression (smile) is shown when the head of the user is at
different locations (depths).

Table 2 gives a comparison of recognition performances
of five different classification algorithms. The performance
criteria are also divided into two groups with test subject in
the training set (same person row), and total performance
(including an additional unfamiliar test subject). We ob-
serve that SVM performs considerably better than the clus-
tering algorithm, but is rather equivalent to the N-nearest
neighbor algorithm. Although the N-nearest classification
and the SVM classification produce similar results for this
particular set of experiments, SVM has two major advan-
tages over N-nearest classification. First, SVMs minimize
the structural risk in a classification problem therefore po-
tentially scale better to new data (different subjects and ex-
pressions). Second, classification with SVM takes less time
since SVM uses only the support vectors.

To further investigate classification of emotional expres-
sions, we conducted another set of experiments with three
new expressions: neutral, surprise and happy. The training
set included two subjects, and the testing set included three
people, two of which are the same as in the training set. The
results are summarized in Table 3. The performance of the
system is as high as 98%.

4. Conclusion and Future Work

Facial expression recognition is a necessary application
for many future human-computer interaction scenarios. In
this paper, we proposed a new method for robust recogni-
tion of facial expressions. The system uses the 3-D monoc-
ular, markerless face tracker to extract a shape vector that
is demonstrated to be a robust feature for classification pur-
poses.

There are two main contributions of this paper. First,
we demonstrated that the 3D information extracted through
3D tracking enables robust facial expression recognition in
spite of large rotational and translational head movements
(up to 90 degrees in head rotation). Second, we showed
that Support Vector Machine is a suitable engine for robust

classification. Recognition rates as high as 98 percent were
achieved at classifying 3 distinct emotional expressions and
91 percent at classifying 5 distinct dynamic facial motions.

In the future, we would like to perform another set of
experiments with more subjects and expressions. One im-
portant objective is then to build a generic parameterized
static face model and use it along with the principal move-
ment directions for tracking and expression recognition of
any generic person. Another direction is to investigate ap-
plications of our tracking approach to different recognition
problems such as face recognition, and lip reading.

References

[1] W.W. Bledsoe. Man-machine facial recognition. Panoramic Re-
search Inc.,Palo Alto, CA,, 1966.

[2] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid
3D shape from image streams. Proceedings CVPR ’00, 2:690 –696,
2000.

[3] X. Chen, S. Kwong, and Y. Lu. Human facial expression recognition
based on learning subspace method. IEEE International Conference
on Multimedia and Expo, 1:403–406, 2000.

[4] D. DeCarlo and D. Metaxas. The integration of optical flow and de-
formable models with applications to human face shape and motion
estimation. Proceedings CVPR ’96, pages 231–238, 1996.

[5] P. Eisert and B. Girod. Model-based facial expression parameters
from image sequences. Proc. IEEE International Conference on Im-
age Processing ICIP-97, Santa Barbara, CA, USA, 2:418–421, Oc-
tober 1997.

[6] I.A. Essa and A.P. Pentland. Coding, analysis, interpretation and
recognition of facial expressions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19 No.7:757–763, 1997.

[7] O.D. Faugeras. Three dimensional vision, a geometric viewpoint.
MIT Press, 1993.

[8] F. Hara and H. Kobayashi. A face robot able to recognize and pro-
duce facial expression. Proceedings of the 1996 lEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems ’96, IROS 96,
3:1600–1607, 1996.

[9] J.J. Lien, T. Kanade, J.F. Cohn, and C.C. Li. Automated facial ex-
pression recognition based on FACS action units. Proceedings of
Third IEEE International Conference on Automatic Face and Ges-
ture Recognition, pages 390–395, 1998.

[10] B.D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. Proc. 7th Int. Conf. on Art.
Intell., 1981.

[11] Anonymous published paper.

[12] T. Sakaguchi and S. Morishima. Face feature extraction from spa-
tial frequency for dynamic expression recognition. Proceedings of
the 13th International Conference on Pattern Recognition, ICPR’96,
3:451–455, 1996.

[13] H. Sako and A.V.W. Smith. Real-time facial expression recognition
based on features’ positions and dimensions. Proceedings of the 13th
International Conference on Pattern Recognition, 3:643–648, 1996.

[14] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Mu-
nich, 1997.

[15] Jianbo Shi and Carlo Tomasi. Good features to track. Proc. IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recogn., pages 593–
600, 1994.

6



[16] M Turk and A.P. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1):71–86, 1991.

[17] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer,
New York, 1995.

[18] M. Wang, Y. Iwai, and M. Yachida. Expression recognition from
time-sequential facial images by use of expression change model.
Proceedings of Third IEEE International conference on Automatic
Face and Gesture Recognition, pages 324–329, 1998.

7


