Robust Probabilistic Inference in Distributed Systems
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Large-scale networks of sensing devices are a useful technolo
for a wide range of applications; examples include sensor n

works, maobile robot teams, and certain distributed Internet ap:
plications. In these systems, nodes make local observations

their common environment in order to solve a complex glob
task. For example, robots in a team may each collect a se
laser scans which are combined to build a map. Or, the nodes:
a sensor network in a precision agriculture deployment may cof;
lect local temperature and humidity measurements to determi
when to water the crop. These local sensor measurements
often correlated, noisy or uncalibrated; as a result, probabilist
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Abstract

Probabilistic inference problems arise naturally in
distributed systems such as sensor networks and
teams of mobile robots. Inference algorithms that use
message passing are a natural fit for distributed sys-
tems, but they must be robust to the failure situations
that arise in real-world settings, such as unreliable
communication and node failures. Unfortunately, the
popular sum—product algorithm can yield very poor
estimates in these settings because the nodes’ beliefs
before convergence can be arbitrarily different from
the correct posteriors. In this paper, we present a new
message passing algorithm for probabilistic inference
which provides several crucial guarantees that the
standard sum—product algorithm does not. Not only
does it converge to the correct posteriors, but it is also
guaranteed to yield a principled approximation at any
point before convergence. In addition, the compu-
tational complexity of the message passing updates
depends only upon the model, and is independent of
the network topology of the distributed system. We
demonstrate the approach with detailed experimental
results on a distributed sensor calibration task using
data from an actual sensor network deployment.

Introduction

inference is of central importance to these systems.
A simple approach to inference is to download the measurén overview of the architecture is presentet

ments from the network and then analyze them at a central
cation. This approach is appropriate in some cases, but th
are several reasons to prefer a distributed approach to inf
ence. For large networks, distributed inference scales better:
reduces communication because nodes transmit compact s
maries instead of their measurements; and, it leverages par
lelism by making use of the computational resources at ea
In addition, distributed inference enables distribute
decision-making and actuation, since every network node ¢
access the posterior distribution of the state of the environme

node.
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the network topology of a distributed system can change over
time; for example, communication between nearby nodes can
be interrupted by occlusions or interference. Third, nodes can
fail for a number of reasons, e.g., a battery may die, a computer
may crash, etc. Finally, the power, computation, and communi-
cation resources of nodes can be quite limited. Because of these
challenges, we have found that to solve the distributed inference
problem, it is insufficient to adapt existing algorithms to dis-
tributed systems; fundamentally new algorithms are required.

Sensor networks typify
many of the challenges
that must be overcome by
a robust, distributed infer-
ence algorithm. A sensor
network is a collection of
autonomous devices that
measure characteristics of
their environment, perform
local computations, and
communicate with each
other over a wireless
network. Figure 1 shows
an example sensor network node developed jointly by Intel
and the University of California, Berkeley [2]; it can measure
temperature, humidity, pressure, visible and infrared light,
sound, magnetic fields, and acceleration. Sensor networks are
an important new technology for many applications including
habitat monitoring [3] and target tracking [4]. In this paper we
will use sensor networks as our primary example.

_XNide range of inference problems, including probabilistic in-

rence, pattern classification, constraint satisfaction, and re-
ssion [5], can be solved by asynchronous message passing
a data structure called a junction tree [6]. In a compan-

Figure 1: a MICA-2 “mote”

ce in which the nodes of the network assemble themselves
0 anetwork junction tree, where each network node has an
sociated cligue and set of factors. Our architecture builds,
c?intains, and optimizes this network junction tree robustly,
dressing both unreliable communication and node failures.
sing asynchronous message passing on this junction tree, the
nodes can solve the inference problem efficiently and exactly.

a%‘ paper [1], we present an architecture for distributed infer-

%’Ethis architecture, each node can have an associated set of

ery variables. After the message passing algorithm con-
rges, each node can compute the exact posterior for its query
riables. However, this guarantee is of limited value: in large,
ssy, or volatile networks, convergence may take a long time;

, it may never happen because the network junction tree is
nstantly in flux. In addition, even when a nduksreceived

| of its messageghere is no way to know itthe node can

ver rule out the possibility that a new node carrying addi-
onal factors will enter the network later, causing the messages

To design a distributed inference algorithm for large-scale syde change. These problems motivate us to considepangal
tems there are significant challenges to overcome. First, corbeliefa node obtains by combining its local information with its
munication between nodes can be unreliable due to noise amtoming messages before convergence.

packet collisions, especially in ad hoc wireless networks su
as those used by mobile robots and sensor networks. Sec

Crll.}]d]fortunately, in the sum—product algorithm there is little we



can say about the relation a node’s partial belief will have to th DL L]

correct posterior. For example, a missing message may carry a
crucial prior factor which, when omitted, gives the partial belief| % —— 0
a skewed view of the probability of different events. Conside Vo d b 5

a sensor network that is monitoring a nuclear reactor: if a pri aegfiN T\ 390y (=

factor over the boolean variabiteeltdown-imminent (indicat- NN R g N B
ing a situation that is very unlikela priori) is not integrated P A N ‘
into a node’s belief, the net effect is as if it were replaced with U g \ /

uniform prior factor indicating tha priori chance a meltdown is i | S| —m ( == |IXIX

imminent is 50%! As we demonstrate experimentally, this be/ ph— < cillio e | 4] A

havior makes sum—product message passing inappropriate 9 5

distributed inference in sensor networks. 0fE! N E

Ideally, we would like an efficient, distributed message passin :
algorithm with three properties: Figure 2: The Intel Berkeley Lab deployment. The Markov

Property 1 (Local Correctness). Before any communication graph for the nodes’ temperature variables is overlaid.
has occurred, each node can compute the corecal poste-

rior of its query variables given its measurements. B, C X. Thus, the full joint takes the form

Property 2 (Global Correctness). After convergence, every
node can compute the corregibbal posterior of its query vari-
ables given the measurements of all the nodes. Pr{X,M} =

Property 3 (Partial Correctness). Before convergence, a node
can compute the correplartial posterior of its query variables
given the measurements that have been incorporated in the mes- factorized priorPr {X }
sages it has received.

K
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measurement model

where eaclC € C is a subset of environment variables.

e assume that each measurement model is stored by the node
at obtains its corresponding measurement, and that the factors

If every node has access to the complete probability model, th
it is possible to design a simple message passing algorithm wifh

all three properties (s€gl.1). However, this approach does not : s
o ; of the priorPr {X} are partitioned across the nodes of the net-
scale because every node must reason with the entire mOdeI'work. Thus, each nodéreceives a set of factors; collectively,

In this paper, we present an efficient message passing algoriththese factors represent the probability model in a distributed

calledrobust message passingvhich satisfies Properties 1 and fashion. We us&/; C X to denote thevariables local to i,

2, and satisfies a relaxed form of Property 3 where a node’s pare., the union of all environment variables associated with the

tial posterior can make conditional independence assumptiorfactors distributed to node

Thus, the algorithm is guaranteed to yield a principled approx- o .

imation at any point in the inference process. In addition, r(;ﬁ-n a.d?'tc'jon tg 't? fe]}ctors, each QOd@f gl‘e net\lflvorlfitgas an as-

bust message passing is extremely efficient: the computatio clate SCU Pg?ﬂ? enwro_nrbr}en \(]ana tes_ Catﬁd‘ “t/ v]:atr;]-

complexity of the message passing updates depends only on tHHeS Qi o Stat etshe tva”%e es Ct arac_frlzeThgjpz%r_bot de en-

model, and not on the network topology. We conclude wit onments state that nodemust monitor. IStribute
erence problem is defined as follows: after every node

detailed experimental results that demonstrate the algorithm ? : ; ; .
Cetr I ; s obtained observations for its associated measurement vari-
a distributed sensor calibration task using data from an actu les, the nodes must collaborate so that each hadeains

sensor network deployment. Pr{Q;| mi,...,mr}, the posterior distribution of its query
variables given the measurements made by the entire network.

2 The distributed inference problem o . .

We now present a motivating example that will be used in the
We assume a network model where each node can perform locamainder of this paper.
computations and communicate with other nodes over a broaghyample 1 (distributed sensor calibration). After a sensor
cast channel. The nodes of the network may change over timgetwork is deployed, the sensors can be adversely affected by
existing nodes can fail, and new nodes may be introduced. Wge environment—for example, particulate matter can accumu-
assume a message-level error model: messages are eitherdgs on the sensors—leading to biased measurements. The dis-
ceived without error, or they are not received at all. Only the renipted sensor calibration task involves automatic detection
cipient is aware of a successful transmission; neither the sendgiq removal of these biases [7]. This is possible when the quan-

nor the recipient is aware of a failed transmission. For each pajties measured by nearby nodes are correlated, but the nodes’
of nodes; andj, there is some probability that a message trangjases are independent.

mission by node will be received by nodg; the link quality )
(i.e., the probability of a successful transmission) frotn j is ~ Figure 2 shows a sensor network of 54 nodes that we deployed
unknown and may change over time, and link qualities of sevn the Intel Berkeley Lab. We fit a Gaussian probability model
eral node pairs may be correlated. for this data set where each nodéas three associated vari-

. . . . ables: its observed temperature measurenidpntthe true (un-
The random variables of our inference problem are divided intgpseryed) temperature at its locatidi, and the (unobserved)
M = {M,..., My} measurement variables each mea- ariaples are related by the Markov grabbf Figure 2 and that
surement variablé/j, corresponds to one of the sensors on ongne piases are marginally independent, resulting in a graphical
of the nodes. We call the latent variabls= {X,..., X}  model like that of Figure 3(a).

environment variables these random variables characterize .. h h
the state of the sensor network’s environment. The joint prog'Ven the temperature measurements, we can compute the pos-

ability model has two main parts. The first is a factorized prioterior distributions of the bias variables to automatically cali-
Pr {X} over the environment variables (such as a Bayesian n rate the sensors. Under our model, we calculate that in expec-
work or Markgv ln_e'][cwork [6h]) The second partis a Setﬁf mea- 1;jg important to note Figure 2 displays two things: the location of the
surement models; for eac . measur.e.mer.]t Va”m‘?’we ave  sensor network nodes, and the graphical model for their associated temper-
a measurement model which specifies its conditional distribygyre variables. It doasot show the communication topology of the sensor
tion Pr { M}, | By} given a subset of the environment variablesetwork, which need not be related to the structure of the probability model.



tation, the posterior temperature estimates will eliminate 44%hevariables reachable toj from ¢ recursively by
of the bias; this estimate increases as the sensor network be-
comes denser, leading to more strongly correlated variables.

A
o : R;; =V;U U Ry,

In this calibration example, the true temperature variables > )

and the bias variable®; are the environment variables. (There ken(i) : k#j

need not be a direct correspondence between the environment ) _ ) ) ) _

variables and the sensor network nodes as in this exampleyheren(i) are i’s neighbors in the spanning tree. Node

Given the graphical model, the joint probability model is computesR;; by collecting the variables that can be reached
through each neighbor biitand adding its own local variables
V;; thenitsend®R;; as a message fo Figure 3(d) shows three

1 such messages for our example.
7 H bij (T3, T5) H Pr{Bi},‘Pr{Mi | Bi, Ti},’ If a node receives two reachable variables messages that include
(i,5)€€ €N piasprior measurement model some variableX, then it knows that it must also cary. For-

: mally, theclique at nodei is computed using
temperature prior

A
whereN and € are the nodes and edges of the Markov network Ci=Viu , U ‘ Ryji O Ry

in Figure 2. In our calibration example, each bias priBr{ B; } gken(): 57k

is distributed to nodé and each binary factor of the tempera- - . .
ture prior ;; (T, 7}) is distributed to node or nodej; see For example, in Figure 3(d) node 3 receives two reachable vari-

’ : : L bles messages that contdip, and so it must add> to its
Figure 3(a). (In the next section we will see that it is advanta?’ : n :
geous to distribute the factors so as to minimize the number &fdUe- Using these messages, nedan also compute its sep-

variables local to each node.) arator with a neighbof via S = C; NR;;. This algorithm is

In this task, the query variables for nodere Q; = {7}, B;}. guaranteed to converge to the unique set of minimal cliques that
To solve the distributed calibration task, the nodes must collatguarantee the running intersection property.

orate so that each nodeobtainsPr{T;, B; | m1,..., N},  Every spanning tree induces a unique minimal junction tree for
a posterior estimate of its true temperature and bias.  [J  the probability model. However, some junction trees are better
than others: we would like to minimize the sizes of the cliques
_— . . and separators so that computation and communication are min-
3 Robust distributed inference architecture imized. For example, if in Figure 3(d) node 4 had chosen to
connect to node 1 instead of node 3, then node 3’s cliques and
In this section, we give an brief overview of the architecture foseparators would not need to include the varidileThis moti-
robust, distributed inference presented in [1]. In this architecvates the third algorithm of our architectutese optimization,
ture, the nodes of the sensor network organize themselves intevaiich attempts to choose a spanning tree that induces a junction
junction tree and solve the inference problem by asynchronotiee with small cliques and separators.

message passing. This is accomplished by four interacting diWhiIe findin . . .
; ithm ; g the optimal spanning tree is NP-hard (by reduc-
tributed algorithms which run on each node of the network. tion from centralized junction tree optimization), we can de-

The first of these algorithms &panning tree formation; each fine an efficient distributed algorithm for greedy local search
node in the network chooses a set of neighbor nodes so that tteough the space of spanning trees. The local move we use to
nodes form a spanning tree where adjacent nodes have higheve through tree space is (legal) edge swaps; in Figure 3(d)
quality communication links. Even when the network is fixednode 4 can swap its edge to 3 for an edge to 1 or 2, but node 1
this is a challenging problem. The nodes of a sensor netwodannot swap its edge to 2 for an edge to 4, because that would
observe only local information about the network, but spanningreate a cycle. The goal is to find a spanning tree whose corre-
trees have non-local properties: they are connected; they aponding junction tree minimizes a cost function; this cost func-
acyclic; and they are undirected, in that neighbors both agré®mn can depend upon the sizes of the cliques and separators, the
that they are adjacent. In wireless sensor networks, the prolink qualities, and the processor power available at each node.

lem is even more difficult: link qualities are asymmetric an
e : ; des learn about a legal edge swap, and the change to the
change over time; and, nodes must discover new neighbors a bal cost that would occur if it was implemented, using a dis-

estimate their associated link qualities, as well as detect wh . . : - .
; ; i buted dynamic programming algorithm. The key idea is that
neighbors disappear. Fortunately, spanning trees are well st starting arevaluation broadcastalong one of its spanning

ied in distributed systems (e.qg., for multi-hop routing in ad ho :
; AN ; ree edges, a node can learn about legal alternatives to that edge,
networks), so there is a rich literature. Our spanning tree alg nd their relative costs. For example, in Figure 3(d), imagine

rithm builds upon existing algorithms; it can adapt to changin t node 4 initiates an evaluation broadcast to its nei ;

L ; ; ghbor in
ggc\gvrci)thkrﬁ?sngggrg%tggg E’;@ﬁ{é?ﬁtable spanning tree exists, o h‘é‘ spanning tree, node 3. This request marked with the origi-

) nator’s identifier, as well as the identifier of its current neighbor,

Once a spanning tree has been constructed, the nodes haeele 3. Node 3 then propagates the request to 1, which sees
formed a distributed data structure similar to a junction tree [6]that the originator, 4, is a potential neighbor. It then sends a
a tree where each nodéas a set of variabl€g ;. To make this message to 4 outside the spanning tree, and 4 thereby learns of
a valid junction tree, the nodes must enforce the running intea legal swap: it can trade its edge to 3 for an edge to 1. By aug-
section property: if two nodes have the same variablghen  menting this evaluation broadcast with some compact reachable
all nodes on the unique path between them must also carry thariables information, it is possible to simultaneously compute
variableX . For example, in Figure 3(c) the running intersectiorthe change in global cost that would occur if the swap were exe-
property does not hold because nodes 1 and 4 @arrgut node  cuted. If the swap reduces the cost, this information is provided
3, which is between them in the spanning tree, does not. to the spanning tree algorithm, which effects the change.

Using the second algorithm of our architectujigction tree  Once a junction tree with small cliques and separators has been
formation, the nodes collaborate to learn what extra variableformed, the inference problem is solved by the fourth and final
they must carry to enforce the running intersection propertyalgorithm of the architecturebelief propagation. The nodes
This algorithm uses message passing along the spanning trasge the familiar sum—product message passing algorithm [6] to
much like belief propagation. For each edge- j we define compute the posterior marginals of their cliques. To compute a
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Figure 3: lllustration of the architecture on a calibration example with four sensor nodes.

message tg, nodei computes the product of its local factorsis no way to know itthe node can never rule out the possi-
¥ (L;) with the incoming messages from neighbors other thahility that a new node carrying additional factors will enter the
7, and marginalizes out unneeded variables: network later, causing the messages (and possibly the network
junction tree) to change. These problems motivate us to con-
A sider thepartial belief a node obtains by combining its local
Wi (Sij) = Z ;i (L) H Hk—i(Ski) factors with its current messages before convergence.

C;—Sy; ken(i)\j As we discussed in the introduction, the sum—product algorithm
offers no guarantees about the relation a node’s partial belief
Note that node learns the separat®;; from the junction tree  will have to the correct posterior, because before convergence a
formation algorithm. Once a nodehas received all of its mes- node may have failed to integrate important prior factors. This
sages, it can compute itelief as problem is especially severe in Gaussian models such as the one
used in our distributed calibration example. For example, before
all of a node’s messages arrive, its partial belief may not be
¥ (L;) H tk—i(Ski); a valid density because its covariance is not positive—definite.
ken(i) Even if it is a valid density, missing messages can have exactly
the same effect as observing a set of variables to have the value
zero; in effect, the partial beliefs “hallucinate” evidence. As we

this belief is proportional to the posteriéir { C; | M}. Our  gemonstrate experimentally i, this makes partial beliefs for
architecture uses asynchronous message passing, so that eggfissians densities completely unreliable.

node’s belief eventually converges to the correct posterior. . i

. S Furthermore, the sum—product algorithm is not robust to node
In the presentation above, we made two simplifying assumisss: when a node dies, it takes with it some of the factors of
tions. First, we assumed reliable communication along thge probability model. The net effect is similar to what happens
edges of the spanning tree. While this is not true at the phygghen there are missing messages: nodes fail to integrate fac-
ical network layer, it can be implemented at the transport laygprs ' resulting in skewed partial beliefs. Moreover, we cannot
using message acknowledgements; by hypothesis, the Spanr’-%igid these failures by simply distributing each factor to multi-

)2

61((3&

that each algorithm had run to completion before the next ongina|ly, the complexity of the sum—product algorithm scales
began; e.g., we assumed that junction tree formation begins &fith the sizes of the cliques of the network junction tree; thus,

ter spanning tree formation is complete. Our algorithms cann@ge computational cost depends upon the network topology and
be implemented in this way, however, because in a sensor nelnnot be determined in advance.

work, there is no way to determine when a distributed algorithm — ) ) )
has completed: a node can never rule out the possibility thatl@ this section, we present a new message passing algorithm for
new node will later join the network, for example. probabilistic inference, callesbbust message passingwvhich

. corrects all of these problems. Not only does it converge to the
Our algorithms therefore run concurrently on each node, resprrect posterior when all messages are passed, but it is also
sponding to changes in each others’ states. For example, Whgfiaranteed to yield a principled approximation at any point in
the spanning tree algorithm on a node adds or removes a linfye inference process. In particular, it has Properties 1 and 2 (lo-
the junction tree formation algorithm is informed and reacts by.a| and global correctness), and it satisfies an approximate form
updating its reachable variables messages; when the junctigfiproperty 3 (correct partial beliefs), where the partial beliefs

tree formation algorithm learns that a separator has changedpiay make incorrect conditional independence assumptions.
informs the belief propagation algorithm so that the messages

can be updated. This tight interaction between the algorithnl® addition, the computational complexity of the message pass-
permits the network to react quickly when interference or nod#g updates scales with the size of the model, and is independent
failures cause a change in the spanning tree. If the spanning trefethe network junction tree used for inference. This makes the
stabilizes, then the reachable variables messages will convergdgorlthm especially attractive for use in our inference architec-
yielding a valid junction tree; eventually the belief propagatioriure; even if the network topology forces the network junction
messages will also converge to the correct values, and that aftege to have large cliques, the computational complexity of in-
this point nodes will stop passing messages. ference remains fixed. And, in contrast to the sum—product al-
gorithm, robust message passing is correct even if each factor

4 Robust probabilistic inference 'Csog'iﬁ‘g”wgﬁ%g‘gjgﬁgﬁﬁggf’“& giving us a simple technique for

In the architecture described above, every node can compute the

exact posterior for its query variables after the messages hagel A simple but impractical algorithm

converged. However, this guarantee is of limited value: it may

take a long time for the messages to converge, or they may newde begin by first presenting a simple but impractical al-
converge because the network junction tree is constantly adagwerithm that has these properties, and then making it effi-
ing to changing network conditions. Furthermore, even whenient. Recall that the joint probability model takes the form
a nodehasreceived correct versions all of its messagbhsre of a prior over the (unobserved) environment variables and



a set of measurement models, one per (observed) measuadles and the parents of its measurement variables. However,
ment variable. In this simple algorithm, we will assumewe must also maintain Property 2, which requires computation
that every node of the network has access to the completdgth the complete prior. One way to satisfy both of these re-
prior; as before, each node has access to its own measuggirements is to reparameterize the complete prior @scam-
ment model(s). In our calibration example, every nodeuld  posable probability densit}6] so it is represented in terms of a
have the global prio®Pr{T}.y, Bi.x} and its measurement Set of local priors.

model PrﬁMi | T;, B;}. In this case, Property 1 above fol- For example, we can represent the prior over the temperature

lows easily: a node can compute its local posterior usingariables in Figure 3(a) in terms of local priors as
Bayes’ rule. In the calibration example, noflean compute
PI‘{Tl, Tg} PI‘{Tl, Tz} PI‘{TQ, T4}

Pr{Ti.n, Bi.n | T2} o< Pr{m; | T}, B} x Pr{Tv.n, Bi.n} PriTia} = Pr{T} Pr{T}
The local posterioPr{T;, B; | m;} is obtained by marginaliz- In the general case, we must preprocess the prior to represent it
ing out all variables buf’; and B;. as a decomposable density; this computation takes place before

he factors of the model are disseminated to the nodes of the
Etwork. The first step is to form a junction tree for the origi-
&l prior; we call this thexternal junction tree, to distinguish

To condition on the measurements made at other nodes, t
nodes send messages to each other along the junction trg

These messages consist of likelihood functions. If n0@ i from the network junction tree constructed in the sensor net-
a leaf of the junction tree, then it sends to its neighbor thgork For example, if our probability model has the graphical
likelihood of its measurements given their parent variablesyqqel in Figure 4(a), then one possible junction tree is given
in the example of Figure 3(d), node 2 sends to its neighy, Figure 4(b). Then we use message passing on the external
bor the likelihoodPr{ms | T5, B2}. If node i is an inter- junction tree to compute its clique and separator marginals. The

nal node of the junction tree, it sends to each neighpte  complete prior can then be represented as
product of its likelihood function with the likelihood func- P P P

tions it receives from all neighbors byt In the example Pr{iC
of Figure 3(d), node 1 would send to node 3 the likelihood Pr{X} = I Pr{C} (1)
[Is Pr{S}
Pr{m1:2 | T1:2, Br2} = Pr{mi | T1, B1} x Pr{mz | T2, B2} where C ranges over the cliques of the external junction tree

andS ranges over the separators [6]. When the original prior is

not decomposable, this reparameterization creates factors larger

This product is correct because the measurements are conditigfdn those in the original model; for example, a decomposable

ally independent given their parent variables. representation of the temperature prior in Figure 2 has factors
of up to four (rather than two) variables.

To compute its belief, a node computes the prod- . . . .
uct of the global prior, its local likelihood, and the !N fact, we canignore the separator marginals in the denomina-

likelihood messages it has received. For examtor and use the clique marginals alone asnajplicit representa-

ple, in Figure 3(d) node 3 computes its belief adlion of the prior. To reconstruct the full prior from this implicit
' representation, we would form a junction tree for the clique

node 1’s likelihood message from node 2

global prior local likelihood marginals, identify the separators, compute their marginals us-
ing the cligue marginals, and then form (1). Thus, we can rep-
Pr{Ti.4, B1.a | M1:a} < Pr{T1.4, B1.a} x Pr{ms | T3, B3} X resent our model implicitly as a set of local priors and a set of

Pr{mm | T2, Bl;z} % Pr{ﬁ4 | Ty, B4} measurement models, one per sensor.

message from node 1 message from node 4 4.3 Distribution of the model

Instead of giving the complete prior to each node of the net-
work (as in the algorithm o0§4.1), we will now give each node
ubset of these local priors. This distributed representation of
global prior is very different from the one used by the sum—
oduct algorithm: the prior is no longer obtained by multiply-
g the prior factors together; instead, it is defined implicitly by
e construction of a junction tree, as describeglir2.

Node 3's global posterioPr{T3, B3 |71.4} is obtained by
marginalizing out all variables bdf; and Bs. Thus, when all
of the messages are passed, we obtain Property 2. Furtherm
since missing messages correspond to missing likelihoods, t
algorithm also gives us Property 3; for example, if node 3 di
not receive the message from node 4, its partial belief would

global prior local likelihood This implicit representation of the global prior has several ad-
_ — vantages. The first advantage is that we can distribute the prior
PriTi4, Bua|mys} ocPr{Tia, Bua} x Pr{ms | Ts, Bs} X factors redundantly with impugnity: if we were to reconstruct
Pr{mi.2 | T1.2, B1:2} the global prior from a collection of cliqgue marginals with repli-
cates, the extra clique marginals would be cancelled out by ex-
message from node 1 tra separator marginals. This fact gives us a simple and effective

hich is th ior of th iabl . h echnique for coping with node loss: we can distribute each fac-
which is the posterior of the variables given the measuremenggy of the model to several nodes. The factor is lost only if all of

incorporated in the messages, as desired. the nodes that received copies of it are lost.

This aIgoritth}s impractic_arll f%r two reellsons. .FirSI'ﬁaﬁh nol??)istributing the prior factors to the nodes of the network pro-
must store and reason with the complete prior, which mak&se(s as before, with one modification. When distributing fac-
the algorithm unscalable to large models. Second, the Megsrs, we ensure that each nodebtains (a copy of) the prior

sages consist of likelihood functions over large sets of variable: D e .
which can be expensive to represent. Our solution to these profioto's needed to compufer {Q;, P;}, the joint prior over
lems is based upon a different representation of the global pridfS Guery variables and the pareis of its measurement vari-
ables? As before, the measurement models are distributed so
L . each node obtains the measurement models for its sensors. This
4.2 Decomposable reparameterization of the prior distribution procedure ensures Property 1:

Note that to obtain Property 1 above, each node does not needThese are the prior factors that are in the smallest subtree of the external
the global prior; it needs only a local prior over its query vari-junction tree which cover®; U P;.
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Figure 4: The robust message passing example.

Proposition 1. Every node can compute the local posterior ofUsing the product rule for probabilities, it is easy to prove
its query variables exactly without any messages. Proposition 2. The combination rule of Definition 2 is exact

Figure 4(c) continues our example with a possible networkhen(rc, Ac) and(mp, Ap) are exact and we have

junction tree; the rectangles represent the nodes of the sensor

network. Each nodé has a copy of its measurement model CUMcILDUMp|CND, (2)
Pr{M,;| T;} as well as a prior marginal from the external

junction tree. Note that each prior clique marginal has beeghere A 1L B | C meansA and B are conditionally indepen-
distributed to at least one node, and that the marginal OngentgiverC.

T1,T5,T, has been distributed redundantly to nodes 1 and 4.

In this figure, each nodeis labelled with its cliqueC; (the un-  when these conditions do not hold the combination rule is

derlined variables are added to preserve the running intersectigfproximate (and perhaps asymmetric, since we may have
property), and each edge is labelled with its separator. S e TC # Yp_c TD).

4.4 Prior/likelihood factors The other operation opL factors is summarization:

After the factors have been distributed to the nodes of the nebefinition 3. Let (rp, Ap) be aPrL factor andS be a set of
work, each node has a set of prior marginals and a set of megmdom variables. Theummary of (rp, Ap) to S is
surement models. When each node obtains its observations, ’
they are instantiated in their respective measurement models,
yielding likelihood functions. The first step in our algorithm is @ (7D, Ap) A <Z S > b_g D X )\D>

D-S

to organize the priors and likelihoods at each node into a more S ™

convenient representation: S D-8

Definition 1. A prior/likelihood ( pL) factor for a set of envi-

ronment variable<C is a pair (7c, Ac) where This summary rule simply computes a marginal of the prior,

. . . e and computes the marginal likelihood by forming the joint,
e mc is a (possibly approximate) prior distribution f&r . marginalizing it down, and dividing out the marginal prior. The
* \c is a (possibly approximate) likelihood function symmary rule is exact when the inputs are exact.

Pr{mc| C} of observationdM ¢ = mc givenC

4.5 Robust message passing

Given this reparameterization, each node has a st i#ctors

Given the distribution of model factors described§#i3, we  which represent a fragment of the complete posterior model. If
can reorganize the factors allocated to nadato pL factors we were to assemble all of the nodes’ fragments in one location,
as follows. Each measurement is instantiated in its corresponeke could form the posterior joint density and solve the inference
ing measurement model, and the resulting likelihood is pairegroblem. Instead, we will develop a message passing algorithm
with the prior over the measurement’s parent variabl&ach  Wwhich interleaves assembly of the model with inference, so that
remaining prior factor is paired with a uniform likelihood func- the nodes can use dynamic programming to compute the poste-
tion. Taken together, these factors constitute thiecal model  rior marginals they need efficiently.

fragment at nodei. In the example of Figure 4(c), each node j; |ike other junction tree message passing algorithms, this al-
forms a singlepL factor by instantiating its observation in its gorithm uses combine and summary (collapse) operations on
measurement model, and then pairing the resulting Ilkel|hoog factor representation. (In the sum—product algorithm, the

(re, Ac) is exactif 7 and A\¢ are exact.

with its (only) prior factor. combine operation is multiplication, the summary operation is
The basic computations involved in robust message passing drarginalization, and the factors are potential functions.) As a
defined in terms of combining and summarizigfactors. result, we can use the inference architecture present&d in

without change. In our new message passing algorithm, each
factor is a collection of prior/likelihoods:
Definition 4. A model fragment factor @ is a collection ofpPL

A\ A\ factors{(mc, Ac) : C € C}. @ is exactif all of its memberrL
1AC X AD ) factors are exact.

Definition 2. Let (mc, Ac) and (7p, Ap) be twopL factors.
Thecombination of (rc, Ac) and (7p, Ap) is

(Tc, Ac) ® (D, Ap) = <7TCX7TD
Zch e

3To simplify the exposition, we will assume the external junction tree isMOdeI fragment factors represent both forms of factorization

chosen so that for each measurement variable, there is a clique that cové@scribed above: the prior and likelihood information are kept
the measurement variable’s parents. separate, and the prior is represented implicitly in terms of



a collection of local priors. Recall that assembling the locaProposition 4. Let ® be an exact model fragment factor. Then
marginals of a decomposable density into the complete densigny summary of to S is exact if for anyrL factor (s, As),
requires building a junction tree; in a similar fashion, comput | {(ms, As)} is a consistent model fragment factor

ing the posterior distribution represented by a model fragmer% ’ '

factor also involves building a clique tree. This proposition is proved by verifying that the canonical clique
Definition 5. Let ® be a model fragment factor. #anoni- tree of® U {éws, As) } guarantees the conditional independen-
cal clique treefor @ is a tree over therL factors of® which  cies required for theL combinations to be exact.

has maximum cardinality variable intersections of neighboringE le 2 (robust . illustrate the robust
cliques. ® is consistentif it has a canonical clique tre§ such E£xample 2 (robust message passing)lo illustrate the robus

that (1) T satisfies the running intersection property and (2) thd"€Ssage passing algorithm, we describe the computation of the

conditional independencies encodedbyre also encoded by Message from node S to node 6 in Figure 4(c). Node S's local
the external junction tree. model fragment has only ome. factor:

(Note that we explicitly allow for the possibility that a canoni- &5 = {(Pr{T2, T4, T5} ,Pr{ms | Ta, T4, T5})}
cal clique tree does not have the running intersection property;

this fact will be important later when we discuss partial beliefs.aode 5 computes its message to node 6 by combining this local
Using a canonical clique tree, we can flatten a model fragmefiodel fragment with the messages it receives from nodes 2 and

into a singlepL factor: 4. These messages are given by

Definition 6. Let® = {(rc, Ac) : C € C} be a model frag-

ment factor. APL factor (v, Av) is aflattening of @ if it can Vo5 ={(Pr{Th, T, Ty} ,Pr{my | T1,T>,14}),
be obtained by the following procedure: (Pr{Ty, Ts, Ts} , Pr {2 | To, T3, T5})}
1. Compute a canonical clique trégfor ®. Uy 5 ={(Pr{Ty, To, Ty}, Pr{my| T, T2, Tu})}

2. Repeat: leC be a leaf clique of” with neighborD. Replace

C and D with a new cliqueC U D whose associatefL 14 combine these model fragments, we simply compute the
factor is(mp, Ap) ® (7c, Ac)- union of thepL factors above. The message from node 5 to node
. . 6 is the summary of this combination down to the separator be-
The posterior represented Byis then computed asv x Av,  tween nodes 5 and 855 = {T%, T }. From Definition 7, the
the product of the “flat” prior and likelihood. first step in computing a summary is forming a canonical clique
When® contains enough of thew factors of the original model tree for thepL factors; one such clique tree is shown in Figure
to satisfy the consistency property, and all of thefactors in® ~ 5(a). The variables i8¢ are underlined.
are exact, then the flattening is also exact (and therefore uniquehe next step is to iteratively identify le@iL factors whose
Proposition 3. Let ® be an exact and consistent model frag-prior information can be discarded, and to “transfer” their like-
ment factor, then the flattening dfproduces an exactL factor. ~ lihood information onto retainedL factors. In Figure 5(a)
there are two leaves, but only the bottom one can be pruned,
This is proved by verifying that the canonical clique tree guaras its does not overlap witBss = {75,75}, the variables
antees the conditional independencies required foprtheom-  of interest. To prune this leaf, we use Equati{@) to trans-
binations to be exact. fer the leaf’s likelihood to its neighbor; in this case the like-

. . oods are simply multiplied together because the cliques are
We now define the combine and summary operators for modgle'same. “Then the leaf is removed, yielding the clique tree of
fragment factors, these are the main operations of robust masy, e 51, 'in which a new leaf is exposed. Because this new
sage passing. The combine operator is simply union: combi ' .

; : - Jéaf has no intersection witBsg, it too can be pruned. In this
ing two model fragments results in a new model fragment wit ; ’ : h
the union of their memberL factors. (As an optimization, we ase, we use EquatiqB) to update the neighborL factor to

may eliminate non-maximadL factors in the result by combin-
ing them with a subsumingL factor using Definition 2.) The Pr{l> Ts, T}, \ o fas) Pr{Ti, T, Tu},
Pr{m5| T27T4,T5} Pr{ml,mﬂ T1,T2,T4}

summary operation is where the work of inference is done: (.14}

Definition 7. Let® = {(r¢, Ac) : C € €} be a model frag- Pr{T,, T4, T5} Prile, Tn}
ment factor and leS be a set of random variables. Another = <P s | T, Ta, T > <P i | T, 7 >
model fragment factow is a summary of ® to S iff it can be rims | T, To, Ts) Pl T )
obtained by the following procedure: — Pr{T,Ta, 15},

T\ Pr{mi,ma, M5 | T2, Tu, T5}

1. Compute a canonical clique tréefor ®.

2. Repeat: letC be a leaf clique off” with neighborD such  and prune the leaf to yield the clique tree of Figure 5(c). Even
that CNS C D. (If there is no such clique, terminate.) though the bottom clique contairg; (which is in Ssg), this
Update thepL factor of D as follows: clique can still be pruned by the rule in Definition 7; intuitively,

the prior information this clique represents ab@g is redun-
dant because it is also represented by the top clique. Transfer-
(3) ring the likelihood information to the top clique yields the final
clique tree shown in Figure 5(d). This singke factor is the
message that is sent from node 5 to node 6. O

(b, Ap) = (7D, AD) ® (EB (mcs Ac)

CnD

Then remove from T and (7c, Ac) from @. When the network junction tree has the running intersection

property, Proposition 4 can be used to prove that all of the sum-
S p e ey Maries performed by synchronous robust message passing yield

tor whose prior is no longer needed by “transferring” its likeli- 2

hood inforr%ation onto ar?otham_ factor.y(lt is also pgssible to correct results. This gives us Property 2 (global correctness)

prune “internal” nodes in the model fragment factor; we omitProposition 5. When asynchronous robust message passing
details due to lack of space.) Whdnis exact and contains is used on a valid network junction tree, each node’s belief
enough of therL factors to guarantee consistency with respectonverges to a model fragment factor representing the correct
to every eliminated variable, then the summary is also exact: global posterior.

Informally, this summary operation repeatedly prunes #ac-
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Figure 5: Robust message passing example, continued.
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In our inference architecture, this result translates into the fokect conditional independence assumptions, but they are consis-
lowing guarantee: if the environment is such that a stable spatent in these assumptions in the following sense:

ning tree can be built, the junction tree formation algorithm will - . ; ; ;
eventually construct a valid junction tree and every node’s beli Er(\),\?rﬂig'%gg‘el‘%t& bneof[”1 glf)dgf ?{12 \r/gggsrgera/;c;rslgjuensc t}g\]/g%%en
will converge to the correct global posterior. H ote o >ag g
passed. Then there exists a set of conditional independehcies
In addition to being correct, this robust message passing algstch that the partial belief of nodés exact under the model
rithmbis efficient. Recall that all of thebcomputatiogs performed .
in robust message passing are combinations and summaries of 5 _ : D
pL factors which were derived from the external junction tree. P(X,M) ﬁa;g&miﬂD(P(X’ M) [| P(X, M)),
In some sense, the nodes of the network junction tree are per- (XM=
forming message passing on the external junction tree; as a re- . . . .
sult, th% complegxit)p/) of robgust message pasting is determined B{hich minimizes the Kullback-Liebler divergence from the true
the width of the external junction tree, not that of the networktiodel given the conditional independentes
junction tree. This is an invaluable property for a distributed in-_, . . . .
ference algorithmthe computational complexity is determined This is a relaxed form of Property 3 because the partial posterior
by the model, and not by the communication topologgw- ~ May make incorrect independence assumptions.

ever, this does not mean that the network junction tree plays nghen the network junction tree is not valid, then variables may
role in the inference algorithm. The cliques and separators @e summed out too early in the computation of the messages,
the network junction tree determine when it is safe to pmine which can cause the messages used in computing a node’s par-
factors out of a model fragment; if a poor network junction treejal belief to make different conditional independence approxi-

is selected, the nodes of the network junction tree must comnations. In this case, a node’s partial belief is not exact under
municate to each other more pieces of the external junction tregyy fixed approximate model: likelihoods have been incorpo-
to solve the inference problem. Thus, the spanning tree opliated with inconsistent conditional independence assumptions
mization algorithm described 8 is still needed, but only to in the prior. As our experimental results demonstrate, even in

reduce the communication cost of inference, not the computghis case the partial beliefs can be excellent approximations.
tional complexity.

4.6 Partial beliefs 5 Experiments

Unlike the sum—product message passing algorithm, our robut@ validate our algorithms we have tested them on the sensor
message passing algorithm makes it easy to characterize the gfgloration task presented in the introduction. We deployed 54
tial belief a node forms before it has received exact versions dfitel—Berkeley motes in our lab (Figure 2) and collected tem-
all of its messages. The fundamental computations involved jperature measurements every 30 seconds for a period of sev-
robust message passing are combinations and summares oféral days. We also collected link quality statistics and computed
factors. These operation preserve exactness with one exceptiéf fraction of transmissions each mote heard from every other
when we combine tweL factors and the conditional indepen- Mote. Using this link quality information, we designed a sensor
dence (2) does not hold. Therefore, inexactness arises in tR§Work simulator that modeled the actual deployment. (De-

form of incorrect conditional independence assumptions. signing, testing, and experimenting with our algorithms would
P P have been far more difficult in the actual deployment.) This sim-

For example, consider the situation in Figure 5(e), where nodgator uses an event-based model to simulate lossy communica-
5 has received messages only from nodes 2 and 6 (neither fidn between the nodes at the message level: messages are either
which have received messages from their other neighbors). Hceived or not, depending upon samples from the link qual-
this case, node 5 receives all factors at nodes 2 and 6, butity model. The simulator’s programming model is also event-
does not have access to a prior factor stored on node 3. Wheased—algorithms are coded in terms of responses to message
it computes its partial belief using Definition 6, the clique treeevents—and we expect that our implementations can be trans-
it forms (shown in Figure 5(f)) is approximate: it represents théerred to a real sensor network without significant changes.

conditional independendg; IL Tg | T5, which is incorrect given . . . o .
the original model in Figure 4(a). When the likelihood term%USe'nl\% ;Pk%\t/eé‘:g&gaé%r&ggéaixvgigh‘;"e%'f“ﬁﬁgg glfs;llggtlsohno\rlgll)t/h

are mcor_porated, additional incorrect conditional independen er deployment, which explains its absence in the figure, and
assumptions are made (e.g., td L Mj | T5). also justifies our efforts to develop algorithms robust to such
When the network junction tree is valid (in that it has thefailures.) The model was augmented with bias variables for each
running intersection property), approximation arises only fronfemperature measurement, which were distributed i.i.d. from
these conditional independence assumptions (not by summifd§0, 1°C). We then sampled a true, unobserved bias for each
variables out early). In this case, the messages used (directlyrmode, and created a set of biased measurements by adding these
indirectly) to compute a node’s partial belief may encode incorbiases to a held-out test set of measurements. The task is for



the nodes to compute their posterior mean biases, and the er@ifline, we used a combination of simulated annealing, greedy
metric we use is the root mean squared error (RMS) from thelocal search, and random restarts to find a local minimum of this

estimates to the (unobserved) biases we sampled. cost functior; its cost is plotted as the horizontal line in Figure
6(c). The piecewise constant curve represents the current cost of
5.1 Convergence to optimal global inference the spanning tree, when one exists. Note that the initial spanning

_ _ _ _ tree, which is selected using only link quality information, is
Our first experiment demonstrates the inference architecture §ignificantly more expensive than the hypothesized optimum,
the simplest setting, where link qualities are stable. Figures 6(a)it that the distributed optimization algorithm eventually finds

and 6(b) visualize traces of the inference architecture when r¢rees whose cost is less than twice this hypothesized optimum.
bust and sum—product message passing are used; the spanning

tree and junction tree formation algorithms are identical in botls 3 Robustness to communication failure

cases (for simplicity the optimization algorithm was not used). ] o
The z-axis of all of these plots is time. At the bottom of eachTo test the algorithms’ robustness to long-term communication
trace are two bars: the bottom bar is white when a valid spafailure, we ran the experiment 6.1 again, but this time we
ning tree has been constructed, and the top bar is white when tiigroduced a period where interference causes the network to be
running intersection property has been enforced. At the begisegmented into two parts. At time 60, all messages between the
ning of these simulations there is a prolonged period before tHeft half of the network (nodes 1-35) and the right half (nodes
spanning tree is built; the nodes wait until they have accuraf@6-54) are lost; at time 120 the communication is restored. Dur-
link quality estimates before they begin building the spanningng the interference the nodes on the left half of the network
tree. Notice that after a spanning tree is built, it can be lost; thido not have access to the measurements made on the right, and
typically occurs in the delay between a node swapping a neighice-versa; therefore the global inference error curve in Figure
bor and the old and new neighbor learning of the change. Alse(d) changes: it is computed for each node using the posterior
note that after a stable spanning tree has been found, the jugenditioned on the measurements on its side of the network.

tion tree formation algorlt?m eventua}!ly.enfqrces the running, Figure 6(d) we can see that the robust message passing al-
intersection property, resulting in a valid junction tree. gorithm achieves convergence before and after the inferference
The main panel of Figure 6(a) plots the RMS error of three inperiod, but that the interference prevents a (complete) spanning
ference algorithms. The line markgtbbalrefers to centralized tree from being formed. In spite of this, the robust message
inference using all of the measurements. In this case, the pdgassing algorithm converges with an error that is very close to
terior mean bias estimates of global inference have 0.61 RM®e optimum. In this period, each half of the network forms its
error; because the bias is additive, this number also represe®&n junction tree and uses message passing. Robust message
the average error in the posterior mean temperature measup@&ssing does not converge to exactly the same result as global
ments. The line markelbcal refers to centralized local infer- inference because some prior factors needed by the left half of
ence, where each node’s posterior is computed using only itge network have been distributed to right half, and vice versa.
measurement. Local inference performs about as well as prg

dict bi hievi 0.99 RMS “this i edve also ran the same experiment using sum—product message
icting zero bias, achieving a 0. error; IS IS exXpecle(assing. Like robust message passing, it converged to the cor-
since solving the calibration problem requires correlated megaci pealief before and after the interference period: however,

surements at different nodes. during the interference both halves of the network converged
The third curve,distributed robust refers to the robust mes- to very poor estimates (RMS error 1.95). This is expected be-
sage passing algorithm. This plot graphically demonstrates tig@use during the period of interference, each side of the network
key properties of the algorithm: before any messages have beigrmissing half of the prior model.

passed, the partial beliefs coincide with the estimates given b _

centralized local inference; at convergence, the estimates coin4 Robustness to node failures

cide with those of centralized global inference; and, before a|l_ ., . . I

messages have been passed, the estimates are informative'd, (}:elsfaei)I(Sr%rslm?l'?]teV\fmues?g ftz;]i(laufgtf%e gg?p}ln"(‘)’gg ?I\Ilrgsu?;?]?ple q
proximations. Looking closely, we can see that before the junc- . ot amp!
tion tree is valid, and even before a complete spanning tree(fi] désflrj?g]m%r;lﬁéﬂggfrg% g(‘)smguig?e% rfc\:se %?gglgr?ldt% g?ibll\tlsé q
constructed, the estimates of the robust message passing algo= . % : ; )

: PPN ; : changing over time; this explains the changing error values
rithm quickly approach those of centralized global inference. for global and local inference.

We now turn our attention to Figure 6(b), which was generate ran this experiment with both the sum—product and ro-
from the same setup as Figure 6(a) except that the sum—prod t message passing algorithms (with the same sampled fail-

Message passing algortm comerges (o the corect giobal pgig schedule). The sum-product algorithm failed iserably be-
teriors once a valid junction tree is formed. But before cont@UsS€ tN€ NISt node died at ime ©.5b, belore a juncuion tree

. ; ; Id even be formed. As a result, prior factors were lost be-
vergence, its estimates are extremely poor—many times Wofeu : y
than local inference. Moreover, its convergence is not gradudP'€ mgssagehpasshmg ‘ﬁ“'d leyefn convergec.l IheﬁMS .err.orwgs
but quite sudden: the estimates are useless right up to the nj{E"er eltte_rt ant atfo ocal inference, and for the majority o
ment of convergence. Finally, the top panel shows the numbdf® Simulation, it was far worse.
of nodes whose partial beliefs are not valid densities; beforgigures 6(e) and 6(f) show how robust message passing per-
convergence, many nodes are unable to make a prediction at #irms in the presence of failing nodes. In Figure 6(e), each
Taken together, these qualitative behaviors make sum—prodysior factor was distributed to only one node of the network; in
message passing inappropriate for distributed inference in sefiis case we see that robust message passing gives consistently

sor networks. reasonable results; it converges to the global optimum until ap-
proximately time 200, when it no longer has all of the factors to
5.2 Optimization of the spanning tree reconstruct the true prior. After this point its performance grace-

i . fully degrades to the correct results of local inference. Figure
Using the same setup §5.1, we ran an experiment to test the6(f) shows that when each factor is distributed redundantly to
distributed spanning tree optimization algorithm (Figure 6(c))three nodes, the algorithm is still correct, and for much longer:
We chose our communication cost function so that the cost ofigsolves the global inference problem exactly past 500 seconds,
(directed) edge is proportional to the expected number of trangshen only 26 of the original 53 nodes are still functioning.
mitted bytes necessary to successfully communicate a belief  ~
propagation message; this cost function takes into account the4The local moves used in this optimization were from a larger class of
link quality of an edge as well as the size of its separator. edge swaps than that used by the distributed algorithm.
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Figure 6: Experimental results.

5.5 Applying loopy belief propagation ference can be intractable. In current work, we are designing a

S . . . new inference algorithm that addresses both the robustness re-
Because it is simple to implement and easily parallelizable, E

has been suggested that loopy belief propagatiem)(is “an
ideal computational and communication framework for sens
networks” [8]. We had hoped to compare our algorithmisgp,
but unfortunately, this was not possiblegp can only be ap-
plied to a restricted class of models, and the model we learn

from the sensor network data was not in this cRagsven so,
we can infer some qualitative propertiesi@pP from our ex-
periments with its exact correlate, the sum—product algorithmpte|
Like the sum—product algorithmpp can perform poorly when
factors of the prior model are inaccessible due to node failur,
or interference. For the same reason, we could not exyssct
to provide reasonable answers until enough time had elapsed tﬁ]
permit messages from one end of the network to reach the other.

6 Conclusions 2]

Distributed systems are an exciting application area for proba-
bilistic reasoning algorithms with new and complex challenges
to overcome. To address these challenges, we found that it is
insufficient to adapt existing algorithms; for example, we have [
demonstrated that sum—product message passing can fail badly
when communication is unreliable or nodes fail. In this paper,
we presented a novel, robust algorithm for probabilistic infer- [4]
ence in distributed systems that provides very strong theoret-
ical guarantees: even when nodes fail and messages are lost,
each node can compute a principled approximation of the poste[5]
rior distribution of its query variables, given the measurements
incorporated in the messages the node has received. In addi-
tion, robust message passing is extremely efficient: the com-
putational complexity of the message passing updates depends
only on the model, and not on the underlying network topology. [
We also demonstrated the theoretical properties of our algorithm
with detailed experimental results on data from an actual sensof7]
network deployment.

This paper focuses on static inference problems, but many dis-
tributed systems problems require reasoning about time with dy{8
namic Bayesian network®gN). Unfortunately, exacbsN in-

5LBP can only be applied to Gaussian models where all of the pairwise
factors are normalizable; otherwise the messages and beliefs may not be
well-defined. The model we learned from data cannot be expressed in this
way; even a modified version oBp failed to converge.

uirements of distributed systems, and the computational com-
OL?Iexity of inference in dynamic probability models.
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