
Robust Probabilistic Inference in Distributed Systems

Mark A. Paskin
Computer Science Division

University of California, Berkeley

Carlos E. Guestrin
Berkeley Research Center

Intel Corporation

Abstract

Probabilistic inference problems arise naturally in
distributed systems such as sensor networks and
teams of mobile robots. Inference algorithms that use
message passing are a natural fit for distributed sys-
tems, but they must be robust to the failure situations
that arise in real-world settings, such as unreliable
communication and node failures. Unfortunately, the
popular sum–product algorithm can yield very poor
estimates in these settings because the nodes’ beliefs
before convergence can be arbitrarily different from
the correct posteriors. In this paper, we present a new
message passing algorithm for probabilistic inference
which provides several crucial guarantees that the
standard sum–product algorithm does not. Not only
does it converge to the correct posteriors, but it is also
guaranteed to yield a principled approximation at any
point before convergence. In addition, the compu-
tational complexity of the message passing updates
depends only upon the model, and is independent of
the network topology of the distributed system. We
demonstrate the approach with detailed experimental
results on a distributed sensor calibration task using
data from an actual sensor network deployment.

1 Introduction
Large-scale networks of sensing devices are a useful technology
for a wide range of applications; examples include sensor net-
works, mobile robot teams, and certain distributed Internet ap-
plications. In these systems, nodes make local observations of
their common environment in order to solve a complex global
task. For example, robots in a team may each collect a set of
laser scans which are combined to build a map. Or, the nodes of
a sensor network in a precision agriculture deployment may col-
lect local temperature and humidity measurements to determine
when to water the crop. These local sensor measurements are
often correlated, noisy or uncalibrated; as a result, probabilistic
inference is of central importance to these systems.

A simple approach to inference is to download the measure-
ments from the network and then analyze them at a central lo-
cation. This approach is appropriate in some cases, but there
are several reasons to prefer a distributed approach to infer-
ence. For large networks, distributed inference scales better: it
reduces communication because nodes transmit compact sum-
maries instead of their measurements; and, it leverages paral-
lelism by making use of the computational resources at each
node. In addition, distributed inference enables distributed
decision-making and actuation, since every network node can
access the posterior distribution of the state of the environment.

To design a distributed inference algorithm for large-scale sys-
tems there are significant challenges to overcome. First, com-
munication between nodes can be unreliable due to noise and
packet collisions, especially in ad hoc wireless networks such
as those used by mobile robots and sensor networks. Second,

the network topology of a distributed system can change over
time; for example, communication between nearby nodes can
be interrupted by occlusions or interference. Third, nodes can
fail for a number of reasons, e.g., a battery may die, a computer
may crash, etc. Finally, the power, computation, and communi-
cation resources of nodes can be quite limited. Because of these
challenges, we have found that to solve the distributed inference
problem, it is insufficient to adapt existing algorithms to dis-
tributed systems; fundamentally new algorithms are required.

Sensor networks typify

Figure 1: a MICA-2 “mote”

many of the challenges
that must be overcome by
a robust, distributed infer-
ence algorithm. A sensor
network is a collection of
autonomous devices that
measure characteristics of
their environment, perform
local computations, and
communicate with each
other over a wireless
network. Figure 1 shows
an example sensor network node developed jointly by Intel
and the University of California, Berkeley [2]; it can measure
temperature, humidity, pressure, visible and infrared light,
sound, magnetic fields, and acceleration. Sensor networks are
an important new technology for many applications including
habitat monitoring [3] and target tracking [4]. In this paper we
will use sensor networks as our primary example.

A wide range of inference problems, including probabilistic in-
ference, pattern classification, constraint satisfaction, and re-
gression [5], can be solved by asynchronous message passing
on a data structure called a junction tree [6]. In a compan-
ion paper [1], we present an architecture for distributed infer-
ence in which the nodes of the network assemble themselves
into anetwork junction tree , where each network node has an
associated clique and set of factors. Our architecture builds,
maintains, and optimizes this network junction tree robustly,
addressing both unreliable communication and node failures.
Using asynchronous message passing on this junction tree, the
nodes can solve the inference problem efficiently and exactly.
An overview of the architecture is presented in§3.

In this architecture, each node can have an associated set of
query variables. After the message passing algorithm con-
verges, each node can compute the exact posterior for its query
variables. However, this guarantee is of limited value: in large,
lossy, or volatile networks, convergence may take a long time;
or, it may never happen because the network junction tree is
constantly in flux. In addition, even when a nodehasreceived
all of its messages,there is no way to know it;the node can
never rule out the possibility that a new node carrying addi-
tional factors will enter the network later, causing the messages
to change. These problems motivate us to consider thepartial
belief a node obtains by combining its local information with its
incoming messages before convergence.

Unfortunately, in the sum–product algorithm there is little we

can say about the relation a node’s partial belief will have to the
correct posterior. For example, a missing message may carry a
crucial prior factor which, when omitted, gives the partial belief
a skewed view of the probability of different events. Consider
a sensor network that is monitoring a nuclear reactor: if a prior
factor over the boolean variablemeltdown-imminent (indicat-
ing a situation that is very unlikely,a priori) is not integrated
into a node’s belief, the net effect is as if it were replaced with a
uniform prior factor indicating thea priori chance a meltdown is
imminent is 50%! As we demonstrate experimentally, this be-
havior makes sum–product message passing inappropriate for
distributed inference in sensor networks.

Ideally, we would like an efficient, distributed message passing
algorithm with three properties:
Property 1 (Local Correctness). Before any communication
has occurred, each node can compute the correctlocal poste-
rior of its query variables given its measurements.
Property 2 (Global Correctness). After convergence, every
node can compute the correctglobal posterior of its query vari-
ables given the measurements of all the nodes.
Property 3 (Partial Correctness). Before convergence, a node
can compute the correctpartial posterior of its query variables
given the measurements that have been incorporated in the mes-
sages it has received.

If every node has access to the complete probability model, then
it is possible to design a simple message passing algorithm with
all three properties (see§4.1). However, this approach does not
scale because every node must reason with the entire model.

In this paper, we present an efficient message passing algorithm
calledrobust message passing, which satisfies Properties 1 and
2, and satisfies a relaxed form of Property 3 where a node’s par-
tial posterior can make conditional independence assumptions.
Thus, the algorithm is guaranteed to yield a principled approx-
imation at any point in the inference process. In addition, ro-
bust message passing is extremely efficient: the computational
complexity of the message passing updates depends only on the
model, and not on the network topology. We conclude with
detailed experimental results that demonstrate the algorithm on
a distributed sensor calibration task using data from an actual
sensor network deployment.

2 The distributed inference problem
We assume a network model where each node can perform local
computations and communicate with other nodes over a broad-
cast channel. The nodes of the network may change over time:
existing nodes can fail, and new nodes may be introduced. We
assume a message–level error model: messages are either re-
ceived without error, or they are not received at all. Only the re-
cipient is aware of a successful transmission; neither the sender
nor the recipient is aware of a failed transmission. For each pair
of nodesi andj, there is some probability that a message trans-
mission by nodei will be received by nodej; the link quality
(i.e., the probability of a successful transmission) fromi to j is
unknown and may change over time, and link qualities of sev-
eral node pairs may be correlated.

The random variables of our inference problem are divided into
two types: observed and latent. We call the observed variables
M = {M1, . . . ,MK} measurement variables; each mea-
surement variableMk corresponds to one of the sensors on one
of the nodes. We call the latent variablesX = {X1, . . . , XL}
environment variables; these random variables characterize
the state of the sensor network’s environment. The joint prob-
ability model has two main parts. The first is a factorized prior
Pr {X} over the environment variables (such as a Bayesian net-
work or Markov network [6]). The second part is a set of mea-
surement models; for each measurement variableMk, we have
a measurement model which specifies its conditional distribu-
tion Pr {Mk | Bk} given a subset of the environment variables

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE
50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

8

7

4

34

1

2

35
40

Figure 2: The Intel Berkeley Lab deployment. The Markov
graph for the nodes’ temperature variables is overlaid.

Bk ⊆ X. Thus, the full joint takes the form

Pr {X,M} =

[
1
Z

∏
C∈C

ψC(C)

]
︸ ︷︷ ︸
factorized priorPr {X}

K∏
k=1

Pr {Mk | Bk}︸ ︷︷ ︸
measurement model

,

where eachC ∈ C is a subset of environment variables.

We assume that each measurement model is stored by the node
that obtains its corresponding measurement, and that the factors
of the priorPr {X} are partitioned across the nodes of the net-
work. Thus, each nodei receives a set of factors; collectively,
these factors represent the probability model in a distributed
fashion. We useVi ⊆ X to denote thevariables local to i,
i.e., the union of all environment variables associated with the
factors distributed to nodei.

In addition to its factors, each nodei of the network has an as-
sociated subset of environment variables called itsquery vari-
ablesQi ⊆ X; these variables characterize the part of the en-
vironment’s state that nodei must monitor. Thedistributed
inference problem is defined as follows: after every node
has obtained observations for its associated measurement vari-
ables, the nodes must collaborate so that each nodei obtains
Pr {Qi | m1, . . . ,mR}, the posterior distribution of its query
variables given the measurements made by the entire network.

We now present a motivating example that will be used in the
remainder of this paper.
Example 1 (distributed sensor calibration). After a sensor
network is deployed, the sensors can be adversely affected by
the environment—for example, particulate matter can accumu-
late on the sensors—leading to biased measurements. The dis-
tributed sensor calibration task involves automatic detection
and removal of these biases [7]. This is possible when the quan-
tities measured by nearby nodes are correlated, but the nodes’
biases are independent.

Figure 2 shows a sensor network of 54 nodes that we deployed
in the Intel Berkeley Lab. We fit a Gaussian probability model
for this data set where each nodei has three associated vari-
ables: its observed temperature measurementMi, the true (un-
observed) temperature at its locationTi, and the (unobserved)
bias of its temperature sensorBi. We assumed the temperature
variables are related by the Markov graph1 of Figure 2 and that
the biases are marginally independent, resulting in a graphical
model like that of Figure 3(a).

Given the temperature measurements, we can compute the pos-
terior distributions of the bias variables to automatically cali-
brate the sensors. Under our model, we calculate that in expec-

1It is important to note Figure 2 displays two things: the location of the
sensor network nodes, and the graphical model for their associated temper-
ature variables. It doesnot show the communication topology of the sensor
network, which need not be related to the structure of the probability model.

tation, the posterior temperature estimates will eliminate 44%
of the bias; this estimate increases as the sensor network be-
comes denser, leading to more strongly correlated variables.

In this calibration example, the true temperature variablesTi
and the bias variablesBi are the environment variables. (There
need not be a direct correspondence between the environment
variables and the sensor network nodes as in this example.)
Given the graphical model, the joint probability model is

 1
Z

∏
(i,j)∈E

ψij(Ti, Tj)


︸ ︷︷ ︸

temperature prior

∏
i∈N

Pr{Bi}︸ ︷︷ ︸
bias prior

Pr{Mi |Bi, Ti}︸ ︷︷ ︸
measurement model

,

whereN andE are the nodes and edges of the Markov network
in Figure 2. In our calibration example, each bias priorPr{Bi}
is distributed to nodei and each binary factor of the tempera-
ture prior ψij(Ti, Tj) is distributed to nodei or nodej; see
Figure 3(a). (In the next section we will see that it is advanta-
geous to distribute the factors so as to minimize the number of
variables local to each node.)

In this task, the query variables for nodei areQi = {Ti, Bi}.
To solve the distributed calibration task, the nodes must collab-
orate so that each nodei obtainsPr {Ti, Bi | m1, . . . ,mN},
a posterior estimate of its true temperature and bias.

3 Robust distributed inference architecture

In this section, we give an brief overview of the architecture for
robust, distributed inference presented in [1]. In this architec-
ture, the nodes of the sensor network organize themselves into a
junction tree and solve the inference problem by asynchronous
message passing. This is accomplished by four interacting dis-
tributed algorithms which run on each node of the network.

The first of these algorithms isspanning tree formation; each
node in the network chooses a set of neighbor nodes so that the
nodes form a spanning tree where adjacent nodes have high-
quality communication links. Even when the network is fixed
this is a challenging problem. The nodes of a sensor network
observe only local information about the network, but spanning
trees have non-local properties: they are connected; they are
acyclic; and they are undirected, in that neighbors both agree
that they are adjacent. In wireless sensor networks, the prob-
lem is even more difficult: link qualities are asymmetric and
change over time; and, nodes must discover new neighbors and
estimate their associated link qualities, as well as detect when
neighbors disappear. Fortunately, spanning trees are well stud-
ied in distributed systems (e.g., for multi-hop routing in ad hoc
networks), so there is a rich literature. Our spanning tree algo-
rithm builds upon existing algorithms; it can adapt to changing
network conditions, and when a stable spanning tree exists, our
algorithm is guaranteed to find it.

Once a spanning tree has been constructed, the nodes have
formed a distributed data structure similar to a junction tree [6]:
a tree where each nodei has a set of variablesVi. To make this
a valid junction tree, the nodes must enforce the running inter-
section property: if two nodes have the same variableX, then
all nodes on the unique path between them must also carry the
variableX. For example, in Figure 3(c) the running intersection
property does not hold because nodes 1 and 4 carryT2, but node
3, which is between them in the spanning tree, does not.

Using the second algorithm of our architecture,junction tree
formation , the nodes collaborate to learn what extra variables
they must carry to enforce the running intersection property.
This algorithm uses message passing along the spanning tree,
much like belief propagation. For each edgei → j we define

thevariables reachable toj from i recursively by

Rij
4
= Vi ∪

⋃
k∈n(i) : k 6=j

Rki,

wheren(i) are i’s neighbors in the spanning tree. Nodei
computesRij by collecting the variables that can be reached
through each neighbor butj and adding its own local variables
Vi; then it sendsRij as a message toj. Figure 3(d) shows three
such messages for our example.

If a node receives two reachable variables messages that include
some variableX, then it knows that it must also carryX. For-
mally, theclique at nodei is computed using

Ci
4
= Vi ∪

⋃
j,k∈n(i) : j 6=k

Rji ∩Rki.

For example, in Figure 3(d) node 3 receives two reachable vari-
ables messages that containT2, and so it must addT2 to its
clique. Using these messages, nodei can also compute its sep-

arator with a neighborj via Sij
4
= Ci ∩Rji. This algorithm is

guaranteed to converge to the unique set of minimal cliques that
guarantee the running intersection property.

Every spanning tree induces a unique minimal junction tree for
the probability model. However, some junction trees are better
than others: we would like to minimize the sizes of the cliques
and separators so that computation and communication are min-
imized. For example, if in Figure 3(d) node 4 had chosen to
connect to node 1 instead of node 3, then node 3’s cliques and
separators would not need to include the variableT2. This moti-
vates the third algorithm of our architecture,tree optimization,
which attempts to choose a spanning tree that induces a junction
tree with small cliques and separators.

While finding the optimal spanning tree is NP-hard (by reduc-
tion from centralized junction tree optimization), we can de-
fine an efficient distributed algorithm for greedy local search
through the space of spanning trees. The local move we use to
move through tree space is (legal) edge swaps; in Figure 3(d)
node 4 can swap its edge to 3 for an edge to 1 or 2, but node 1
cannot swap its edge to 2 for an edge to 4, because that would
create a cycle. The goal is to find a spanning tree whose corre-
sponding junction tree minimizes a cost function; this cost func-
tion can depend upon the sizes of the cliques and separators, the
link qualities, and the processor power available at each node.

Nodes learn about a legal edge swap, and the change to the
global cost that would occur if it was implemented, using a dis-
tributed dynamic programming algorithm. The key idea is that
by starting anevaluation broadcastalong one of its spanning
tree edges, a node can learn about legal alternatives to that edge,
and their relative costs. For example, in Figure 3(d), imagine
that node 4 initiates an evaluation broadcast to its neighbor in
the spanning tree, node 3. This request marked with the origi-
nator’s identifier, as well as the identifier of its current neighbor,
node 3. Node 3 then propagates the request to 1, which sees
that the originator, 4, is a potential neighbor. It then sends a
message to 4 outside the spanning tree, and 4 thereby learns of
a legal swap: it can trade its edge to 3 for an edge to 1. By aug-
menting this evaluation broadcast with some compact reachable
variables information, it is possible to simultaneously compute
the change in global cost that would occur if the swap were exe-
cuted. If the swap reduces the cost, this information is provided
to the spanning tree algorithm, which effects the change.

Once a junction tree with small cliques and separators has been
formed, the inference problem is solved by the fourth and final
algorithm of the architecture:belief propagation. The nodes
use the familiar sum–product message passing algorithm [6] to
compute the posterior marginals of their cliques. To compute a

M3

T3
B3

M1

T1
B1

M2

B2
T2

M4

B4
T4

T2, B2T1, B1, T2

T1, T3, B3
T2, T4, B4

ψ (T1, T2)

ψ (T1, T3)

ψ (T2, T4)

P (B1) P (B2)

P (B4)P (B3)

P (M1| T1, B1) P (M2| T2, B2)

P (M4| T4, B4)P (M3| T3, B3)

1 2

3 4

T2, B2T1, B1, T2

T1, T3, B3
T2, T4, B4

1 2

3 4

T2, B2T1, B1, T2

T1, T2, T3, B3
T2, T4, B4

T2, T4, B4

1 2

3 4

T2, B2

T1, B1, T2, B2

(a) distribute model factors to the sensor nodes (b) network links with good quality (c) nodes form a spanning tree (d) nodes ensure running intersection

Figure 3: Illustration of the architecture on a calibration example with four sensor nodes.

message toj, nodei computes the product of its local factors
ψi(Li) with the incoming messages from neighbors other than
j, and marginalizes out unneeded variables:

µi→j(Sij)
4
=

∑
Ci−Sij

ψi(Li)
∏

k∈n(i)\j

µk→i(Ski)

Note that nodei learns the separatorSij from the junction tree
formation algorithm. Once a nodei has received all of its mes-
sages, it can compute itsbelief as

βi(Ci)
4
= ψi(Li)

∏
k∈n(i)

µk→i(Ski);

this belief is proportional to the posteriorPr {Ci | M}. Our
architecture uses asynchronous message passing, so that each
node’s belief eventually converges to the correct posterior.

In the presentation above, we made two simplifying assump-
tions. First, we assumed reliable communication along the
edges of the spanning tree. While this is not true at the phys-
ical network layer, it can be implemented at the transport layer
using message acknowledgements; by hypothesis, the spanning
tree consists of high-quality wireless links. Second, we assumed
that each algorithm had run to completion before the next one
began; e.g., we assumed that junction tree formation begins af-
ter spanning tree formation is complete. Our algorithms cannot
be implemented in this way, however, because in a sensor net-
work, there is no way to determine when a distributed algorithm
has completed: a node can never rule out the possibility that a
new node will later join the network, for example.

Our algorithms therefore run concurrently on each node, re-
sponding to changes in each others’ states. For example, when
the spanning tree algorithm on a node adds or removes a link,
the junction tree formation algorithm is informed and reacts by
updating its reachable variables messages; when the junction
tree formation algorithm learns that a separator has changed, it
informs the belief propagation algorithm so that the messages
can be updated. This tight interaction between the algorithms
permits the network to react quickly when interference or node
failures cause a change in the spanning tree. If the spanning tree
stabilizes, then the reachable variables messages will converge,
yielding a valid junction tree; eventually the belief propagation
messages will also converge to the correct values, and that after
this point nodes will stop passing messages.

4 Robust probabilistic inference
In the architecture described above, every node can compute the
exact posterior for its query variables after the messages have
converged. However, this guarantee is of limited value: it may
take a long time for the messages to converge, or they may never
converge because the network junction tree is constantly adapt-
ing to changing network conditions. Furthermore, even when
a nodehas received correct versions all of its messages,there

is no way to know it;the node can never rule out the possi-
bility that a new node carrying additional factors will enter the
network later, causing the messages (and possibly the network
junction tree) to change. These problems motivate us to con-
sider thepartial belief a node obtains by combining its local
factors with its current messages before convergence.

As we discussed in the introduction, the sum–product algorithm
offers no guarantees about the relation a node’s partial belief
will have to the correct posterior, because before convergence a
node may have failed to integrate important prior factors. This
problem is especially severe in Gaussian models such as the one
used in our distributed calibration example. For example, before
all of a node’s messages arrive, its partial belief may not be
a valid density because its covariance is not positive–definite.
Even if it is a valid density, missing messages can have exactly
the same effect as observing a set of variables to have the value
zero; in effect, the partial beliefs “hallucinate” evidence. As we
demonstrate experimentally in§5, this makes partial beliefs for
Gaussians densities completely unreliable.

Furthermore, the sum–product algorithm is not robust to node
loss: when a node dies, it takes with it some of the factors of
the probability model. The net effect is similar to what happens
when there are missing messages: nodes fail to integrate fac-
tors, resulting in skewed partial beliefs. Moreover, we cannot
avoid these failures by simply distributing each factor to multi-
ple nodes, because we may multiply factors in more than once.
Finally, the complexity of the sum–product algorithm scales
with the sizes of the cliques of the network junction tree; thus,
the computational cost depends upon the network topology and
cannot be determined in advance.

In this section, we present a new message passing algorithm for
probabilistic inference, calledrobust message passing, which
corrects all of these problems. Not only does it converge to the
correct posterior when all messages are passed, but it is also
guaranteed to yield a principled approximation at any point in
the inference process. In particular, it has Properties 1 and 2 (lo-
cal and global correctness), and it satisfies an approximate form
of Property 3 (correct partial beliefs), where the partial beliefs
may make incorrect conditional independence assumptions.

In addition, the computational complexity of the message pass-
ing updates scales with the size of the model, and is independent
of the network junction tree used for inference. This makes the
algorithm especially attractive for use in our inference architec-
ture; even if the network topology forces the network junction
tree to have large cliques, the computational complexity of in-
ference remains fixed. And, in contrast to the sum–product al-
gorithm, robust message passing is correct even if each factor
is distributed to several nodes, giving us a simple technique for
coping with node failures.

4.1 A simple but impractical algorithm

We begin by first presenting a simple but impractical al-
gorithm that has these properties, and then making it effi-
cient. Recall that the joint probability model takes the form
of a prior over the (unobserved) environment variables and

a set of measurement models, one per (observed) measure-
ment variable. In this simple algorithm, we will assume
that every node of the network has access to the complete
prior; as before, each node has access to its own measure-
ment model(s). In our calibration example, every nodei would
have the global priorPr{T1:N , B1:N} and its measurement
model Pr{Mi |Ti, Bi}. In this case, Property 1 above fol-
lows easily: a node can compute its local posterior using
Bayes’ rule. In the calibration example, nodei can compute

Pr{T1:N , B1:N |mi} ∝ Pr{mi |Ti, Bi} × Pr{T1:N , B1:N}

The local posteriorPr{Ti, Bi |mi} is obtained by marginaliz-
ing out all variables butTi andBi.

To condition on the measurements made at other nodes, the
nodes send messages to each other along the junction tree.
These messages consist of likelihood functions. If nodei is
a leaf of the junction tree, then it sends to its neighbor the
likelihood of its measurements given their parent variables;
in the example of Figure 3(d), node 2 sends to its neigh-
bor the likelihoodPr{m2 |T2, B2}. If node i is an inter-
nal node of the junction tree, it sends to each neighborj the
product of its likelihood function with the likelihood func-
tions it receives from all neighbors butj. In the example
of Figure 3(d), node 1 would send to node 3 the likelihood

Pr{m1:2 |T1:2, B1:2} = Pr{m1 |T1, B1}︸ ︷︷ ︸
node 1’s likelihood

×Pr{m2 |T2, B2}︸ ︷︷ ︸
message from node 2

This product is correct because the measurements are condition-
ally independent given their parent variables.

To compute its belief, a node computes the prod-
uct of the global prior, its local likelihood, and the
likelihood messages it has received. For exam-
ple, in Figure 3(d) node 3 computes its belief as

Pr{T1:4, B1:4 |m1:4} ∝

global prior︷ ︸︸ ︷
Pr{T1:4, B1:4}×

local likelihood︷ ︸︸ ︷
Pr{m3 |T3, B3}×

Pr{m1:2 |T1:2, B1:2}︸ ︷︷ ︸
message from node 1

×Pr{m4 |T4, B4}︸ ︷︷ ︸
message from node 4

Node 3’s global posteriorPr{T3, B3 |m1:4} is obtained by
marginalizing out all variables butT3 andB3. Thus, when all
of the messages are passed, we obtain Property 2. Furthermore,
since missing messages correspond to missing likelihoods, this
algorithm also gives us Property 3; for example, if node 3 did
not receive the message from node 4, its partial belief would be

Pr{T1:4, B1:4 |m1:3} ∝

global prior︷ ︸︸ ︷
Pr{T1:4, B1:4}×

local likelihood︷ ︸︸ ︷
Pr{m3 |T3, B3}×

Pr{m1:2 |T1:2, B1:2}︸ ︷︷ ︸
message from node 1

which is the posterior of the variables given the measurements
incorporated in the messages, as desired.

This algorithm is impractical for two reasons. First, each node
must store and reason with the complete prior, which makes
the algorithm unscalable to large models. Second, the mes-
sages consist of likelihood functions over large sets of variables,
which can be expensive to represent. Our solution to these prob-
lems is based upon a different representation of the global prior.

4.2 Decomposable reparameterization of the prior

Note that to obtain Property 1 above, each node does not need
the global prior; it needs only a local prior over its query vari-

ables and the parents of its measurement variables. However,
we must also maintain Property 2, which requires computation
with the complete prior. One way to satisfy both of these re-
quirements is to reparameterize the complete prior as adecom-
posable probability density[6] so it is represented in terms of a
set of local priors.

For example, we can represent the prior over the temperature
variables in Figure 3(a) in terms of local priors as

Pr{T1:4} =
Pr{T1, T3}Pr{T1, T2}Pr{T2, T4}

Pr{T1}Pr{T2}

In the general case, we must preprocess the prior to represent it
as a decomposable density; this computation takes place before
the factors of the model are disseminated to the nodes of the
network. The first step is to form a junction tree for the origi-
nal prior; we call this theexternal junction tree, to distinguish
it from the network junction tree constructed in the sensor net-
work. For example, if our probability model has the graphical
model in Figure 4(a), then one possible junction tree is given
in Figure 4(b). Then we use message passing on the external
junction tree to compute its clique and separator marginals. The
complete prior can then be represented as

Pr{X} =
∏

C Pr{C}∏
S Pr{S}

(1)

whereC ranges over the cliques of the external junction tree
andS ranges over the separators [6]. When the original prior is
not decomposable, this reparameterization creates factors larger
than those in the original model; for example, a decomposable
representation of the temperature prior in Figure 2 has factors
of up to four (rather than two) variables.

In fact, we can ignore the separator marginals in the denomina-
tor and use the clique marginals alone as animplicit representa-
tion of the prior. To reconstruct the full prior from this implicit
representation, we would form a junction tree for the clique
marginals, identify the separators, compute their marginals us-
ing the clique marginals, and then form (1). Thus, we can rep-
resent our model implicitly as a set of local priors and a set of
measurement models, one per sensor.

4.3 Distribution of the model

Instead of giving the complete prior to each node of the net-
work (as in the algorithm of§4.1), we will now give each node
a subset of these local priors. This distributed representation of
the global prior is very different from the one used by the sum–
product algorithm: the prior is no longer obtained by multiply-
ing the prior factors together; instead, it is defined implicitly by
the construction of a junction tree, as described in§4.2.

This implicit representation of the global prior has several ad-
vantages. The first advantage is that we can distribute the prior
factors redundantly with impugnity: if we were to reconstruct
the global prior from a collection of clique marginals with repli-
cates, the extra clique marginals would be cancelled out by ex-
tra separator marginals. This fact gives us a simple and effective
technique for coping with node loss: we can distribute each fac-
tor of the model to several nodes. The factor is lost only if all of
the nodes that received copies of it are lost.

Distributing the prior factors to the nodes of the network pro-
ceeds as before, with one modification. When distributing fac-
tors, we ensure that each nodei obtains (a copy of) the prior
factors needed to computePr {Qi,Pi}, the joint prior over
its query variables and the parentsPi of its measurement vari-
ables.2 As before, the measurement models are distributed so
each node obtains the measurement models for its sensors. This
distribution procedure ensures Property 1:

2These are the prior factors that are in the smallest subtree of the external
junction tree which coversQi ∪Pi.

M2

T5

M5

T3

M3

T6

M6

T4

M4

T1

M1

T2

(a) graphical model

T2, T4, T5

T2, T3, T5

T3, T5, T6 T5, T6

T1, T2, T4

(b) external junction tree

T3, T5, T6

2: T2, T3, T4, T5 3: T3, T5, T6

6: T3, T5, T6

1: T1, T2, T4

4: T1, T2, T4

T2, T3, T4, T5

T2, T4

T3, T5T1, T2, T4
5: T2, T3, T4, T5

Pr {M6 | T6}
Pr {T2, T4, T5}Pr {T1, T2, T4}
Pr {M5 | T5}

Pr {T1, T2, T4} Pr {T3, T5, T6}
Pr {M1 | T1} Pr {M3 | T3}

Pr {T2, T3, T5}

Pr {T5, T6}
Pr {M4 | T4}

Pr {M2 | T2}

(c) network junction tree and distribution of the model

Figure 4: The robust message passing example.

Proposition 1. Every node can compute the local posterior of
its query variables exactly without any messages.

Figure 4(c) continues our example with a possible network
junction tree; the rectangles represent the nodes of the sensor
network. Each nodei has a copy of its measurement model
Pr {Mi | Ti} as well as a prior marginal from the external
junction tree. Note that each prior clique marginal has been
distributed to at least one node, and that the marginal over
T1, T2, T4 has been distributed redundantly to nodes 1 and 4.
In this figure, each nodei is labelled with its cliqueCi (the un-
derlined variables are added to preserve the running intersection
property), and each edge is labelled with its separator.

4.4 Prior/likelihood factors

After the factors have been distributed to the nodes of the net-
work, each node has a set of prior marginals and a set of mea-
surement models. When each node obtains its observations,
they are instantiated in their respective measurement models,
yielding likelihood functions. The first step in our algorithm is
to organize the priors and likelihoods at each node into a more
convenient representation:
Definition 1. A prior/likelihood (PL) factor for a set of envi-
ronment variablesC is a pair 〈πC, λC〉 where

• πC is a (possibly approximate) prior distribution forC
• λC is a (possibly approximate) likelihood function

Pr {mC | C} of observationsMC = mC givenC

〈πC, λC〉 is exact if πC andλC are exact.

Given the distribution of model factors described in§4.3, we
can reorganize the factors allocated to nodei into PL factors
as follows. Each measurement is instantiated in its correspond-
ing measurement model, and the resulting likelihood is paired
with the prior over the measurement’s parent variables.3 Each
remaining prior factor is paired with a uniform likelihood func-
tion. Taken together, thesePL factors constitute thelocal model
fragment at nodei. In the example of Figure 4(c), each node
forms a singlePL factor by instantiating its observation in its
measurement model, and then pairing the resulting likelihood
with its (only) prior factor.

The basic computations involved in robust message passing are
defined in terms of combining and summarizingPL factors.
Definition 2. Let 〈πC, λC〉 and 〈πD, λD〉 be twoPL factors.
Thecombination of 〈πC, λC〉 and 〈πD, λD〉 is

〈πC, λC〉 ⊗ 〈πD, λD〉
4
=
〈
πC × πD∑

C−D πC
, λC × λD

〉
.

3To simplify the exposition, we will assume the external junction tree is
chosen so that for each measurement variable, there is a clique that covers
the measurement variable’s parents.

Using the product rule for probabilities, it is easy to prove
Proposition 2. The combination rule of Definition 2 is exact
when〈πC, λC〉 and〈πD, λD〉 are exact and we have

C ∪MC⊥⊥D ∪MD |C ∩D, (2)

whereA⊥⊥B |C meansA andB are conditionally indepen-
dent givenC.

When these conditions do not hold the combination rule is
approximate (and perhaps asymmetric, since we may have∑

C−D πC 6=
∑

D−C πD).

The other operation onPL factors is summarization:

Definition 3. Let 〈πD, λD〉 be a PL factor andS be a set of
random variables. Thesummary of 〈πD, λD〉 to S is

⊕
S

〈πD, λD〉
4
=

〈∑
D−S

πD,

∑
D−S πD × λD∑

D−S πD

〉
.

This summary rule simply computes a marginal of the prior,
and computes the marginal likelihood by forming the joint,
marginalizing it down, and dividing out the marginal prior. The
summary rule is exact when the inputs are exact.

4.5 Robust message passing

Given this reparameterization, each node has a set ofPL factors
which represent a fragment of the complete posterior model. If
we were to assemble all of the nodes’ fragments in one location,
we could form the posterior joint density and solve the inference
problem. Instead, we will develop a message passing algorithm
which interleaves assembly of the model with inference, so that
the nodes can use dynamic programming to compute the poste-
rior marginals they need efficiently.

Just like other junction tree message passing algorithms, this al-
gorithm uses combine and summary (collapse) operations on
a factor representation. (In the sum–product algorithm, the
combine operation is multiplication, the summary operation is
marginalization, and the factors are potential functions.) As a
result, we can use the inference architecture presented in§3
without change. In our new message passing algorithm, each
factor is a collection of prior/likelihoods:
Definition 4. A model fragment factor Φ is a collection ofPL
factors{〈πC, λC〉 : C ∈ C}. Φ is exact if all of its memberPL
factors are exact.

Model fragment factors represent both forms of factorization
described above: the prior and likelihood information are kept
separate, and the prior is represented implicitly in terms of

a collection of local priors. Recall that assembling the local
marginals of a decomposable density into the complete density
requires building a junction tree; in a similar fashion, comput-
ing the posterior distribution represented by a model fragment
factor also involves building a clique tree.

Definition 5. Let Φ be a model fragment factor. Acanoni-
cal clique tree for Φ is a tree over thePL factors ofΦ which
has maximum cardinality variable intersections of neighboring
cliques.Φ is consistentif it has a canonical clique treeT such
that (1)T satisfies the running intersection property and (2) the
conditional independencies encoded byT are also encoded by
the external junction tree.

(Note that we explicitly allow for the possibility that a canoni-
cal clique tree does not have the running intersection property;
this fact will be important later when we discuss partial beliefs.)
Using a canonical clique tree, we can flatten a model fragment
into a singlePL factor:

Definition 6. Let Φ = {〈πC, λC〉 : C ∈ C} be a model frag-
ment factor. APL factor 〈πV, λV〉 is a flattening of Φ if it can
be obtained by the following procedure:

1. Compute a canonical clique treeT for Φ.
2. Repeat: letC be a leaf clique ofT with neighborD. Replace

C and D with a new cliqueC ∪ D whose associatedPL
factor is〈πD, λD〉 ⊗ 〈πC, λC〉.

The posterior represented byΦ is then computed asπV × λV,
the product of the “flat” prior and likelihood.

WhenΦ contains enough of thePL factors of the original model
to satisfy the consistency property, and all of thePL factors inΦ
are exact, then the flattening is also exact (and therefore unique):

Proposition 3. Let Φ be an exact and consistent model frag-
ment factor, then the flattening ofΦ produces an exactPL factor.

This is proved by verifying that the canonical clique tree guar-
antees the conditional independencies required for thePL com-
binations to be exact.

We now define the combine and summary operators for model
fragment factors; these are the main operations of robust mes-
sage passing. The combine operator is simply union: combin-
ing two model fragments results in a new model fragment with
the union of their memberPL factors. (As an optimization, we
may eliminate non-maximalPL factors in the result by combin-
ing them with a subsumingPL factor using Definition 2.) The
summary operation is where the work of inference is done:

Definition 7. Let Φ = {〈πC, λC〉 : C ∈ C} be a model frag-
ment factor and letS be a set of random variables. Another
model fragment factorΨ is a summary of Φ to S iff it can be
obtained by the following procedure:

1. Compute a canonical clique treeT for Φ.
2. Repeat: letC be a leaf clique ofT with neighborD such

that C ∩ S ⊆ D. (If there is no such clique, terminate.)
Update thePL factor ofD as follows:

〈π′D, λ′D〉 = 〈πD, λD〉 ⊗

(⊕
C∩D

〈πC, λC〉

)
(3)

Then removeC fromT and〈πC, λC〉 fromΦ.

Informally, this summary operation repeatedly prunes aPL fac-
tor whose prior is no longer needed by “transferring” its likeli-
hood information onto anotherPL factor. (It is also possible to
prune “internal” nodes in the model fragment factor; we omit
details due to lack of space.) WhenΦ is exact and contains
enough of thePL factors to guarantee consistency with respect
to every eliminated variable, then the summary is also exact:

Proposition 4. Let Φ be an exact model fragment factor. Then
any summary ofΦ to S is exact if for anyPL factor 〈πS, λS〉,
Φ ∪ {〈πS, λS〉} is a consistent model fragment factor.

This proposition is proved by verifying that the canonical clique
tree ofΦ ∪ {〈πS, λS〉} guarantees the conditional independen-
cies required for thePL combinations to be exact.

Example 2 (robust message passing).To illustrate the robust
message passing algorithm, we describe the computation of the
message from node 5 to node 6 in Figure 4(c). Node 5’s local
model fragment has only onePL factor:

Φ5 = {〈Pr {T2, T4, T5} ,Pr {m5 | T2, T4, T5}〉}

Node 5 computes its message to node 6 by combining this local
model fragment with the messages it receives from nodes 2 and
4. These messages are given by

Ψ2→5 = { 〈Pr {T1, T2, T4} ,Pr {m1 | T1, T2, T4}〉 ,
〈Pr {T2, T3, T5} ,Pr {m2 | T2, T3, T5}〉}

Ψ4→5 = { 〈Pr {T1, T2, T4} ,Pr {m4 | T1, T2, T4}〉}

To combine these model fragments, we simply compute the
union of thePL factors above. The message from node 5 to node
6 is the summary of this combination down to the separator be-
tween nodes 5 and 6:S56 = {T3, T5}. From Definition 7, the
first step in computing a summary is forming a canonical clique
tree for thePL factors; one such clique tree is shown in Figure
5(a). The variables inS56 are underlined.

The next step is to iteratively identify leafPL factors whose
prior information can be discarded, and to “transfer” their like-
lihood information onto retainedPL factors. In Figure 5(a)
there are two leaves, but only the bottom one can be pruned,
as its does not overlap withS56 = {T3, T5}, the variables
of interest. To prune this leaf, we use Equation(3) to trans-
fer the leaf’s likelihood to its neighbor; in this case the like-
lihoods are simply multiplied together because the cliques are
the same. Then the leaf is removed, yielding the clique tree of
Figure 5(b), in which a new leaf is exposed. Because this new
leaf has no intersection withS56, it too can be pruned. In this
case, we use Equation(3) to update the neighbor’sPL factor to〈

Pr {T2, T4, T5} ,
Pr {m5 | T2, T4, T5}

〉
⊗

⊕
{T2,T4}

〈
Pr {T1, T2, T4} ,

Pr {m1, m4 | T1, T2, T4}

〉

=

〈
Pr {T2, T4, T5} ,

Pr {m5 | T2, T4, T5}

〉
⊗

〈
Pr {T2, T4} ,

Pr {m1, m4 | T2, T4}

〉
=

〈
Pr {T2, T4, T5} ,

Pr {m1, m4, m5 | T2, T4, T5}

〉
and prune the leaf to yield the clique tree of Figure 5(c). Even
though the bottom clique containsT5 (which is inS56), this
clique can still be pruned by the rule in Definition 7; intuitively,
the prior information this clique represents aboutS56 is redun-
dant because it is also represented by the top clique. Transfer-
ring the likelihood information to the top clique yields the final
clique tree shown in Figure 5(d). This singlePL factor is the
message that is sent from node 5 to node 6.

When the network junction tree has the running intersection
property, Proposition 4 can be used to prove that all of the sum-
maries performed by synchronous robust message passing yield
correct results. This gives us Property 2 (global correctness)

Proposition 5. When asynchronous robust message passing
is used on a valid network junction tree, each node’s belief
converges to a model fragment factor representing the correct
global posterior.

T3, T5

T2, T3, T4, T5

(d)

2: T2, T3, T4, T5

5: T2, T3, T4, T5 6: T3, T5, T6

(a)

(e)(b)

(c)

(f)

T2, T4, T5

T1, T2, T4

T2, T3, T5

〈
Pr {T2, T4, T5} ,

Pr {m5 | T2, T4, T5}

〉

〈
Pr {T2, T3, T5} ,

Pr {m2 | T2, T3, T5}

〉

〈
Pr {T1, T2, T4} ,

Pr {m1, m4 | T1, T2, T4}

〉

Pr {T2, T3, T5}

Pr {T2, T4, T5} Pr {T5, T6}

Pr {m2 | T2}

Pr {m5 | T5} Pr {m6 | T6}

T2, T3, T5 T5, T6T2, T4, T5

T2, T4, T5

T2, T3, T5

〈
Pr {T2, T4, T5} ,

Pr {m1, m4, m5 | T2, T4, T5}

〉

〈
Pr {T2, T3, T5} ,

Pr {m2 | T2, T3, T5}

〉

T2, T3, T5

〈
Pr {T2, T3, T5} ,

Pr {m1, m2, m4, m5 | T2, T3, T5}

〉

T2, T4, T5

T1, T2, T4

T1, T2, T4

T2, T3, T5

〈
Pr {T2, T4, T5} ,

Pr {m5 | T2, T4, T5}

〉

〈
Pr {T2, T3, T5} ,

Pr {m2 | T2, T3, T5}

〉

〈
Pr {T1, T2, T4} ,

Pr {m1 | T1, T2, T4}

〉

〈
Pr {T1, T2, T4} ,

Pr {m4 | T1, T2, T4}

〉

Figure 5: Robust message passing example, continued.

In our inference architecture, this result translates into the fol-
lowing guarantee: if the environment is such that a stable span-
ning tree can be built, the junction tree formation algorithm will
eventually construct a valid junction tree and every node’s belief
will converge to the correct global posterior.

In addition to being correct, this robust message passing algo-
rithm is efficient. Recall that all of the computations performed
in robust message passing are combinations and summaries of
PL factors which were derived from the external junction tree.
In some sense, the nodes of the network junction tree are per-
forming message passing on the external junction tree; as a re-
sult, the complexity of robust message passing is determined by
the width of the external junction tree, not that of the network
junction tree. This is an invaluable property for a distributed in-
ference algorithm:the computational complexity is determined
by the model, and not by the communication topology.How-
ever, this does not mean that the network junction tree plays no
role in the inference algorithm. The cliques and separators of
the network junction tree determine when it is safe to prunePL
factors out of a model fragment; if a poor network junction tree
is selected, the nodes of the network junction tree must com-
municate to each other more pieces of the external junction tree
to solve the inference problem. Thus, the spanning tree opti-
mization algorithm described in§3 is still needed, but only to
reduce the communication cost of inference, not the computa-
tional complexity.

4.6 Partial beliefs

Unlike the sum–product message passing algorithm, our robust
message passing algorithm makes it easy to characterize the par-
tial belief a node forms before it has received exact versions of
all of its messages. The fundamental computations involved in
robust message passing are combinations and summaries ofPL
factors. These operation preserve exactness with one exception:
when we combine twoPL factors and the conditional indepen-
dence (2) does not hold. Therefore, inexactness arises in the
form of incorrect conditional independence assumptions.

For example, consider the situation in Figure 5(e), where node
5 has received messages only from nodes 2 and 6 (neither of
which have received messages from their other neighbors). In
this case, node 5 receives all factors at nodes 2 and 6, but it
does not have access to a prior factor stored on node 3. When
it computes its partial belief using Definition 6, the clique tree
it forms (shown in Figure 5(f)) is approximate: it represents the
conditional independenceT3⊥⊥T6 |T5, which is incorrect given
the original model in Figure 4(a). When the likelihood terms
are incorporated, additional incorrect conditional independence
assumptions are made (e.g., thatM3⊥⊥M6 |T5).

When the network junction tree is valid (in that it has the
running intersection property), approximation arises only from
these conditional independence assumptions (not by summing
variables out early). In this case, the messages used (directly or
indirectly) to compute a node’s partial belief may encode incor-

rect conditional independence assumptions, but they are consis-
tent in these assumptions in the following sense:
Proposition 6. Let i be a node of a valid network junction tree
in which some, but not all, of the robust messages have been
passed. Then there exists a set of conditional independenciesI
such that the partial belief of nodei is exact under the model

P̃ (X,M) = argmin
P̂ (X,M)|=I

D(P (X,M) ‖ P̂ (X,M)),

which minimizes the Kullback–Liebler divergence from the true
model given the conditional independencesI.

This is a relaxed form of Property 3 because the partial posterior
may make incorrect independence assumptions.

When the network junction tree is not valid, then variables may
be summed out too early in the computation of the messages,
which can cause the messages used in computing a node’s par-
tial belief to make different conditional independence approxi-
mations. In this case, a node’s partial belief is not exact under
any fixed approximate model: likelihoods have been incorpo-
rated with inconsistent conditional independence assumptions
in the prior. As our experimental results demonstrate, even in
this case the partial beliefs can be excellent approximations.

5 Experiments
To validate our algorithms we have tested them on the sensor
calibration task presented in the introduction. We deployed 54
Intel–Berkeley motes in our lab (Figure 2) and collected tem-
perature measurements every 30 seconds for a period of sev-
eral days. We also collected link quality statistics and computed
the fraction of transmissions each mote heard from every other
mote. Using this link quality information, we designed a sensor
network simulator that modeled the actual deployment. (De-
signing, testing, and experimenting with our algorithms would
have been far more difficult in the actual deployment.) This sim-
ulator uses an event-based model to simulate lossy communica-
tion between the nodes at the message level: messages are either
received or not, depending upon samples from the link qual-
ity model. The simulator’s programming model is also event-
based—algorithms are coded in terms of responses to message
events—and we expect that our implementations can be trans-
ferred to a real sensor network without significant changes.

Using the temperature data we fit a Gaussian distribution with
the Markov graph depicted in Figure 2. (Mote 5 failed shortly
after deployment, which explains its absence in the figure, and
also justifies our efforts to develop algorithms robust to such
failures.) The model was augmented with bias variables for each
temperature measurement, which were distributed i.i.d. from
N(0, 1◦C). We then sampled a true, unobserved bias for each
node, and created a set of biased measurements by adding these
biases to a held-out test set of measurements. The task is for

the nodes to compute their posterior mean biases, and the error
metric we use is the root mean squared error (RMS) from their
estimates to the (unobserved) biases we sampled.

5.1 Convergence to optimal global inference

Our first experiment demonstrates the inference architecture in
the simplest setting, where link qualities are stable. Figures 6(a)
and 6(b) visualize traces of the inference architecture when ro-
bust and sum–product message passing are used; the spanning
tree and junction tree formation algorithms are identical in both
cases (for simplicity the optimization algorithm was not used).
Thex-axis of all of these plots is time. At the bottom of each
trace are two bars: the bottom bar is white when a valid span-
ning tree has been constructed, and the top bar is white when the
running intersection property has been enforced. At the begin-
ning of these simulations there is a prolonged period before the
spanning tree is built; the nodes wait until they have accurate
link quality estimates before they begin building the spanning
tree. Notice that after a spanning tree is built, it can be lost; this
typically occurs in the delay between a node swapping a neigh-
bor and the old and new neighbor learning of the change. Also
note that after a stable spanning tree has been found, the junc-
tion tree formation algorithm eventually enforces the running
intersection property, resulting in a valid junction tree.

The main panel of Figure 6(a) plots the RMS error of three in-
ference algorithms. The line markedglobal refers to centralized
inference using all of the measurements. In this case, the pos-
terior mean bias estimates of global inference have 0.61 RMS
error; because the bias is additive, this number also represents
the average error in the posterior mean temperature measure-
ments. The line markedlocal refers to centralized local infer-
ence, where each node’s posterior is computed using only its
measurement. Local inference performs about as well as pre-
dicting zero bias, achieving a 0.99 RMS error; this is expected,
since solving the calibration problem requires correlated mea-
surements at different nodes.

The third curve,distributed robust, refers to the robust mes-
sage passing algorithm. This plot graphically demonstrates the
key properties of the algorithm: before any messages have been
passed, the partial beliefs coincide with the estimates given by
centralized local inference; at convergence, the estimates coin-
cide with those of centralized global inference; and, before all
messages have been passed, the estimates are informative ap-
proximations. Looking closely, we can see that before the junc-
tion tree is valid, and even before a complete spanning tree is
constructed, the estimates of the robust message passing algo-
rithm quickly approach those of centralized global inference.

We now turn our attention to Figure 6(b), which was generated
from the same setup as Figure 6(a) except that the sum–product
message passing algorithm was used. Here too we see that the
message passing algorithm converges to the correct global pos-
teriors once a valid junction tree is formed. But before con-
vergence, its estimates are extremely poor—many times worse
than local inference. Moreover, its convergence is not gradual,
but quite sudden: the estimates are useless right up to the mo-
ment of convergence. Finally, the top panel shows the number
of nodes whose partial beliefs are not valid densities; before
convergence, many nodes are unable to make a prediction at all.
Taken together, these qualitative behaviors make sum–product
message passing inappropriate for distributed inference in sen-
sor networks.

5.2 Optimization of the spanning tree

Using the same setup as§5.1, we ran an experiment to test the
distributed spanning tree optimization algorithm (Figure 6(c)).
We chose our communication cost function so that the cost of a
(directed) edge is proportional to the expected number of trans-
mitted bytes necessary to successfully communicate a belief
propagation message; this cost function takes into account the
link quality of an edge as well as the size of its separator.

Offline, we used a combination of simulated annealing, greedy
local search, and random restarts to find a local minimum of this
cost function4; its cost is plotted as the horizontal line in Figure
6(c). The piecewise constant curve represents the current cost of
the spanning tree, when one exists. Note that the initial spanning
tree, which is selected using only link quality information, is
significantly more expensive than the hypothesized optimum,
but that the distributed optimization algorithm eventually finds
trees whose cost is less than twice this hypothesized optimum.

5.3 Robustness to communication failure

To test the algorithms’ robustness to long-term communication
failure, we ran the experiment of§5.1 again, but this time we
introduced a period where interference causes the network to be
segmented into two parts. At time 60, all messages between the
left half of the network (nodes 1-35) and the right half (nodes
36-54) are lost; at time 120 the communication is restored. Dur-
ing the interference the nodes on the left half of the network
do not have access to the measurements made on the right, and
vice-versa; therefore the global inference error curve in Figure
6(d) changes: it is computed for each node using the posterior
conditioned on the measurements on its side of the network.

In Figure 6(d) we can see that the robust message passing al-
gorithm achieves convergence before and after the inferference
period, but that the interference prevents a (complete) spanning
tree from being formed. In spite of this, the robust message
passing algorithm converges with an error that is very close to
the optimum. In this period, each half of the network forms its
own junction tree and uses message passing. Robust message
passing does not converge to exactly the same result as global
inference because some prior factors needed by the left half of
the network have been distributed to right half, and vice versa.

We also ran the same experiment using sum–product message
passing. Like robust message passing, it converged to the cor-
rect belief before and after the interference period; however,
during the interference both halves of the network converged
to very poor estimates (RMS error 1.95). This is expected be-
cause during the period of interference, each side of the network
is missing half of the prior model.

5.4 Robustness to node failures

In this experiment we used the setup from§5.1 with simulated
node failures. The time to failure for each node was sampled
i.i.d. from an exponential distribution. As each node dies, its
measurement is lost, and so the inference problem to be solved
is changing over time; this explains the changing error values
for global and local inference.

We ran this experiment with both the sum–product and ro-
bust message passing algorithms (with the same sampled fail-
ure schedule). The sum–product algorithm failed miserably be-
cause the first node died at time 6.86, before a junction tree
could even be formed. As a result, prior factors were lost be-
fore message passing could even converge. The RMS error was
never better than that of local inference, and for the majority of
the simulation, it was far worse.

Figures 6(e) and 6(f) show how robust message passing per-
forms in the presence of failing nodes. In Figure 6(e), each
prior factor was distributed to only one node of the network; in
this case we see that robust message passing gives consistently
reasonable results; it converges to the global optimum until ap-
proximately time 200, when it no longer has all of the factors to
reconstruct the true prior. After this point its performance grace-
fully degrades to the correct results of local inference. Figure
6(f) shows that when each factor is distributed redundantly to
three nodes, the algorithm is still correct, and for much longer:
it solves the global inference problem exactly past 500 seconds,
when only 26 of the original 53 nodes are still functioning.

4The local moves used in this optimization were from a larger class of
edge swaps than that used by the distributed algorithm.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50

R
M

S
 e

rr
o
r

time

distributed robust
global

local

junction
spanning spanning

(a) convergence of robust message passing

 0
 20
 40
 60

 0 10 20 30 40 50

number of invalid densities

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50

R
M

S
 e

rr
o
r

time

distributed sum-product

global
local

junction
spanning spanning

(b) sum–product message passing

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50 100 150 200 250 300 350 400
time

current tree
hypothesized optimum

junction
spanning spanning

c
o
m

m
u
n
ic

a
ti
o
n

 c
o
s
t

initial tree

(c) optimizing the spanning tree

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 20 40 60 80 100 120 140 160 180

R
M

S
 e

rr
o

r

time

distributed robust
global

local

junction
spanning spanning

(d) coping with interference

 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200

number of functioning nodes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000 1200

R
M

S
 e

rr
o
r

time

distributed robust
global

local

junction
spanning spanning

(e) failing nodes

 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200

number of functioning nodes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000 1200

R
M

S
 e

rr
o
r

time

distributed robust (redundant)
global

local

junction
spanning spanning

(f) redundant distribution of factors

Figure 6: Experimental results.

5.5 Applying loopy belief propagation

Because it is simple to implement and easily parallelizable, it
has been suggested that loopy belief propagation (LBP) is “an
ideal computational and communication framework for sensor
networks” [8]. We had hoped to compare our algorithms toLBP,
but unfortunately, this was not possible;LBP can only be ap-
plied to a restricted class of models, and the model we learned
from the sensor network data was not in this class.5 Even so,
we can infer some qualitative properties ofLBP from our ex-
periments with its exact correlate, the sum–product algorithm.
Like the sum–product algorithm,LBP can perform poorly when
factors of the prior model are inaccessible due to node failure
or interference. For the same reason, we could not expectLBP
to provide reasonable answers until enough time had elapsed to
permit messages from one end of the network to reach the other.

6 Conclusions
Distributed systems are an exciting application area for proba-
bilistic reasoning algorithms with new and complex challenges
to overcome. To address these challenges, we found that it is
insufficient to adapt existing algorithms; for example, we have
demonstrated that sum–product message passing can fail badly
when communication is unreliable or nodes fail. In this paper,
we presented a novel, robust algorithm for probabilistic infer-
ence in distributed systems that provides very strong theoret-
ical guarantees: even when nodes fail and messages are lost,
each node can compute a principled approximation of the poste-
rior distribution of its query variables, given the measurements
incorporated in the messages the node has received. In addi-
tion, robust message passing is extremely efficient: the com-
putational complexity of the message passing updates depends
only on the model, and not on the underlying network topology.
We also demonstrated the theoretical properties of our algorithm
with detailed experimental results on data from an actual sensor
network deployment.

This paper focuses on static inference problems, but many dis-
tributed systems problems require reasoning about time with dy-
namic Bayesian networks (DBN). Unfortunately, exactDBN in-

5LBP can only be applied to Gaussian models where all of the pairwise
factors are normalizable; otherwise the messages and beliefs may not be
well-defined. The model we learned from data cannot be expressed in this
way; even a modified version ofLBP failed to converge.

ference can be intractable. In current work, we are designing a
new inference algorithm that addresses both the robustness re-
quirements of distributed systems, and the computational com-
plexity of inference in dynamic probability models.

Acknowledgements

We gratefully acknowledge Wei Hong, Samuel Madden, and
Romain Thibaux for their help deploying the sensor network.
Mark Paskin was supported by ONR N00014-00-1-0637 and an
Intel Research Internship.

References
[1] M. Paskin and C. Guestrin. A robust architecture for dis-

tributed inference in sensor networks. Technical Report IRB-
TR-03-039, Intel Research, 2003.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors. In
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS 2000), 2000.

[3] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson. Wireless sensor networks for habitat monitoring.
Technical Report IRB-TR-02-006, Intel Research, 2002.

[4] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative
signal and information processing: An information directed
approach.Proceedings of the IEEE, 91(8), 2003.

[5] C. Guestrin, R. Thibaux, P. Bodik, M. Paskin, and S. Madden.
Distributed regression: an efficient framework for modeling
sensor network data. InProc. of Information Processing in
Sensor Networks 2004 (IPSN-04), 2004.

[6] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.Prob-
abilistic Networks and Expert Systems. Springer, 1999.

[7] V. Byckovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A
collaborative approach to in-place sensor calibration. InProc.
of Information Processing in Sensor Networks, 2003.

[8] C. Crick and A. Pfeffer. Loopy belief propagation as a basis
for communication in sensor networks. InProc. of the 19th
Conference on Uncertainty in AI (UAI-2003), 2003.

