
A Constraint-based God-object Method For Haptic Display

C. B. Zilles J. K. Salisbury

Department of Mechanical Engineering

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA

Abstract

Haptic display is the process of applying forces to a

human \observer" giving the sensation of touching and

interacting with real physical objects. Touch is unique

among the senses because it allows simultaneous ex-

ploration and manipulation of an environment.

A haptic display system has three main components.

The �rst is the haptic interface, or display device -

generally some type of electro-mechanical system able

to exert controllable forces on the user with one or

more degrees of freedom. The second is the object

model - a mathematical representation of the object

containing its shape and other properties related to the

way it feels. The third component, the haptic render-

ing algorithm, joins the �rst two components to com-

pute, in real time, the model-based forces to give the

user the sensation of touching the simulated objects.

This paper focuses on a new haptic rendering al-

gorithm for generating convincing interaction forces

for objects modeled as rigid polyhedra (Fig. 1). We

create a virtual model of the haptic interface, called

the god-object, which conforms to the virtual envir-

onment. The haptic interface can then be servo-ed

to this virtual model. This algorithm is extensible to

other functional descriptions and lays the groundwork

for displaying not only shape information, but surface

properties such as friction and compliance.

1 Introduction

The process of feeling objects through a force-

generating interface is familiar in the context of using

teleoperator master devices to touch and interact with

remotely located objects [7]. Recent interest in en-

abling interaction with virtual objects [1] has led us to

investigate devices and algorithms which permit touch

and manipulative interaction { collectively, haptic in-

teractions { with these virtual objects.

The PHANToM haptic interface [4] permits users

to feel and control the forces arising from point inter-

Figure 1: This polygonal model of a space shuttle is

made up of 616 polygons. This is an example of the

complexity of objects the god-object algorithm can allow

the user to touch.

actions with simulated objects. The point interaction

paradigm greatly simpli�es both device and algorithm

development while permitting bandwidth and force �-

delity that enable a surprisingly rich range of interac-

tions. It reduces the problem of computing appropriate

interaction forces { haptic rendering { to one of tracing

the motion of a point among objects and generating

the three force components representing the interac-

tion with these objects. In this paper the term haptic

interface point will be used to describe the endpoint

location of the physical haptic interface as sensed by

the encoders.

This work was done with PHANToM-style device

with a max force of 18N (4 lbf). We have found this to

be enough force to make virtual objects feel reasonably

solid without saturating the motors. While exploring

virtual environments most users tend to use less than

5N (1 lbf) of force.

larry fine

larry fine
 Zilles, Craig and K. Salisbury, ``A Constraint-Based God Object Method for Haptic Display,'' proceedings of IROS-95, Pittsburgh, Aug 6-9, 1995, Vol. 3, pp 146-151.

a) b)

r r

r

?�

6

-

�
�
�
�
�
�@

@
@
@
@
@

Figure 2: Generation of contact forces using volumes

(the small dot represents the haptic interface point). a)

Two possible paths to reach the same location in an

square are shown; without a history we do not know

which path was taken. b) Vector �eld method (in 2 di-

mensions): subdivide the square's area and assume that

the user entered from the closest edge. The force vectors

are normal to the edge and proportional to distance pen-

etrated. This method is easily expanded to 3 dimensions.

Due to the inherent mechanical compliance of haptic

interface devices the maximum sti�ness of any virtual

object is limited. One side-e�ect of this is that the

haptic interface point often penetrates into a simulated

object a greater distance than would be possible in

real life. In typical demonstrations with our system,

the user presses the haptic interface as much as a half

an inch into the virtual object when he is stroking the

surface. Because humans have poor position sense,

this usually goes by unnoticed.

Previous haptic rendering algorithms have tried to

determine the feedback force d
�
irectly from this penet-

ration. These volume methods use a one-to-one map-

ping of position in space to force. We group these

methods together under the label of vector �eld meth-

ods.

These vector �eld methods have a number of draw-

backs:

1. It is often unclear which piece of internal volume

should be associated with which surface.

2. Force discontinuities can be encountered when

traversing volume boundaries.

3. Small and thin objects do not have the internal

volume required to generate convincing constraint

forces.

This volume penetration can make the logic of gen-

erating proper interaction force vectors di�cult. When

a user is in contact with the center of a large at

surface, it is obvious that the direction of the force

should be normal to the plane. The choice of which

virtual surface the user should be touching becomes

ambiguous as the boundary between surfaces is ap-

proached. Multiple paths, meriting di�erent feedback

a) b)

@
@

@
c)

XXXX

�
���

r �
�
�
��

@r �
�
�
�
�
��

XX
r

Figure 3: Force summation for multiple objects: a) for

perpendicular surfaces, forces sum correctly, but b) as the

surface intersection angle becomes more obtuse the force

vector becomes too large. Finally c) when the surfaces

are almost parallel the force is too large by a factor of 2.

forces, could have been taken to reach the same in-

ternal location (Figure 2a). One method [5] suggests

subdividing the object volume and associating a sub-

volume with each surface (Figure 2b). When inside a

sub-volume the force is normal to the associated sur-

face and the magnitude is a function of the distance

from the surface, such as with Hooke's law, Fx = kx.

This method causes a sensation of \sharpness" to be

felt at corners due to the sudden force discontinuity

from passing from one region into another. This can

be useful when truly sharp corners are desired, but

confusing when transitions are made accidentally.

This method works for simple geometric shapes be-

cause it is reasonably easy to construct these subspaces

by hand. In addition, any shape that can be described

with an equation can be modeled. For spheres the

feedback force direction is that of the vector pointing

from the sphere's center to the haptic interfaces point,

and the magnitude is a function of the distance the

point has penetrated the sphere's surface. The inher-

ent simplicity of these methods has allowed interesting

work in dynamic objects and surface e�ects,[6] but the

methods are not exible enough to allow arbitrary geo-

metries and have some drawbacks.

1.1 Problems with Multiple Objects

Using the vector �eld approach, it is tempting to

construct more complex objects by combining (over-

lapping) simple objects. In regions where object inter-

sections occur, we might consider computing the net

reaction force by vectorially adding contributions from

each object's force �eld in hope that it will generate the

correct sensations at corners and edges. This will not

always compute the correct force.

When a user is in contact with more than one such

object simultaneously, the net surface sti�ness can be

larger than that of either surface alone. On objects

meeting at perpendicular surfaces, the forces can be

summed because the distance into the solid is the vec-

tor addition of the two orthogonal components (Fig-

ure 3). However, when the angle made by the sur-

a)
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C

r��:

b)
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C

r���:

c)
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C

rXXXy

Figure 4: Push through of thin objects. a) user touches

surface and feels small force, b) as he pushes harder he

penetrates deeper into the object, until c) he passes more

than halfway through the object where the force vector

changes direction and shoots him out the other side.

faces becomes more obtuse, the resulting reaction force

magnitude (and corresponding apparent sti�ness) ap-

proaches twice that of either surface alone. Surfaces in-

tersecting at acute angles are less sti� than either sur-

face alone. The system is no longer robust; these sti�-

ness discontinuities could exceed the maximum stable

sti�ness.

Generating believable forces requires directly de-

termining the distance the haptic interface point

has penetrated an object and the surface(s) it has

passed through to arrive at its current position. The

constraint-based method described in Section 2 com-

putes this distance directly.

1.2 Problems with Thin Objects

Vector �eld methods also break down when thin ob-

jects are to be rendered. Because of the limited servo

and mechanical sti�nesses, the haptic interface point

must travel somewhat into the object before enough

force can be applied to make the object feel \solid".

When this distance becomes greater than the thickness

of an object, the vector �eld model produces unreal-

istic sensations. As shown in Figure 4, when the haptic

interface point reaches halfway through the object, it

is pulled through the rest of the way. The algorithm

has assumed that the user entered through the other

side. This e�ect takes place at any convex corner.

One possible solution is to keep a history of con-

tact occurrences so we know the surfaces our haptic

interface point has passed through. With a history of

old locations it would be clear which surface is meant

to be touched and, therefore, which force should be

displayed; unfortunately, this method rapidly becomes

numerically cumbersome. It is important to have a

compact representation in both use of memory and

processing time. We describe below the use of a \god-

object" as a compact representation of history.

2 The God-object Algorithm

We will de�ne and explain the reasoning behind the

god-object representation and how it can be utilized

in rendering polyhedral representations of objects, in

Section 2.1. The term god-object has been previously

used [2] in a similar spirit to describe a virtual object

controlled by a human user in physical simulations.

Using the history (the god-object location calcu-

lated in the previous servo cycle) and the current

haptic interface point, a set of surfaces currently im-

peding motion can be found. A discussion of con-

straints is given in Section 2.2.

Lagrange multipliers are used to �nd the new loc-

ation of the god-object during contact with a virtual

object. The god-object's new location is chosen to be

the point which locally minimizes the distance between

the god-object and the haptic interface point, subject

to the constraint that the god-object is on a particular

surface. The mathematics of this method are explained

in Section 2.3

2.1 God-objects

As we saw in the previous section a number of prob-

lems arise from the penetration of the haptic interface

point into virtual objects. We know we cannot stop

the haptic interface point from penetrating the virtual

objects, but we are free to de�ne additional variables

to represent the virtual location of the haptic interface.

This location is what we will call the god-object.

We have complete control over the god-object; we

can prevent it from penetrating any of the virtual ob-

jects and force it to follow the laws of physics in the

virtual environment. The god-object is placed where

the haptic interface point would be if the haptic in-

terface and object were in�nitely sti�. Because the

god-object remains on the surface of objects, the dir-

ection of the force should never be ambiguous. This

allows a more realistic generation of the forces arising

from touching an object. In particular, this method is

suitable for thin objects and arbitrarily shaped poly-

hedra.

In free space, the haptic interface point and the god-

object are collocated, but as the haptic interface moves

into an object the god-object remains on the surface.

The god-object location is computed to be a point on

the currently contacted surface such that its distance

from the haptic interface point is minimized. This as-

sumes the god-object moves across the surface without

being impeded by friction; inclusion of friction is a

simple extension.[8]

By storing additional state variables for the posi-

tion of the god-object (one variable for each degree

of freedom of the apparatus) we can keep the useful

history of the object's motion in a compact manner.

In our work with a three-degree-of-freedom haptic in-

terface, the god-object is a point needing only three

coordinates to �x its location.

Once the god-object location is determined, simple

impedance control techniques can be used to calcu-

late a force to be displayed. A sti�ness and damping

can be applied between the haptic interface point and

the god-object, representing local material properties.

The sti�ness and damping can vary between objects

and across an object as long as they do not exceed the

maximum displayable values of the device as limited

by servo sti�ness and stability. In addition, non-linear

sti�nesses could be used to give surfaces more inter-

esting sensations, such as the click of a button.

2.2 Constraints

Although we are interested in simulating volumes,

we interact with those volumes on their surfaces. In

general, it is more convenient to represent objects by

their surfaces. To simplify the mathematics of the

problem, only planar surfaces are used.

In this work we have found that a good �rst-cut

haptic representation can be derived from the same

polyhedral geometry used to represent objects for

visual rendering. Straightforward lists of vertices,

edges and facet orientation, as are found in standard

polyhedral representations, are su�cient to permit use

of the god-object algorithm. This is particularly con-

venient in that it enables haptic rendering of a large

body of existing visually render-able objects.

A mesh of triangular elements is used because it is

the most fundamental, and assures that all of the nodes

are coplanar. Graphic models do not require the ex-

actness required by haptic models, so it is not uncom-

mon to �nd objects with four-noded surfaces where the

nodes are not coplanar. The problems caused by such

surfaces can be avoided by using a triangular mesh.

In addition, since a plane is completely determined by

three points, we can move nodes on the y and still

have geometrically acceptable surfaces. Moving nodes

due to applied forces is one way to implement deform-

able surfaces.

Using a polygonal representation of objects makes

collision detection simple. For an in�nite surface (a

planar constraint), we will denote the surface as active

if the old god-object is located a positive (in the direc-

tion of the surface normal) distance from the surface1,

1Due to the round-o� error present in any digital system the

newly computed god-object position might be in�nitesimally

below the virtual surface. If no precautions are taken the god-

object will cross (and no longer be restrained by) the virtual sur-

face. To prohibit such behavior, we add a small constant to the

calculated distance from the god-object to the virtual surface.

a) ����
XXXX

b) ����
XXXX

c) ����
XXXX

t

r

���
t

r

t

r

Figure 5: Motion between convex surfaces takes place

in two steps (the small dot represents the location of the

haptic interface, and the larger dot represents the god-

object): a) approaching the edge, b) the left surfaces is

still active so the new god-object location is places in the

plane of the left surface, but not in its boundaries, c) now

that the god-object is free of the left surface it can fall

to the right surface. This distortion of shape is generally

imperceptible.

and the haptic interface point has a negative distance

to the surface (i.e. on the other side). This creates

surfaces as one-way constraints to penetration2.

When the surfaces are not of in�nite extent, then

for a surface to be active, we also require that the god-

object contact take place within the boundaries of the

surface. A line can be traced from the old god-object

to the new haptic interface point. If this line passes

through the facet (within all of the edges) then that

facet should be considered as active.

When touching convex portions of objects, only one

surface should be active at a time. The transition of

the god-object between two surfaces sharing a convex

edge requires two steps (Figure 5). While the �rst

surface is active, the contact point must stay on the

plane of the surface, but not necessarily within the

boundaries; the �rst step places the god object over

the second surface, but still in the plane of the �rst

surface. In the next servo loop the �rst surface will

no longer be active and the god-object can then fall to

the second surface. The times and distances involved

are small enough to cause only an imperceptible and

transient distortion of shape.

When probing a concavity, multiple surfaces can

be active simultaneously. When touching the concave

Conceptually, this is equivalent to using another plane just be-

low the virtual surface for computation of god-object distances.
2This method treats surfaces as single-sided surfaces respect-

ing the fact that objects are formed from a closed set of surfaces.

There is no physical reason to touch both the inside and out-

side of an object simultaneously. In some respects it is actually

bene�cial because a simulation can begin with the haptic inter-

face in any con�guration; if the haptic interface starts inside a

virtual object the user can simply move out of the object as it

were free space. In vector �eld methods a \workaround" has to

be introduced for this contingency.

a)

A
A
A
A
A

�
�
�
�
�

t

r

A
A
A
A

��
�� b)

A
A
A
A
A

�
�
�
�
�

t

r
A
A
A
A

��
��

Figure 6: For an acute concave intersection of surfaces

the god-object will be able to cross one of the surfaces

unless special precautions are taken. The large dot rep-

resents the position of the god-object and the small dot

represents the haptic interface. a) If the user is pressing

into one surface and sliding down, b) the god-object will

cross to the negative side of the surface before the haptic

interface will and the constraint will not be activated. To

prevent this we use an iterative routine.

intersection of two planes, both constraints are active,

and the god-object's motion should be restricted to a

line (the intersection of both planes). When in contact

with the intersection of three surfaces, all three will

be active and the net constraint becomes a point (the

intersection of all three planes). At the intersection of

more than three surfaces, only three will be active at

any one time and the user will still be constrained to a

point. Once we identify one active constraint, we can

temporarily limit our search to neighboring surfaces.

Additional care must be taken when surfaces inter-

sect at an acute angle (as viewed from the \outside" of

the surfaces) to form a concavity. If the user presses

into one such surface and slides along it, it is possible

for the god-object to cross the other constraint surface

before the haptic interface point does (Figure 6). Once

the god object crosses a wall, it will be free of that con-

straint; therefore, we must not allow the crossing.

One solution is to iterate the whole process. The

�rst iteration will �nd a set of active constraints and

calculate a new god-object location. Using the \new"

god-object location as the haptic interface point, the

constraints of neighboring surfaces are checked again

to see if any additional surfaces should be active. If

additional constraints are found, then another \new"

god-object location is computed. This iteration con-

tinues until no new constraints are found. This itera-

tion process requires very little time, since the number

of possible constraints in the neighborhood of a con-

tact is very small. The maximum number of iterations

is equal to the maximum number of possible simultan-

eous constraints.

2.3 God-object Location Computation

When a set of active constraints has been found,

Lagrange multipliers can be used to determine the loc-

ation of the new god-object. Equation (1) gives the

energy in a virtual spring of unity sti�ness, where x, y,

and z are the coordinates of the god-object and xp, yp,

and zp are the coordinates of the haptic interface point.

Constraints are added as planes because they are of

�rst order (at most) in x, y, and z in the form shown

in equation (2). The general case for our 3-degree-

of-freedom haptic interface involves 3 constraints; for

less constrained instances, zeros are used to replace

unused constraints giving a lower order system.

Q =
1

2
(x� xp)

2 +
1

2
(y � yp)

2 +
1

2
(z � zp)

2: (1)

Anx+Bny + Cnz �Dn = 0 (2)

The new location of the god-object is found by min-

imizing L in equation (3) below by setting all six par-

tial derivatives of L to 0. Because the constraints are

of �rst order and Q is of second order, the di�eren-

tiation is very simple. In fact, the di�erentiation can

be done symbolically and the actual coe�cient values

can be just substituted at runtime. In the general case

we have six variables (x, y, z, l1, l2, l3), which will

give us six partial derivatives organized into a set of

simultaneous equations:

L = 1

2
(x� xp)

2 + 1

2
(y � yp)

2 + 1

2
(z � zp)

2

+ l1(A1x+B1y + C1z �D1)

+ l2(A2x+B2y + C2z �D2)

+ l3(A3x+B3y + C3z �D3)

(3)

2
6666664

1 0 0 A1 A2 A3

0 1 0 B1 B2 B3

0 0 1 C1 C2 C3

A1 B1 C1 0 0 0

A2 B2 C2 0 0 0

A3 B3 C3 0 0 0

3
7777775

2
6666664

x

y

z

l1
l2
l3

3
7777775
=

2
6666664

xp
yp
zp
D1

D2

D3

3
7777775

(4)

The matrix, equation (4), has a number of useful

properties. It is symmetric, the upper left hand corner

(3x3) is always the identity matrix, and the lower left

hand corner is always a null matrix, it should never re-

quire row swapping, and should always be invertible.3

Because of these properties it requires only 65 mul-

tiplicative operations (multiplies and divides) to solve

3It is important to make sure that none of the surfaces are

parallel because this will cause the matrix to be singular.

for x, y, and z. In the 5x5 case (when there are only

2 constraints), it requires only 33 multiplicative op-

erations, and in the 4x4 case (a single constraint), it

takes only 12. When no constraints are active, the

god-object is located at the position of the haptic in-

terface. Also because of its symmetry, and the identity

and null portions, we only need variables for 15 of the

36 matrix locations and 6 for the right side vector.

2.4 Performance

The above described algorithm has been implemen-

ted in C++ to run on a 66MHz Pentium, interfaced

to a PHANToM haptic interface.

For objects with about 600 triangular facets the

simulation runs at about 1 kHz. Much of the time is

spent running the simple collision detection algorithm.

With an improved collision detection algorithm [3] sig-

ni�cant speedups can be expected. Due to the local

nature of the god-object scheme, only the collision de-

tection part of the problem scales with the size of the

model.

3 Conclusion

The constraint based god-object method allows a

user to intuitively control a point probing a virtual

object and prevents the point from penetrating these

objects. Because the god-object remains on the sur-

face of the virtual objects, it is easy to compute real-

istic force vectors to apply to the user. In addition, the

method allows use of the extensive libraries of polygon-

meshed objects already in existence. Furthermore,

the god-object implementation provides, with no ad-

ditional computation, coordinates of the contact point

suitable for visual display of haptic interactions.

Our current research focuses on adding a number

of important haptic e�ects to the above algorithm. [6]

While the current algorithm faithfully reproduces the

sharpness occuring at the discontinuity between adja-

cent surfaces, we have found that it is possible to in-

terpolate surface normals between surfaces to smooth

out these transitions in much the same way as is

currently the practice with visual shading algorithms

(e.g. Phong shading). We have also demonstrated

that commonly encountered haptic sensations such as

friction, texture, and surface impedance can be con-

vincingly displayed by careful modulation of the force

vector applied to the user. While such e�ects so far

have been limited to simple demonstrations with ob-

ject shapes not requiring the generality of the god-

object algorithm, we expect they will become part of

a more general haptic rendering engine currently under

development.[8]

Acknowledgments

This work is supported in part by NAW-

CTSD contracts, N61339-93-C-0108, N61339-93-C-

0083, N61339-94-C-0087 and ONR Grant N00014-93-

1-1399. In addition the authors would like to thank

Thomas Massie, Nitish Swarup, Dr. David Brock, Dr.

Brian Eberman, and Derek Schulte at the A.I. Lab for

their contributions and suggestions.

References
[1] N. Durlach et al, Virtual Reality: Scienti�c and

Technological Challenges, Report produced for the

National Research Council, National Academy of

Sciences, Washington D.C. December 1994.

[2] P. Dworkin and D. Zeltzer, \A New Model for Ef-

�cient Dynamic Simulation", Proceedings Fourth

Eurographics Workshop on Animation and Simu-

lation, pp.135-147, 1993.

[3] M. C. Lin, D. Manocha, and J. Canny, \Fast Col-

lision Detection between Geometric Models," Tech

Report TR93-004, Department of Computer Sci-

ence, University of North Carolina, 1993.

[4] T. Massie, \Design of a Force Reecting Fingertip

Stimulator", SB thesis, MIT EECS Department,

May, 1993.

[5] T. Massie and K. Salisbury, \The PHANToM

Haptic Interface: A Device for Probing Virtual

Objects," Proceedings of the ASME Winter An-

nual Meeting, Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems,

Chicago, IL, November 1994.

[6] K. Salisbury, D. Brock, T. Massie, N. Swarup, C.

Zilles \Haptic Rendering: Programming Touch In-

teraction with Virtual Objects," to appear in the

Proceedings of the ACM 1995 Symposium on In-

teractive 3D Graphics, Monterey CA, April 1995.

[7] T. Sheridan, Telerobotics, Automation, and Super-

visory Control, MIT Press, Cambridge, MA, 1992.

[8] C. Zilles, \Haptic Rendering using the Toolhandle

Haptic Interface", MS-SB thesis, MIT Mechanical

Engineering Department, May, 1995.

