Tutorial on Bayesian Networks

Jack Breese & DaphneKoller

First given asa AAAI’ 97 tutorial.

Overview

n Decision-theoretic techniques
u Explicit management of uncertainty and tradeoffs
u Probability theory
u Maximization o expeded uility
n Applicaionsto Al problems
u Diagnaosis
u Expert systems
u Planning
u Leaning

Science- AAAI-97

Model Minimizationin Markov Dedsion Processes

n Effedive Bayesian Inference for Stochastic Programs

n Leaning Bayesian Networks from Incomplete Data

n Summarizing CSPHardness With Continuous
Probability Distributions

n Speeding Safely: Multi-criteria Optimization in
Probabili stic Planning

n Structured Solution Methods for Non-Markovian

Decision Processes

Applications
@©COMPUTERWORLD

The online connection for information technology leaders

Microsoft©s cost-cutting helps users
042197

A Microsoft Corp. strategy to cut its support costs by letting users @lvetheir
own problems using electronic meansis paying dof for users.In March, the
company began rolling out a series of Troubleshooting Wizards on its World
Wide Web site.

Troubleshooting Wizards save time and money for users who don©t
have Windows NT specialistson hand at all times, said Paul Soares,
vicepresident and general manager of Alden Buick Pontiac, a General
Motors Corp. car dealership in Fairhaven, Mass

Microsoft Researchers
Exchange Brainpower with
Eighth-grader

Teenager Designs Award-
Winning Science Projed

.. For her science project, which she
called "Dr. SigmundMicrochip,”
Tovar wanted to create a computer : it k

program to diagnase the probability of = = . = s
certain personality types. With ONly  ygerachip, he seience prwjer she ereated using the
answers from a few questions, the advanced mathematical formulas that Microsoft Research
program was able to accurately uses to huild artificial intelligence programs.
diagnase the correct persondity type

90 percent of the time.

Course Contents

» Conceptsin Probability

u Probability

u Randam variables

u Basic properties (Bayesrule)
Bayesian Networks
Inference

Decision making

Learning retworks from data
Reasoning ower time
Applicdions
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Probabiliti es

n Probability distribution P(X|x)
u Xisarandom variable
n Discrete
n Continuaus
u xisbadgroundstate of information

Discrete Random Variables

n Finite set of passible outcomes

XT{6,%6,%,0%}
P(x)* 0
4 Pex)=1 &
i=1 005

Xbinary: P(x) + P(X)=1 e x

Continuous Randam Variable

n Probability distribution (density function)
over continuous values
X1 [010] P(x)2 0

10

OP(x)dx =1 P(X)
P(5£x£7)—0P(x)dx Lﬂ

More Probabhiliti es

n Joint
P(x,y)° P(X =xUY =)
u Probability that both X=x and Y =y
n Conditional
P(xly)° P(X =x]|Y =Y)
u Probability that X=x given we know that Y=y
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Rules of Probabil ity

n Product Rule
P(X,Y) =P(X[Y)P(Y) = P(Y | X)P(X)

n Marginaization
P(Y) =4 P(Y.x)

i=1

xbinay:  P(Y) =P(Y,x) + P(Y,X)

Bayes Rule

P(H,E)=P(H |E)P(E) =P(E|H)P(H)

P(E[H)P(H)

PHIE)===C
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Course Contents

n Conceptsin Probability
» Bayesian Networks
u Basics
u Additional structure
u Knowledge acquisition
n Inference
n Decision making
n Learning retworks from data
n Reasoning ower time
n Applicaions

Bayesian networks

n Basics
u Structured representation
u Condtional independence
u Naive Bayes model
u Independencefacts
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Bayesian Networks

st {no,light, heavy

P(S=no)  |0.80| cT {nonebenignmalignan}
P(S=light) |0.15
P(S=heavy) |0.05

Smoking=[no  [light |heavy
P(C=nore) [0.96 [0.88 |0.60
P(C=benign) [0.03 [0.08 |0.25
P(C=malig) |0.01 [0.04 |0.15

Product Rule

n P(C,9 = P(C|§ P(§

S3 CP | nore | benign | malignant

no 0.768 0.024 0.008
light 0.132 0.012 0.006
heavy 0.035 0.010 0.005

16

Marginali zation
B CPb |nore |benign jmalig | total
no 0.768 0.024| 0.008 .80
light 0132] 0012] 0006 15| “p(smoke

heavy 0035 0.010, 0.005 .05
total| 0.935 0.046/ 0.019

%/—/

P(Cancer)

Bayes Rule Revisited
P(C|SP(S - P(C,9)

P(SIC) =

P(C) P(C)
B CP |nore benign malig
no 0.768.935| 0.024/.046| 0.008.019
light 0.132.935| 0.012/.046| 0.006/.019
heavy 0.0300.935| 0.015.046| 0.005.019

Cancer= |nore |benign | malignart
P(S=no) 0.821 |0.522 0.421
P(S=light) 0.141|0.261 0.316
P(S=heavy) |0.0370.217 0.263 18




A Bayesian Network

Conditional Independence

Cancer isindependent
of Age and Gender
given Smoking.

P(CAG9=P(Cl§ C"AG|S

Independence

Age and Gender are
independent.

P(AG) = P(G)P(A)
P(AIG) = P(A) A" G
P(G|A) = P(G) G~ A

P(A,G) = P(G|A) P(A) = P(G)P(A)
P(A,G) = P(AIG) P(G) = P(A)P(G)
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More Condtional Independence:
Nalve Bayes
Serum Calciumand Lung
Tumor are dependent

Serum Calciumis
independent of Lung Tumor,
given Cance

(Gane)

Serum

Calciu P(L|SC,C) = P(L|C)

22

Naive Bayesin general

P(h)

2n+ 1 paameters: _
P(g [h),P@&|h), i=1 ,n

More Condtional Independence:
Explaining Away
Exposure to Toxics and
Smoking are independent
ErS

Exposureto Toxicsis
dependent on Smoking,
given Cancer

P(E = heavy| C = malignart) >
P(E = heavy| C = malignart, S=heavy)

24




Put it all together
P(A.G,E,S,C,L,SC) =
P(A) xP(G)

P(E | A) xP(S| A G)

P(C|E,S) >

P(SC|C) *xP(L |C)

Genera Product (Chain) Rule
for Bayesian Networks

P(X, X, . X,)=OP(X, |Pa)

Pa;=parents(X)

26

Conditional Independence

A variable (nod) is condtionally independent
of its non-descendants given its parents.

} Non-Descendants

}Pafe"ts Cance isindependent
of Age and Gender
given Exposureto
Toxics and Smoking.

Another non-descendant

Cancer isindependent
of Diet given
Expasure to Toxics
and Smoking.

& @
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Independence and Graph
Separation

n Given aset of observations, is one set of
variables dependent on another set?
n Observing eff eds can induce dependencies.

n d-separation (Pearl 1988) allows us to check
condtional independencegraphicdly.

Bayesian networks

n Additional structure
u Nodes as functions
u Causal independence
u Context specific dependencies
u Continuaus variables
u Hierarchy and model construction

30




Nodes as functions

n A BN nodeis condtiona distribution function
u its parent values are the inpus
u itsoutput is adistribution ower its values

Any type of function
from Val(A,B)
to distributions
over Val(X)

32

Causal Independence

n Burglary causes Alarmiff motion sensor clea
n Earthquéke causes Alarmiff wireloose
n Enabling fadors are independent of eat other

Fine-grained model

~

34

Noisy-Or model

Alarm false only if all medhanismsindependently inhibited

Burglary

P(@=1- p’i‘gﬁ“v‘e’( Iy

# of parametersislinea inthe# o parents

CPCS
Network

36




Context-specific Dependencies

(Alarm-Set]| (Burglary] [Cat )

Alarm

n Alarm can gooff only if it is Set
n A burglar and the cd can bah set off the darm
n If aburglar comesin, the cat hides and does not set

Asymmetric dependencies
(Alarm-Set] (Burglary] [Cat]

|
A s S s
(@ 0,a: 1) C‘E/ b .
} \c~ (a:09,a:0.1)
(a: 0.01, &: 0.99 (a: 0.6, a: 0.4)

n Alarmindependent of
u Burglary, Cat given's
u Cat givensandb

Node function
represented
asatree

38

off the darm
37
Assessment Hierarchy.
Print
a2
Data Frinter Location
acal
LOCAL Transport
i
Local Printer 0K
HNoiral
Abnormal
No
Net Local Network
NET Transpott
Jranspor Transpor s
et Printer 0K
HNoiral
Abnormal
= o
Printer LMo
Output

Continuous variables

Outdoor i
Temperature N_C Setting

o7 i

Function from Val(A,B)
to density functions
over Val(X)

4

A

X

Indoa
Temperature

PX)

40

N(LI) —

04
35

03

02

02 02

015 01s

01 o1

005 008

different mean different variance

Gausdan networks

X ~N(ms)

®-®

Y ~ N(ax+b,s?)

Eachvariableisalinea
function o its parents,
with Gaussian noise

Joint probability density functions:




Compaosing functions

n Recdl: aBN noceisafunction

n We can compase functionsto get more
complex functions.

n Theresult: A hierarchicdly structured BN.

n Sincefunctions can be call ed more than
once, we @n reuse aBN model fragment in
multiple mntexts.
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Bayesian Networks

n Knowledge aqyuisition
u Variables
u Structure
u Numbers

45

What isavariable?

n Collectively exhaustive, mutualy exclusive
values

% Ux, Ux, Ux,
(5 Ux) it ]

n Values versus Probabilities

-46

Clarity Test:
Knowable in Principle

n Weaher {Sunny, Cloudy, Rain, Snow}

n Gasoline: Cents per gallon

n Temperature{ 3 100~ , < 100F}

n User needs help onExcd Charting{Yes, No}
n User's persondlity { dominant, submissive}

47

Structuring

Network structure correspording
to “causality” is usually good.

Extending the @nversation.

48




Do the numbers realy matter?

n Second cedmal usually does not matter
n Relative Probabilities

. Assess probabilities for: |-TypingSpeed_avg
I-TypinaSpeed

[Nomal|[ Slow

Passive 2 | e | = T

[ Heutial [ | 8 | = I
[ Evoied 1= | 27 | 16 I

LT I Cancel

n Zeros and Ones
n Order of Magnitude : 10° vs 10°
n Sensitivity Analysis

49

Locd Structure

1 n Causal independence from
2"to n+1 parameters
n Asymmetric assessment:
similar savingsin practice
n Typical savings (#params):
u 145to 55for asmall
hardware network;

u 133,931,430to 854 for
CPCS!!

50

Course Contents

n Conceptsin Probability

n Bayesian Networks

» Inference

Decision making

Learning retworks from data
Reasoning ower time
Applicdions

fm |

fm |

4

4

Inference

Patterns of reasoning
Basic inference

Exact inference
Exploiting structure
Approximate inference

52

Predictive Inference

to get malignant cancer?

How likely are elderly males

Combined

How likely isan elderly
male patient with high
Serum Calcium to have
malignant cancer?

P(C=malignant | Age> 60,

i Gender= male, Serum Calcium = high)

54




Explaining away

n If we see alung tumor,
the probability of heavy
smoking and of expasure
to toxics both go up.

n If we then observe heavy
smoking, the probability
of exposure to toxics goes
back down.

Inference in Beli ef Networks

n Find P(Q=g|E=¢)
u Q thequery variable
u E set of evidence variables

P(a.
Pl = oo

Xy-. X, @e network variables except Q, E
Pi =
(a, € Xﬁ‘ XﬂP(q, € Xy X))

56

Basic Inference

@—®

P(b) = ?

Product Rule

n P(C,9 = P(C|9 P(§

S3 CP | nore | benign | malignant

no 0.768 0.024 0.008
light 0.132 0.012 0.006
heavy 0.035 0.010 0.005

58

Marginali zation

B Cb |nore |benign imalig | tota
no 0.768/ 0.024/ 0.008 .80
light 0132 0012| 0006 .15| -p(smoke)
heavy 0035 0.010;f 0.005f .05

total

0935 0.046| 0.019

%/—/

P(Cancer)

Basic Inference

@-@—-0

P(b) = SP(a, b)= SP(b| a) P(a)
T a a

P(c) = SP(c| b) P(D
P(c) = & P(a, b, c)= bSa P(c| b) P(b| a) P(a)
= $P(c|b) SPb|a) P@)
|
P(b)

60
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Inferencein trees

P() =S P(x| y1, ¥2) Py, ¥2)
because of independence of Y;, Y,:
= 2 P11, ¥2) Plys) P(y,)
172

Polytrees

n A network issingly conreded (apaytreg
if it comajn§ no undreded loogs.

&

Theorem: Inferencein asingly conreded
network can be dorein linea time*.

Mainidea in variable dimination, reed only maintain
distributions over single nodes.

* in network sizeincluding table sizes. 62

The problem with loops

P(o)] 05|
clc c

P(r)j0.99[0.01

(]
O

P(s)jo.01/0.99

deterministic or

Thegrassisdry only if norain and ro sprinklers.

P@=P({,9~0

The problem with loops contd.

0 0
P@= P@GIr, 9P 9+P@|r9Pr9
+PG|T,9) P(7,9) + PG|T, 9 P(T, 9
0 1
=P, ~0
7 P(7) P(§ ~0.5-05= 0.25

problem =

Variable elimination
@ PO =SPc|b)SPb|a) P
== —

® P(A) PB|A P(b)
N S

(5]
P(B, A—[SD ®) @P]‘(/m B)
P(C, B) P(C)

Inference as variable dimination

n A factor over X isafunctionfrom val(X) to
numbersin [0,1]:
u A CPT isafactor
u A joint distributionis also a factor

n BN inference:
u fadors are multiplied to give new ones
u variablesin fadors summed ou

n A variable can be summed ou as ©onasall
fadors mentioning it have been multiplied.

66

11



Variable Elimination with loops

P(A) P(G) P(S]AG)

P(E] A)

P(A,G,S)—»lg‘pP(A,S—’@ PAES
e _wies

P(L|C) P(C,L)—»@ P(L)

Complexity is exporential in the size of the factors

Join trees*

A join treeis apartialy precompil ed factorization

* akajunction trees, Lauritzen-Spiegel halter, Hugin alg., ... o

Exploiting Structure

Idea explicitly decompose nodes

(Burglary) [Earthquake]

Noisy or:

[ [ Motion sensed J={ Wire Move

deterministic or

Noisy-or decomposition

Smaller families
= Smaller factors
= Faster inference -

Inference with continuous variables

n Gaussian networks: polynomial time inference
regardless of network structure

n Condtional Gaussians:
u discrete variables cannot depend on continuous

Wind
Speed Smoke
Concentration

L&

N(a-w+b.,s7)

n These techniques do not work for general hybrid
networks.

Computational complexity

n Theorem: Inferencein amulti-conreced
Bayesian network is NP-hard.

Boolean 3CNF formula f = (uUvVUw)U (GUW Uy)

Probability (‘E) = 1/2" - # satisfying assignments of f

12



Stochastic ssmulation

Earthquake
[Alarm)

=c¢ [Newscast el e

belbe[belbe
P@@)o.98| 0.7 0.01

Likelihood weighting
Earthquake)

=c |Newscast

B E A C N|weight
beacn| 08

weight of samples with B=b

=== P(ble) =
b e 80 095 ®l9 total weight of samples

74

005}
BEACN
Beaecr = # of live samples with B=b
Samples: e (blc) total # of livesamples
Other approaches

n Seach based techniques
u seach for high-probability instantiations
u useinstantiations to approximate probabiliti es
n Structural approximation
u simplify network
n eliminate elges, nodes
n abstrad node values
n simplify CPTs
u doinferencein simplified network

76

Course Contents

n Conceptsin Probability

n Bayesian Networks

n Inference

» Decison making

n Learning retworks from data
n Reasoning ower time

n Applicaions

Decision making

n Decisions, Preferences, and Utility functions
n Influence diagrams
n Vaue of information

78
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Decision making

n Decision- an irrevocable dlocation of domain
resources

n Decision should be made so as to maximize
expeded uility.

n View dedsion makingin terms of
u Beliefs'Uncertainties
u Alternatives/Decisions
u Objedives/Utiliti es

A Decision Problem

Should | have my party inside or outside?

dy  Regret
in
wet  Reliewved
dy__ perfed!
out
wel  Disaster

80

Vaue Function

n A numericd score over al possible states of
the world.

Location?|Weather? Value
in dry $50
in wet $60
out dry $100
out wet $0

Preference for Lotteries

82

Desired Properties for
Preferences over Lotteries

If you prefer $100to $0 and p < g then

(always)

Expected Utility
Properties of preference b
existence of function U, that satisfies:

iff

SpUx) <  SqUy)

14



Some properties of U

-»-

p Ul monetary payoff

Attitudes towards risk
u U($500)
u()
0 500 1000 $ reward

U convex risk averse
U concave risk seekin
U linea risk neutral

Certain equivalent
insurance/risk premium

86

Are people rational ?

02 U($40K) > 0.25« U($30K)
0.8+U($40k) > U($30K)

08+ UB40K) < U$30K

Multi-attribute utilities
(or: Money isn't everything)
n Many aspects of an outcome combine to
determine our preferences.
u vacation planning: cogt, flyingtime, beach quelity,
food quality, ...
u medicd decision making: risk of deeh (micromort),
quality of life (QALY), cost of treatment, ...
n For rational dedsion making, must combine all
relevant fadors into single utility function.

Maximizing Expected Utility
U(Regret)=.632

U(Relieved)= 699

U(Perfed)=.865

U(Disaster ) =0
choase the adion that maximizes expeded utility

EU(in) = 0.7x632+ 0.3 X.6% = .652

=) Choosein
EU(out) = 0.7 x.865+ 0.3x0= .605

88

Influence Diagrams

T am
?

90

15



Decision Making with Influence
Diagrams

Cdl?
Neiahbor Phoned

No Phone Call

Expeded Utility of this pdicy is 100

Vaue-of-Information

n What isit worth to get ancther piece of
information?

n What is the increase in (maximized)
expeded utility if | make adedsionwith an
additional pieceof information?

n Additional information (if free) cannot make
you worse off.

n Thereisno value-of-informationif youwill
not change your decision.

92

Vaue-of-Informationin an
Influence Diagram

How much better
can we dowhen

thisarcis here? @
d

Vaue-of-Informationis the
increase in Expeded Utility

\

Phonecdl ?|Newscast? |Go Home?
Yes Quake No

Yes No Quake Yes

No Quake No
No No Quake |No a

Expeded Utility of thispdicy is112.5

94

Course Contents

n Conceptsin Probability

n Bayesian Networks

n Inference

n Decision making

» Learning retworks from data
n Reasoning ower time

n Applicaions

Learning retworks from data

n Thelearning task

n Parameter learning
u Fully observable
u Partially observable

n Structure learning
n Hidden variables

96
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BEACN
beacn
b eacn

Input: training data

Output: BN modeling daa

n Inpu: fully or partially observable data cases?
n Output: parameters or also structure?

Maximum likelihood

n Inpu: aset of previous coin tosses
u Xy, Y X, ={H, T,H,H,H, T, T,H, .. ,H}

h heads, t tails
n Goal: estimate g

n Thelikelihood P(X,, ¥4 X,| q) = g" (1-q)!
n The maximum likelihood solutionis:

*:L
h+t

Parameter leaning: one variable

n Unfamiliar coin:
u Let g=biasof coin (long-runfraction o heads)
n If ¢ known (given), then
u P(X=heads| q) = q
n Different coin tosses independent given g
P P(Xy, ¥a X,19) = g" (1-9)!
h heads, t tails

98

Bayesian approach

Uncertainty abou g b distribution ower its values

P(q)

0 0.2 04 0.6 0.8 1

¥ q ¥
P(X =head9 = OP(X = heads|q)P(q)dq = ¢y P(q) dqoo

Conditioning on deta

h heads, t tail

D
P(@) w———> P(q|D) uP(q)P(D]q)
=P(q) " (1-q)'

Beta(l,1) ==

Good mrameter distribution: =
Betaa,, a,) K
qﬁh'l(l_ q)at-l

Beta(10,10) ==

0 02 04 06 08 1 0 02 04 06 08 1

“ Dirichlet distribution generali zes Betato nan-binary variables.  ,

17



General parameter learning

n A multi-variable BN is compased of several
independent parameters (“coins”).

hreeparameters:
- Teep
An a2 Gaya

n Can use same techniques as one-variable
caseto learn each ore separately
Max likelihood estimate of gz would be:
. #data cases with b, a
G pa™ ~ #datacaseswitha
108

Partially observable data

BEACN Burglary Earthquake|
b ? 2

beac?l p—> (Alarm)
e

n Fill in missing data with “expected” value
u expeded = distribution ower possible values
u use “best guess’ BN to estimate distribution

104

I ntuition

n Infully observable cae:

G o= #data caseswith n e _ Sl(n,e| d)
nle™  #dat, ithe ~

1 ifE=ein daacased
) = 1
I(e] dl) 0 otherwise

n In partially observable cae | is unknown.
Best estimate for | is: f(n,e|dj) =P. (n,eld;)

Problem: ¢g* unknown.

105

Expectation Maximization (EM)
Reped :
n Expectation (E) step
u Use aurrent parameters q to estimatefilled in data.
f(neld,) =P (neld)
n Maximization (M) step
u Usefilled in datato do max likelihood estimation

Structure learning

Goal:
find“good BN structure (relative to data)

Solution:
do heuristic search over space of network
structures.

= :éif(n,eld])
-WICTH)
n Set: g:=q
until convergence.
Search space

Space = network structures
Operators = add/reverse/del ete elges

< [
N/

LT g S L%,
B

108
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Heuristic search

Use scoring function to doheuristic search (any algorithm).
Greedy hill-climbing with randomness works pretty well .

Scoring
n Fill in parameters using previous techniques
& score completed networks.
n One possibility for score:
likelihood function: Score(B) = P(data | B) !

Example: X, Y independent coin tosses
typicd data = (27 h-h, 22 ht, 25t-h, 26t-t)

Maximum likelihood network structure:
Max. likelihood network typically fully conneded

Thisisnot surprising: maximumlikeihood dways overfits/s |

Better scoring functions

n MDL formulation: balancefit to data and
model complexity (# of parameters)

Score(B) = P(data | B) - model complexty

n Full Bayesian formulation
u prior on network structures & parameters
u more parameters b higher dimensional space
u get balance dfed as a byproduct*

* with Dirichlet parameter prior, MDL is an approximation

to full Bayesian score. m

Hidden variables

n There may be interesting variables that we
never get to observe:
u topic of adocument in information retrieval;
u user'scurrent task in orline help system.
n Our learning algorithm shoud
u hypothesizethe existence of such variables;
u lean an appropriate state spacefor them.

112

113

adual data

19



Bayesian clustering (Autoclass)

nave Bayes model:

(hypotheticd) class variable never observed
if we know that there aek classes, just run EM
leaned classes = clusters

Bayesian analysis all ows us to choose k, trade off
fit to data with model complexity

e 4 1 o

115

E

distributions

Resulting cluster

Detecting hidden variables

n Unexpected correlations= hidden variables.

Hypothesized model Data model
Cholesterolemia Cholesterolemia
Test]] Test3 Testo}>(Test3

L A
Cholesterolemia Hypathyroid

aCorred® model -

117

Course Contents

n Conceptsin Probability

n Bayesian Networks

n Inference

Decision making

Learning retworks from data
» Reasoning ower time
Applicaions

|

|

v

fn |

Reasoning over time

n Dynamic Bayesian networks
n Hidden Markov models
n Decision-theoretic planning
u Markov dedsion poblems
u Structured representation d actions
u The qualificaion problem & the frame problem
u Causality (and the frame problem revisited)

119

n Markov property:
u past independent of future given current state;
u acondtional independence aumption;
u implied by fact that there are no arcst® t+2.

120
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Dynamic Bayesian networks

n State described viarandam variables.

n Each variable depends only onfew others.

Hidden Markov moddl

n An HMM isasimple model for apartially
observable stochastic domain.

State transition
model
Observaion
model

Hidden Markov models (HMMs)

Partidly observable stochastic environment:

n Mohilerobats: 015

u states =locaion

u observations = sensor input
n Speech recogrition: Io.a’

u states = phonemes

u observations = amustic signal
n Biologicd sequencing:

u states = protein structure

u observations = amino acids

123

HMMs and DBNs

n HMMsarejust very smple DBNSs.
n Standard inference & | earning algorithms for
HMMs are instances of DBN algorithms
u Forward-backward = polytree
u Baum-Welch = EM
u Viterbi = most probable explanation.

124

Acting uncr uncertainty

Markov Dedsion Problem (MDP)
agent adion model -,
observes

state

n Overal utility = sum of momentary rewards.
n Allowsrich preference mode, e.g.:

rewards corresponding _ {+100 goal states

to °get to goal asap® -1 other states

125

Partiall y observable MDPs

agent observes
Obs, not state ™

n The optimal adion at time t depends onthe
entire history of previous observations.

n Instead, adistribution over State(t) suffices.

126
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Structured representation

[ Position(t) Position(t+1) ]
Preconditions A Effeds

Move: >[Diredion(t)}"......» Diredion(t+1)

(Holding(®)}------ »(Holding(t+1))

(Position(t) )-->{ Position(t+1) ]

Turn: (Diredion(t)—»{Diredion(t+1)

(Holding(®)}----- »(Holding(t+1) ]

Probabili stic adion model
« allows for exceptions & qudlificaions;

* persistence arcs. a solution to the frame problem.
127

Causdlity
n Modeling the effects of interventions

n Observing vs. setting® avariable
n A form of persistence modeling

128

Causal Theory

Distributor Cap

Cold temperatures can cause
the distributor cap to
become cradked.

If the distributor cap is
cracked, then the car is less
likely to start.

129

Setting vs. Observing

Distributor Cap

The car does not start.
Will it start if we
replacethe distributor?

130

Predicting the dfects of
interventions

Distributor Cap

The car does not start.
Will it start if we
replacethe distributor?

What is the probabilit y
that the ca will start if |
replacethe distributor

cgp?

M echanism Nodes

M gart Digributor  Starts?
m Always Starts ~ Cradked Yes
Always Starts ~ Normal Yes
Never Starts Craded No
@ Never Starts Normal No
Normal Cradked No
@ Normal Normal Yes
Inverse Cradked Yes
Inverse Normal No
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Persistence

Pre-adion Post-adion

........... .. @ 7z iitr:?]al
wmi%éme .

Observed
Abnormal

Asaumption:The mechanism relating Dist to Sart is
unchanged by repladng the Distributor.
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Course Contents

n Conceptsin Probability

n Bayesian Networks

n Inference

n Decision making

n Learning retworks from data
n Reasoning ower time

» Applications

134

Applications

n Medicd expert systems

u Pathfinder

u Parenting MSN
n Fault diagnosis

u RicohFIXIT

u Decision-theoretic troubleshoating
n Vista
n Collaborative filtering

135

Why use Bayesian Networks?

n Explicit management of uncertainty/tradeoffs
n Moduarity implies maintainability
n Better, flexible, and robust recommendation

strategies
= Y

- Q.
Ia

=]
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Pathfinder

n Pathfinder is one of the first BN systems.
n It performs diagnasis of lymph-node diseases.
n It dedswith over 60 diseases and 100 findings.

n Commerciaized by Intellipath and Chapman
Hall publishing and applied to about 20 tissue

types.

Studies of Pathfinder Diagnastic
Performance

n Nave Bayes performed considerably better
than certainty fadors and Dempster-Shafer
Belief Functions.

n Incorred zero probabiliti es caused 10% of
cases to be misdiagnosed.

n Full Bayesian network model with feaure
dependencies did best.

138
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Commercial system: Integration

n Expert System with advanced diagnastic capabiliti es
u uses key features to form the diff erential diagnosis
u recommends additional feaures to nerrow the differential
diagnosis
u recommends features needed to confirm the diagnosis
u explains corred and incorred dedsions
n Video atlases and text organized by organ system
n Carousel Mode® to build customized lectures

n Anatomic Pathdogy Information System

139

On Parenting: Seleding problem

n Diagnastic indexing for Home
Health site on Microsoft Network

n Enter symptoms for pediatric
complaints

n Recommends multimedia content

140

On Parenting : MSN

Origina Multiple Fault Model

141

Single Fault approximation

142

On Parenting: Seleding problem

143

Performing dagnosis/indexing
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RICOH Fixit

n Diagnastics and information retrieval

145

FIXIT: Ricoh copy machine

146

Online Troubleshooters

147

Define Problem

148

Gather Information

Get Recommendations
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Vista Project: NASA Misson

Control

Dedsiontheoretic methods for display for high-stakes agrospace
dedsions

f/ﬁ

—>

151

Costs & Benefits of Viewing
Information

Decision quelity —»~

Quantity of relevant information ——

Status Quo at Mission Control

Time-Critical Decision Making

. Consideration of timedelay in temporal process

) 4

& el

Simplification: Highlighting
Decisions
n Variable threshald to control amount of
highlighted information

Ocygen 15,6 14.2

Fuel Pres 10.5 11.8
Chamb Pre s 5.4 4.8
He Pres 17.7 147
Delta v 333 633

Ocygen  10.2 10.6
Fuel Pres 12.8 12.5
Chanb Pres 0.0 0.0
He Pres 15,8 15.7
Deltav 32.3 63.3

¢

Simplification: Highlighting
Decisions
n Variable threshold to control amount of
highlighted information

Oxygen 15.6 14.2

Fuel Pres 10.5 11.8
Chamb Pre s 5.4 4.8
He Pres 17.7  14.7
Delta v 333 633

Ocygen  10.2  10.6
Fuel Pres 12.8 12.5
ChanbPres 0.0 0.0
He Pres 158 15.7
Deltav 32.3 63.3

-
i
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Simplification: Highlighting
Decisions
n Variable threshdd to control amount of
highlighted information

Oxygen 15.6 14.2

Fuel Pres 10.5 11.8
Chamb Pre s 5.4 4.8
He Pres 17.7 14.7
Delta v 333 633

Ocygen  10.2 10.6
Fuel Pres 12.8 12.5

ChanbPres 0.0 0.0
He Pres 15.8 15.7
Del tav 32.3 63.3

X

What is Coll aborative Filtering?

n A way to find cod websites, news gories,
music atists etc

n Uses data on the preferences of many users,
not descriptions of the content.

n Firefly, Net Perceptions (GroupLens), and
others off er thistechnd ogy.

158

Bayesian Clustering for
Collaborative Filtering

n Probabilistic summary of the data

n Reduces the number of parametersto
represent a set of preferences

n Providesinsight into usage patterns.
n Inference:

P(Liketitlei | Liketitle], Liketitle k)

159

Applying Bayesian clustering

| class1 class2
titlel p(like)=0.2  p(like)=0.8
title2 p(like)=0.7  p(like)=0.1

title3 p(like)=0.99 p(like)=0.01

160

MSNBC Story clusters
Readers of commerce and Readers of top promoted
technology stories (36%): stories (29%):
n E-mail delivery isnGt exadly e (SLCIeS AT Son
guaranteed n Israd, Pelegtinians Agree To
n Shoud you buy aDVD player? Direct Talks
n Pricelow, demand high for n  Fuhrman Pleads Innocent To
Nintendo Perjury.

Sports Readers (19%): Realers of 2Softer® News (12%):

n Umpsrefusing to work isthe n Thetruth about what things cost
right thing n  Fuhrman Pleads Innocent To

n Cowboys are reborn in win over Perjury
eagles n Real Astrology

n Did Orioles pend money wisely?

Top 5shows by user class

Class1 Class2 Class3
- Power rangers - Young and restless - Tonight show
- Animaniacs - Bold and the beautiful - Conan O'Brien
- X-men - Asthe world turns - NBC nightly news
- Tazmania - Priceisright - Later with Kinnea
- Spider man - CBS eve news - Seinfeld

Class4 Class5

- 60 minutes - Seinfeld

- NBC nightly news - Friends

- CBSevenews - Mad about you

- Murder she wrote -ER

- Matlock - Frasier
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Richer moddl

163

What's old?

Decision theory & probability theory provide:

n principled models of belief and preference
n techniquesfor:
u integrating evidence (condtioning);
u optimal dedsion making (max. expeded utility);
u targeted information gathering (value of info.);
u parameter estimation from data.

164

What' s new?

Bayesian networks exploit domain structure to allow
compact representations of complex models.

Knowledge

Acquisition i

Leaning
(

Inference 15

What'sin our future?

n Better modelsfor:
u preferences & utiliti es;
u not-so-precise numerica probabiliti es. Q
n Inferring causality from data.
n More expressive representation languages:
u structured domains with multi ple objeds;
u levels of abstraction;
u reasoning about time;
u hybrid (continuous/discrete) models.

Some Important Al Contributions

n Key technology for diagnasis.

n Better more coherent expert systems.

n New approach to planning & action modeling:
u planning wsing Markov decision problems;
u new framework for reinforcement leaning;

u probabili stic solution to frame & qualification
problems.

n New techniques for leaning models from data.
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