Tutorial on Bayesian Networks

Jack Breese \& Daphne Koller

First given as a AAAI'97 tutorial.

Overview

Decision-theoretic techniques

- Explicit management of uncertainty and tradeoffs
- Probability theory
- Maximization of expected utility
- Applications to AI problems
- Diagnosis
- Expert systems
- Planning
- Learning

Science- AAAI-97

- Model Minimization in Markov Decision Processes
- Effective Bayesian Inference for Stochastic Programs
- Learning Bayesian Networks from Incomplete Data
- Summarizing CSP Hardness With Continuous Probability Distributions
- Speeding Safely: Multi-criteria Optimization in Probabilistic Planning
- Structured Solution Methods for Non-Markovian Decision Processes

Applications

@COMPUTERWORLD

Microsoft' s cost-cutting helps users
04/21/97
A Microsoft Corp. strategy to cut its support costs by letting users solve their own problems using electronic means is paying off for users.In March, the company began rolling out a series of Troubleshooting Wizards on its World Wide Web site.

Troubleshooting Wizards save time and money for users who don' t have Windows NT specialists on hand at all times, said Paul Soares, vice president and general manager of Alden Buick Pontiac, a General Motors Corp. car dealership in Fairhaven, Mass

Teenage Bayes

[^0]

Course Contents

» Concepts in Probability

- Probability
- Random variables
- Basic properties (Bayes rule)
- Bayesian Networks
- Inference

■ Decision making

- Learning networks from data
- Reasoning over time
- Applications

Probabilities

■ Probability distribution $P(X \mid \xi)$

- X is a random variable
-Discrete
- Continuous
- ξ is background state of information

Discrete Random Variables

- Finite set of possible outcomes

$$
X \in\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}
$$

$P\left(x_{i}\right) \geq 0$
$\sum_{i=1}^{n} P\left(x_{i}\right)=1$
X binary: $P(x)+P(\bar{x})=1$

Continuous Random Variable

- Probability distribution (density function) over continuous values

$$
\begin{gathered}
X \in[0,10] \quad P(x) \geq 0 \\
\int_{0}^{10} P(x) d x=1 \quad P(x) \\
P(5 \leq x \leq 7)=\int_{5}^{7} P(x) d x
\end{gathered}
$$

More Probabilities

■ Joint

$$
P(x, y) \equiv P(X=x \wedge Y=y)
$$

- Probability that both $X=x$ and $\mathrm{Y}=\mathrm{y}$

Conditional

$$
P(x \mid y) \equiv P(X=x \mid Y=y)
$$

- Probability that $X=x$ given we know that $Y=y$

Rules of Probability

- Product Rule

$$
P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)
$$

- Marginalization

$$
\begin{aligned}
& P(Y)=\sum_{i=1}^{n} P\left(Y, x_{i}\right) \\
& X \text { binary: } P(Y)=P(Y, x)+P(Y, \bar{x})
\end{aligned}
$$

Bayes Rule

$P(H, E)=P(H \mid E) P(E)=P(E \mid H) P(H)$

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

Course Contents

- Concepts in Probability
»Bayesian Networks
- Basics
- Additional structure
- Knowledge acquisition
- Inference
- Decision making
- Learning networks from data
- Reasoning over time
- Applications

Bayesian networks

Basics

- Structured representation
- Conditional independence
- Naïve Bayes model
- Independence facts

Product Rule

■ $P(C, S)=P(C \mid S) P(S)$

$S \Downarrow \quad C \Rightarrow$	none	benign	malignant
no	0.768	0.024	0.008
light	0.132	0.012	0.006
heavy	0.035	0.010	0.005

Independence

Age and Gender are independent.
$P(A, G)=P(G) P(A)$
$P(A \mid G)=P(A) \quad A \perp G$
$P(G \mid A)=P(G) \quad G \perp A$
$P(A, G)=P(G \mid A) P(A)=P(G) P(A)$
$P(A, G)=P(A \mid G) P(G)=P(A) P(G)$

More Conditional Independence:

Naïve Bayes

More Conditional Independence:
Explaining Away

Exposure to Toxics and Smoking are independent

$$
E \perp S
$$

Exposure to Toxics is dependent on Smoking, given Cancer
$P(E=$ heavy $\mid C=$ malignant $)>$
$P(E=$ heavy $\mid C=$ malignant, $S=$ heavy $)$

General Product (Chain) Rule for Bayesian Networks

$$
\begin{gathered}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \boldsymbol{P a}_{i}\right) \\
\boldsymbol{P a}_{i}=\operatorname{parents}\left(X_{i}\right)
\end{gathered}
$$

Independence and Graph Separation

- Given a set of observations, is one set of variables dependent on another set?
■ Observing effects can induce dependencies.
■ d-separation (Pearl 1988) allows us to check conditional independence graphically.

Bayesian networks

- Additional structure
- Nodes as functions
- Causal independence
- Context specific dependencies
- Continuous variables
- Hierarchy and model construction

Nodes as functions

- A BN node is conditional distribution function
- its parent values are the inputs
- its output is a distribution over its values

Causal Independence

- Burglary causes Alarm iff motion sensor clear
- Earthquake causes Alarm iff wire loose
- Enabling factors are independent of each other

Fine-grained model

Context-specific Dependencies

- Alarm can go off only if it is Set
- A burglar and the cat can both set off the alarm
- If a burglar comes in, the cat hides and does not set off the alarm

Asymmetric dependencies

- Alarm independent of
- Burglary, Cat given \bar{s}
- Cat given s and b

Composing functions

Recall: a BN node is a function

- We can compose functions to get more complex functions.
- The result: A hierarchically structured BN.
- Since functions can be called more than once, we can reuse a BN model fragment in multiple contexts.

Bayesian Networks

- Knowledge acquisition
- Variables
- Structure
- Numbers

What is a variable?

Collectively exhaustive, mutually exclusive values

■ Values versus Probabilities

Clarity Test: Knowable in Principle

- Weather \{Sunny, Cloudy, Rain, Snow\}
- Gasoline: Cents per gallon
- Temperature $\{\geq 100 \mathrm{~F},<100 \mathrm{~F}\}$
- User needs help on Excel Charting \{Yes, No \}

■ User's personality \{dominant, submissive\}

Structuring

Do the numbers really matter?

■ Second decimal usually does not matter

- Relative Probabilities

Zeros and Ones
■ Order of Magnitude : 10^{-9} vs 10^{-6}

- Sensitivity Analysis

Course Contents

■ Concepts in Probability
Patterns of reasoning

- Bayesian Networks
» Inference
- Basic inference
- Exact inference

■ Exploiting structure

- Approximate inference
- Learning networks from data

Inference

- Reasoning over time
- Applications

Combined

Inference in Belief Networks

- Find $P(Q=q \mid \boldsymbol{E}=\boldsymbol{e})$
- Q the query variable
- \boldsymbol{E} set of evidence variables

$$
P(q \mid \boldsymbol{e})=\frac{P(q, \boldsymbol{e})}{P(\boldsymbol{e})}
$$

X_{l}, \ldots, X_{n} are network variables except Q, \boldsymbol{E}

$$
P(q, \boldsymbol{e})=\sum_{x_{l}, \ldots, x_{n}} P\left(q, e, x_{l}, \ldots, x_{n}\right)
$$

Basic Inference	
(A) \rightarrow (B)	
$P(b)=$?	

Product Rule

■ $P(C, S)=P(C \mid S) P(S)$

$S \Downarrow \quad C \Rightarrow$	none	benign	malignant
no	0.768	0.024	0.008
light	0.132	0.012	0.006
heavy	0.035	0.010	0.005

Marginalization					
$S \Downarrow C \Rightarrow$	none	benign	malig	total	P(Smoke)
no	0.768	0.024	0.008	. 80	
light	0.132	0.012	0.006	. 15	
heavy	0.035	0.010	0.005	. 05	
total	0.935	0.046	0.019		
$\underbrace{}_{P(\text { Cancer })}$					
					59

Basic Inference

$\underbrace{P(b)}=\sum_{a} P(a, b)=\sum_{a} P(b \mid a) P(a)$
$P(c)=\sum_{b} P(c \mid b) \xrightarrow[P(b)]{P}$

$$
P(c)=\sum_{b, a} P(a, b, c)=\sum_{b, a} P(c \mid b) P(b \mid a) P(a)
$$

$$
=\sum_{b} P(c \mid b) \underbrace{\sum_{a} P(b \mid a) P(a)}_{P(b)}
$$

Inference in trees

$$
P(x)=\sum_{y_{1}, y_{2}} P\left(x \mid y_{1}, y_{2}\right) P\left(y_{l}, y_{2}\right)
$$

because of independence of Y_{1}, Y_{2} :

$$
=\sum_{y_{1}, y_{2}} P\left(x \mid y_{1}, y_{2}\right) P\left(y_{l}\right) P\left(y_{2}\right)
$$

Polytrees

- A network is singly connected (a polytree) if it contains no undirected loops.

Theorem: Inference in a singly connected network can be done in linear time*.

Main idea: in variable elimination, need only maintain distributions over single nodes.

* in network size including table sizes.

The problem with loops contd.

$$
\begin{aligned}
& P(\bar{g})= \overbrace{P(\bar{g} \mid r, s)}^{0} P(r, s)+\overbrace{P(\bar{g} \mid r, \bar{s})}^{0} P(r, \bar{s}) \\
&+\underbrace{P(\bar{g} \mid \bar{r}, s)}_{0} P(\bar{r}, s)+\underbrace{P(\bar{g} \mid \bar{r}, \bar{s})}_{1} P(\bar{r}, \bar{s}) \\
&= P(\bar{r}, \bar{s}) \sim 0 \\
& \neq P(\bar{r}) P(\bar{s}) \sim 0.5 \cdot 0.5=0.25
\end{aligned}
$$

Inference as variable elimination

- A factor over \boldsymbol{X} is a function from $\operatorname{val}(\boldsymbol{X})$ to numbers in $[0,1]$:
- A CPT is a factor
- A joint distribution is also a factor
- BN inference:
- factors are multiplied to give new ones
- variables in factors summed out
- A variable can be summed out as soon as all factors mentioning it have been multiplied.

Exploiting Structure

Idea: explicitly decompose nodes

Inference with continuous variables

- Gaussian networks: polynomial time inference regardless of network structure
- Conditional Gaussians:
- discrete variables cannot depend on continuous

- These techniques do not work for general hybrid networks.

Computational complexity

■ Theorem: Inference in a multi-connected Bayesian network is NP-hard.
Boolean 3CNF formula $\phi=(u \vee \bar{v} \vee w) \wedge(\bar{u} \vee \bar{w} \vee y)$

Other approaches

- Search based techniques
- search for high-probability instantiations
- use instantiations to approximate probabilities
- Structural approximation
- simplify network
- eliminate edges, nodes

■ abstract node values

- simplify CPTs
- do inference in simplified network

Course Contents

■ Concepts in Probability

- Bayesian Networks
- Influence diagrams
- Value of information
- Inference

Decision making

» Decision making

- Learning networks from data
- Reasoning over time
- Applications

Decision making

■ Decision - an irrevocable allocation of domain resources

- Decision should be made so as to maximize expected utility.
■ View decision making in terms of
- Beliefs/Uncertainties
- Alternatives/Decisions
- Objectives/Utilities

A Decision Problem

Should I have my party inside or outside?

Value Function

Preference for Lotteries

Location?	Weather?	Value
in	dry	$\$ 50$
in	wet	$\$ 60$
out	dry	$\$ 100$
out	wet	$\$ 0$

Desired Properties for Preferences over Lotteries

(always)

Expected Utility

Properties of preference \Rightarrow existence of function U, that satisfies:

Are people rational?

Maximizing Expected Utility

choose the action that maximizes expected utility
$E U($ in $)=0.7 \cdot .632+0.3 \cdot .699=.652$
$E U($ out $)=0.7 \cdot .865+0.3 \cdot 0=.605$
Choose in

Multi-attribute utilities

(or: Money isn't everything)
Many aspects of an outcome combine to determine our preferences.

- vacation planning: cost, flying time, beach quality, food quality,
- medical decision making: risk of death (micromort), quality of life (QALY), cost of treatment, ..
- For rational decision making, must combine all relevant factors into single utility function.

Course Contents

- Concepts in Probability
- Bayesian Networks
- Inference
- Decision making
» Learning networks from data
■ Reasoning over time
- Applications

Value-of-Information

What is it worth to get another piece of information?

- What is the increase in (maximized) expected utility if I make a decision with an additional piece of information?
- Additional information (if free) cannot make you worse off.
-There is no value-of-information if you will not change your decision.

Learning networks from data

- The learning task
- Parameter learning
- Fully observable
- Partially observable
- Structure learning
- Hidden variables

The learning task

Input: training data

Output: BN modeling data

- Input: fully or partially observable data cases?

■ Output: parameters or also structure?

Parameter learning: one variable

- Unfamiliar coin:
- Let $\theta=$ bias of coin (long-run fraction of heads)
- If θ known (given), then
- $P(X=$ heads $\mid \theta)=\theta$
- Different coin tosses independent given θ $\Rightarrow \underbrace{P\left(X_{1}, \ldots, X_{n}\right.}_{h \text { heads, } t \text { tails }} \mid \theta)=\theta^{h}(l-\theta)^{t}$

Maximum likelihood

Input: a set of previous coin tosses
$-X_{l}, \ldots, X_{n}=\{\underbrace{\mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \ldots, \mathrm{H}}_{h \text { heads, } t \text { tails }}\}$
■ Goal: estimate θ
■ The likelihood $P\left(X_{l}, \ldots, X_{n} \mid \theta\right)=\theta^{h}(1-\theta)^{t}$

- The maximum likelihood solution is:

$$
\theta^{*}=\frac{h}{h+t}
$$

Bayesian approach

Uncertainty about $\theta \Rightarrow$ distribution over its values

General parameter learning

- A multi-variable BN is composed of several independent parameters ("coins").

Three parameters:
$\theta_{A}, \theta_{B \mid a}, \theta_{B \mid \bar{a}}$
■ Can use same techniques as one-variable case to learn each one separately

Max likelihood estimate of $\theta_{B \mid \bar{a}}$ would be:

$$
\theta_{B \mid \bar{a}}^{*}=\frac{\text { \#data cases with } b, \bar{a}}{\text { \#data cases with } \bar{a}}
$$

Partially observable data

Fill in missing data with "expected" value

- expected = distribution over possible values
- use "best guess" BN to estimate distribution

Intuition

■ In fully observable case:

$$
\begin{gathered}
\theta_{n \mid e}^{*}=\frac{\# \text { data cases with } n, e}{\# d a t a \text { cases withe }}=\frac{\sum_{j} I\left(n, e \mid d_{j}\right)}{\sum_{j} I\left(e \mid d_{j}\right)} \\
I\left(e \mid d_{j}\right)= \begin{cases}1 & \text { if } E=e \text { in data case } d_{j} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- In partially observable case I is unknown.

Best estimate for I is: $\hat{I}\left(n, e \mid d_{j}\right)=P_{\theta^{*}}\left(n, e \mid d_{j}\right)$
Problem: θ^{*} unknown.

Structure learning

Goal:

find "good" BN structure (relative to data)

Solution:

do heuristic search over space of network structures.

Expectation Maximization (EM)

Repeat:

- Expectation (E) step
- Use current parameters θ to estimate filled in data.

$$
\hat{I}\left(n, e \mid d_{j}\right)=P_{\theta}\left(n, e \mid d_{j}\right)
$$

- Maximization (M) step
- Use filled in data to do max likelihood estimation

$$
\tilde{\theta}_{n \mid e}=\frac{\sum_{j} \hat{I}\left(n, e \mid d_{j}\right)}{\sum_{j} \hat{I}\left(e \mid d_{j}\right)}
$$

Set: $\theta:=\tilde{\theta}$
until convergence.

Scoring

- Fill in parameters using previous techniques \& score completed networks.
- One possibility for score:
likelihood function: $\operatorname{Score}(B)=P($ data $\mid B)$
Example: X, Y independent coin tosses typical data $=(27 h-h, 22 h-t, 25 t-h, 26 t-t)$
Maximum likelihood network structure:

Max. likelihood network typically fully connected

Better scoring functions

$■$ MDL formulation: balance fit to data and model complexity (\# of parameters)

$$
\operatorname{Score}(B)=P(\text { data } \mid B)-\text { model complexity }
$$

- Full Bayesian formulation
- prior on network structures \& parameters
- more parameters \Rightarrow higher dimensional space
- get balance effect as a byproduct*
* with Dirichlet parameter prior, MDL is an approximation to full Bayesian score.

Hidden variables

- There may be interesting variables that we never get to observe:
- topic of a document in information retrieval;
- user's current task in online help system.

■ Our learning algorithm should

- hypothesize the existence of such variables;
- learn an appropriate state space for them.

Bayesian clustering (Autoclass)

naïve Bayes model:

- (hypothetical) class variable never observed
- if we know that there are k classes, just run EM
- learned classes = clusters
- Bayesian analysis allows us to choose k, trade off fit to data with model complexity

Detecting hidden variables

■ Unexpected correlations \Rightarrow hidden variables.
Hypothesized model
Data model

Correct" model

Course Contents

- Concepts in Probability

■ Bayesian Networks
■ Inference
■ Decision making

- Learning networks from data
» Reasoning over time
- Applications

Reasoning over time

Dynamic Bayesian networks

- Hidden Markov models

■ Decision-theoretic planning

- Markov decision problems
- Structured representation of actions
- The qualification problem \& the frame problem
- Causality (and the frame problem revisited)

Dynamic Bayesian networks

- State described via random variables.

■ Each variable depends only on few others.

Hidden Markov models (HMMs)

Partially observable stochastic environment:

- Mobile robots:
- states = location
- observations = sensor input
- Speech recognition:
- states $=$ phonemes

observations = acoustic signal
Biological sequencing:
- states = protein structure
- observations = amino acids

Hidden Markov model

- An HMM is a simple model for a partially observable stochastic domain.

HMMs and DBNs

HMMs are just very simple DBNs.
Standard inference \& learning algorithms for HMMs are instances of DBN algorithms

- Forward-backward = polytree
- Baum-Welch = EM
- Viterbi $=$ most probable explanation.

Causality

■ Modeling the effects of interventions
■ Observing vs. "Setting" a variable

- A form of persistence modeling

Setting vs. Observing

Course Contents

- Concepts in Probability
- Bayesian Networks
- Inference

■ Decision making

- Learning networks from data
- Reasoning over time
» Applications

Applications

■ Medical expert systems

- Pathfinder
- Parenting MSN

Why use Bayesian Networks?

■Explicit management of uncertainty/tradeoffs

- Modularity implies maintainability

■ Better, flexible, and robust recommendation

Pathfinder

- Pathfinder is one of the first BN systems.
- It performs diagnosis of lymph-node diseases.
- It deals with over 60 diseases and 100 findings.
- Commercialized by Intellipath and Chapman Hall publishing and applied to about 20 tissue types.

Studies of Pathfinder Diagnostic Performance

■ Naïve Bayes performed considerably better than certainty factors and Dempster-Shafer Belief Functions.

- Incorrect zero probabilities caused 10% of cases to be misdiagnosed.
- Full Bayesian network model with feature dependencies did best.

Commercial system: Integration

- Expert System with advanced diagnostic capabilities
- uses key features to form the differential diagnosis
- recommends additional features to narrow the differential diagnosis
- recommends features needed to confirm the diagnosis
- explains correct and incorrect decisions
- Video atlases and text organized by organ system

■ "Carousel Mode" to build customized lectures

- Anatomic Pathology Information System

On Parenting: Selecting problem

- Diagnostic indexing for Home Health site on Microsoft Network
- Enter symptoms for pediatric complaints
- Recommends multimedia content

Single Fault approximation

On Parenting: Selecting problem

Performing diagnosis/indexing

FIXIT: Ricoh copy machine

Gather Information Troubleshooting Wizards

Print Troubleshooter
this table tracks your status in the
Problem: Print Output

Are you printing from an MS-DOS-based or a Windows-based application?
Get Recommendations
Print Troubleshooter

Printing over Network: $\quad \subset$ No (Local printer) 6 Yes (Network printer) C Un
Printer Driver Set Offine: © Online \subset Unknown
Is your printer turned on and on-line?

1. Make sure the printer is properly plugged into a power outlet.
2. Tum on the printer's power switch.

Make sure the printer is on line. Most printers have an On Line button with a li
C I am printing from MS-DOS or from an MS-DOS application
you need more information on any of these steps, consult your printer's manual.
c I am printing from a Windows applicatio

- I dont want to do this now.

If you need more information on any of these steps,
C Yes, my printer is on, but it still wont print.
Next

Costs \& Benefits of Viewing Information

Simplification: Highlighting Decisions
■ Variable threshold to control amount of highlighted information

Bayesian Clustering for Collaborative Filtering

- Probabilistic summary of the data

Reduces the number of parameters to represent a set of preferences
Provides insight into usage patterns.

- Inference:

P(Like title i| Like title j, Like title k)

Applying Bayesian clustering

160

Top 5 shows by user class

Class 1	Class 2	Class 3
- Power rangers	- Young and restless	- Tonight show
- Animaniacs	- Bold and the beautiful	- Conan O'Brien
- X-men	- As the world turns	- NBC nightly news
- Tazmania	- Price is right	- Later with Kinnear
- Spider man	- CBS eve news	- Seinfeld
Class 4 Clas		
-60 minutes - Se		
- NBC nightly news - Fr		
- CBS eve news -		bout you
- Murder she wrote \quad ER		
- Matlock - F		

What's old?

Decision theory \& probability theory provide:

- principled models of belief and preference;
- techniques for:
- integrating evidence (conditioning);
- optimal decision making (max. expected utility);
- targeted information gathering (value of info.);
- parameter estimation from data.

What's new?

Bayesian networks exploit domain structure to allow compact representations of complex models.

Some Important AI Contributions

■ Key technology for diagnosis.

- Better more coherent expert systems.
- New approach to planning \& action modeling: - planning using Markov decision problems;
- new framework for reinforcement learning;
- probabilistic solution to frame \& qualification problems.
- New techniques for learning models from data.

What's in our future?

- Better models for:
- preferences \& utilities;
- not-so-precise numerical probabilities.
- Inferring causality from data.
- More expressive representation languages:
- structured domains with multiple objects;
- levels of abstraction;
- reasoning about time;
- hybrid (continuous/discrete) models.

[^0]: Microsoft Researchers Exchange Brainpower with Eighth-grader

 Teenager Designs AwardWinning Science Project

 For her science project, which she called "Dr. Sigmund Microchip," Tovar wanted to create a computer program to diagnose the probability of certain personality types. With only answers from a few questions, the program was able to accurately diagnose the correct personality type

