

Overview

- Introduction

- Parameter Estimation
- Model Selection
-Structure Discovery
- Incomplete Data
-Learning from Structured Data

Example: "ICU Alarm" network

Domain: Monitoring Intensive-Care Patients
-37 variables

- 509 parameters ...instead of 2^{54}

Inference

- Posterior probabilities

- Probability of any event given any evidence
- Most likely explanation
- Scenario that explains evidence \bullet Rational decision making
- Maximize expected utility
- Value of Information
- Effect of intervention

Why learning?

Knowledge acquisition bottleneck

Knowledge acquisition is an expensive process

- Often we don't have an expert

Data is cheap

- Amount of available information growing rapidly
- Learning allows us to construct models from raw data

Why Learn Bayesian Networks?
- Conditional independencies \& graphical language
capture structure of many real-world distributions
- Graph structure provides much insight into domain
- Allows "knowledge discovery"
Learned model can be used for many tasks
- Supports all the features of probabilistic learning
- Model selection criteria
Dealing with missing data \& hidden variables

\quad Overview
$*$

Likelihood Function	
\bullet Assume i.i.d. samples	
\bullet Likelihood function is	
$L(\Theta: D)=\prod_{m} P(E[m], B[m], A[m], C[m]: \Theta)$	

Likelihood Function

- By definition of network, we get
$L(\Theta: D)=\prod_{m} P(E[m], B[m], A[m], C[m]: \Theta)$

$=\prod_{m}\left(\begin{array}{l}P(E[m]: \Theta) \\ P(B[m]: \Theta) \\ P(A[m] \mid B[m], E[m]: \Theta) \\ P(C[m] \mid A[m]: \Theta)\end{array}\right)$

General Bayesian Networks

Generalizing for any Bayesian network:

$$
\begin{aligned}
L(\Theta & : D)=\prod_{m} P\left(x_{1}[m], \ldots, x_{n}[m]: \Theta\right) \\
& =\prod_{i} \prod_{m} P\left(x_{i}[m] \mid P a_{i}[m]: \Theta_{i}\right) \\
& =\prod_{i} L\left(\Theta_{i}: D\right)
\end{aligned}
$$

Decomposition

\Rightarrow Independent estimation problems

Bayesian Inference

- Represent uncertainty about parameters using a probability distribution over parameters, data
- Learning using Bayes rule

Example: Binomial Data

- Prior: uniform for θ in $[0,1]$
$\Rightarrow P(\theta \mid D) \propto$ the likelihood $L(\theta: D)$
$P(\theta \mid x[1], \ldots x[M]) \propto P(x[1], \ldots x[M \mid \theta) \cdot P(\theta)$
$\left(N_{H} N_{T}\right)=(4,1)$
- MLE for $P(X=H$) is $4 / 5=0.8$
\bullet Bayesian prediction is

$$
P(x[M+1]=H \mid D)=\int \theta \cdot P(\theta \mid D) d \theta=\frac{5}{7}=0.7142 \ldots
$$

Dirichlet Priors

\bullet Recall that the likelihood function is

$$
L(\Theta: D)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}
$$

\bullet Dirichlet prior with hyperparameters $\alpha_{1}, \ldots, \alpha_{k}$

$$
P(\Theta) \propto \prod_{k=1}^{K} \theta_{k}{ }_{k}-1
$$

\Rightarrow the posterior has the same form, with
hyperparameters $\alpha_{t}+N_{j}, \ldots, \alpha_{k}+N_{k}$

$$
P(\Theta \mid D) \propto P(\Theta) P(D \mid \Theta) \propto \prod_{k=1}^{K} \theta_{k}{ }^{\alpha_{k}-1} \prod_{k=1}^{K} \theta_{k}^{N_{k}}=\prod_{k=1}^{K} \theta_{k}^{\alpha_{k}+N_{k}-1}
$$

Dirichlet Priors (cont.)

- If $P(\Theta)$ is Dirichlet with hyperparameters $\alpha_{1}, \ldots, \alpha_{k}$

$$
P(X[1]=k)=\int \theta_{k} \cdot P(\Theta) d \Theta=\frac{\alpha_{k}}{\sum_{\ell} \alpha_{\ell}}
$$

- Since the posterior is also Dirichlet, we get

$$
P(X[M+1]=k \mid D)=\int \theta_{k} \cdot P(\Theta \mid D) d \Theta=\frac{\alpha_{k}+N_{k}}{\sum_{\ell}\left(\alpha_{\ell}+N_{\ell}\right)}
$$

Bayesian Nets \& Bayesian Prediction

- Priors for each parameter group are independent
- Data instances are independent given the unknown parameters

Bayesian Nets \& Bayesian Prediction

-We can also "read" from the network:
Complete data \Rightarrow
posteriors on parameters are independent

- Can compute posterior over parameters separately!

Learning Parameters: Summary

- Estimation relies on sufficient statistics
- For multinomials: counts $N\left(x_{i j} p a_{j}\right)$
- Parameter estimation

$$
\begin{gathered}
\hat{\theta}_{x_{i} \mid p a_{i}}=\frac{N\left(x_{i}, p a_{i}\right)}{N\left(p a_{i}\right)} \\
\text { MLE }
\end{gathered} \quad \tilde{\theta}_{x_{i} \mid p a_{i}}=\frac{\alpha\left(x_{i}, p a_{i}\right)+N\left(x_{i}, p a_{i}\right)}{\alpha\left(p a_{i}\right)+N\left(p a_{i}\right)} \quad \begin{gathered}
\text { Bayesian (Dirichlet) }
\end{gathered}
$$

- Both are asymptotically equivalent and consistent
\bullet Both can be implemented in an on-line manner by accumulating sufficient statistics

Overview

- Introduction
- Parameter Learning
- Model Selection
- Scoring function
- Structure search
- Structure Discovery
- Incomplete Data
- Learning from Structured Data

Bayesian Score

Likelihood score: $L(G: D)=P\left(D / G, \hat{\theta_{G}}\right)$
Bayesian approach:

- Deal with uncertainty by assigning probability to all possibilities

$$
P(G \mid D)=\frac{P(D \mid G) P(G)}{P(D)}
$$

Marginal Likelihood: Multinomials

Fortunately, in many cases integral has closed form
$\rightarrow P_{(\Theta)}$ is Dirichlet with hyperparameters $\alpha_{1}, \ldots, \alpha_{k}$
$\bullet D$ is a dataset with sufficient statistics N_{f}, \ldots, N_{k}
Then

Likelihood Score for Structure

$\ell(G: D)=\log L(G: D)=M \sum_{i}\left(I\left(X_{i} ; P a_{i}{ }^{6}\right)-H\left(X_{i}\right)\right)$

Mutual information between
X_{i} and its parents
\bullet Larger dependence of X_{i} on $\mathrm{Pa}_{i} \Rightarrow$ higher score

- Adding arcs always helps
- $I(X ; Y) \leq I(X ;\{y, Z\})$
- Max score attained by fully connected network
- Overfitting: A bad idea...

Marginal Likelihood: Bayesian Networks

- Network structure determines form of marginal likelihood

Network 1:
$\begin{array}{ll}\text { Two Dirichlet marginal likelihoods } & X \\ P(& \text {, Integral over } \theta_{\mathrm{X}} \\ P(& \text { Integral over } \theta_{\mathrm{Y}}\end{array}$

Marginal Likelihood for Networks

The marginal likelihood has the form:

$N(.$.$) are counts from the data$
α (..) are hyperparameters for each family given \mathbf{G}

Structure Search as Optimization

Input:

- Training data
- Scoring function
- Set of possible structures

Output:

- A network that maximizes the score

Key Computational Property: Decomposability:

$$
\operatorname{score}(G)=\sum \operatorname{score}(\text { family of } X \text { in } G)
$$

Learning Trees

- Let $p(i)$ denote parent of X_{i}
- We can write the Bayesian score as
$\operatorname{Score}(G: D)=\sum \operatorname{Score}\left(X_{i}: P_{a}\right)$

Score $=$ sum of edge scores + constant

Learning Trees

\bullet Set $w(j \rightarrow i)=\operatorname{Score}\left(X_{j} \rightarrow X_{i}\right)-\operatorname{Score}\left(X_{i}\right)$

- Find tree (or forest) with maximal weight
- Standard max spanning tree algorithm $-O\left(n^{2} \log n\right)$

Theorem: This procedure finds tree with max score

Beyond Trees

When we consider more complex network, the problem is not as easy

- Suppose we allow at most two parents per node
- A greedy algorithm is no longer guaranteed to find the optimal network
- In fact, no efficient algorithm exists

Theorem: Finding maximal scoring structure with at most k parents per node is NP-hard for $k>1$

Heuristic Search

- Define a search space:
- search states are possible structures
- operators make small changes to structure
- Traverse space looking for high-scoring structures
- Search techniques:
- Greedy hill-climbing
- Best first search
- Simulated Annealing
- ...

Local Search

- Start with a given network
- empty network
- best tree
- a random network
- At each iteration
- Evaluate all possible changes
- Apply change based on score
-Stop when no modification improves score

Local Search: Possible Pitfalls

- Local search can get stuck in:
- Local Maxima:
>All one-edge changes reduce the score
- Plateaux:
>Some one-edge changes leave the score unchanged
- Standard heuristics can escape both
- Random restarts
- TABU search
- Simulated annealing

Improved Search: Weight Annealing

- Standard annealing process:
- Take bad steps with probability $\propto \exp (\Delta$ score/t)
- Probability increases with temperature
- Weight annealing:
- Take uphill steps relative to perturbed score
- Perturbation increases with temperature

Perturbing the Score

- Perturb the score by reweighting instances
- Each weight sampled from distribution:
- Mean = 1
- Variance \propto temperature
- Instances sampled from "original" distribution
- ... but perturbation changes emphasis

Benefit:

- Allows global moves in the search space

Weight Annealing: ICU Alarm network
Cumulative performance of 100 runs of annealed structure search

Structure Search: Summary

- Discrete optimization problem
\bullet In some cases, optimization problem is easy
- Example: learning trees
- In general, NP-Hard
- Need to resort to heuristic search
- In practice, search is relatively fast (~ 100 vars in ~2-5 min):
>Decomposability
$>$ Sufficient statistics
- Adding randomness to search is critical

Overview

- Introduction
- Parameter Estimation
- Model Selection
- Structure Discovery
- Incomplete Data
- Learning from Structured Data

Structure Discovery

Task: Discover structural properties

- Is there a direct connection between X \& Y
- Does X separate between two "subsystems"
- Does X causally effect Y

Example: scientific data mining

- Disease properties and symptoms
- Interactions between the expression of genes

Discovering Structure

-Current practice: model selection

- Pick a single high-scoring model
- Use that model to infer domain structure

Problem

- Small sample size \Rightarrow many high scoring models
- Answer based on one model often useless
- Want features common to many models

Bayesian Approach

- Posterior distribution over structures
- Estimate probability of features
- Edge $X \rightarrow Y$
- Path $X \rightarrow \ldots \rightarrow Y$
- ...

MCMC over Networks

- Cannot enumerate structures, so sample structures

$$
P(f(G) \mid D) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(G_{i}\right)
$$

- MCMC Sampling
- Define Markov chain over BNs
- Run chain to get samples from posterior $P(G / D)$

Possible pitfalls:

- Huge (superexponential) number of networks
- Time for chain to converge to posterior is unknown
- Islands of high posterior, connected by low bridges

ICU Alarm BN: No Mixing

- 500 instances:

- The runs clearly do not mix

Fixed Ordering

Suppose that
\bullet We know the ordering of variables
 parents for \boldsymbol{X}_{i} must be in $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{i-1}$
Limit number of parents per nodes to $k \int$ networks
Intuition: Order decouples choice of parents

- Choice of $\operatorname{Pa}\left(X_{7}\right)$ does not restrict choice of $\operatorname{Pa}\left(X_{12}\right)$
Upshot: Can compute efficiently in closed form
\bullet Likelihood P(D \| २)
- Feature probability $P(f \mid D, \prec)$

Our Approach: Sample Orderings

We can write

$$
P(f \mid D)=\sum P(f \mid-, D) P(\prec \mid D)
$$

Sample orderings and approximate

$$
P(f \mid D) \approx \sum_{i=1}^{n} P\left(f \mid \prec_{i}, D\right)
$$

- MCMC Sampling
- Define Markov chain over orderings
- Run chain to get samples from posterior $P(</ D)$

Mixing of MCMC runs

Application: Gene expression

Input:

- Measurement of gene expression under different conditions
- Thousands of genes
- Hundreds of experiments

Output:

- Models of gene interaction
- Uncover pathways

- Automatically constructed sub-network of highconfidence edges
- Almost exact reconstruction of yeast mating pathway

Incomplete Data

Data is often incomplete

- Some variables of interest are not assigned values

This phenomenon happens when we have

- Missing values:
- Some variables unobserved in some instances
- Hidden variables:
- Some variables are never observed
- We might not even know they exist

Incomplete Data

\bullet In the presence of incomplete data, the likelihood can have multiple maxima
$(H) \longrightarrow(D)$

Example:

- We can rename the values of hidden variable H
- If H has two values, likelihood has two maxima
- In practice, many local maxima

EM: MLE from Incomplete Data

- Use current point to construct "nice" alternative function - Max of new function scores \geq than current point

Expectation Maximization (EM)

\bullet A general purpose method for learning from incomplete data

Intuition:

- If we had true counts, we could estimate parameters
- But with missing values, counts are unknown
- We "complete" counts using probabilistic inference based on current parameter assignment
\bullet We use completed counts as if real to re-estimate parameters

Expectation Maximization (EM)

Expectation Maximization (EM)

Formal Guarantees:

$-L\left(\Theta_{r}: D\right) \geq L\left(\Theta_{0}: D\right)$

- Each iteration improves the likelihood
- If $\Theta_{L}=\Theta_{0}$, then Θ_{0} is a stationary point of $L(\Theta: D)$
- Usually, this means a local maximum

Expectation Maximization (EM)

Computational bottleneck:

\bullet Computation of expected counts in E-Step

- Need to compute posterior for each unobserved variable in each instance of training set
- All posteriors for an instance can be derived from one pass of standard BN inference

Incomplete Data: Structure Scores

Recall, Bayesian score:

$$
\begin{aligned}
& P(G \mid D) \propto P(G) P(D \mid G) \\
& \quad=P(G) P P(D \mid G, \Theta) P(\Theta \mid G) d \theta
\end{aligned}
$$

With incomplete data:

- Cannot evaluate marginal likelihood in closed form
-We have to resort to approximations:
- Evaluate score around MAP parameters
- Need to find MAP parameters (e.g., EM)

Summary: Parameter Learning with Incomplete Data

- Incomplete data makes parameter estimation hard
- Likelihood function
- Does not have closed form
- Is multimodal
-Finding max likelihood parameters:
- EM
- Gradient ascent
\bullet Both exploit inference procedures for Bayesian networks to compute expected sufficient statistics

Structural EM

Recall, in complete data we had

- Decomposition \Rightarrow efficient search

Idea:

- Instead of optimizing the real score...
- Find decomposable alternative score
- Such that maximizing new score
\Rightarrow improvement in real score

Structural EM
Recall, in complete data we had
\bullet Decomposition \Rightarrow efficient search
Idea:
• Instead of optimizing the real score...
\& Find decomposable alternative score
\bullet Such that maximizing new score
\Rightarrow improvement in real score

Structural EM

Idea:

- Use current model to help evaluate new structures

Outline:

- Perform search in (Structure, Parameters) space
- At each iteration, use current model for finding either
- Better scoring parameters: "parametric" EM step
or
- Better scoring structure: "structural" EM step

Phylogenetic Tree as a Bayes Net

- Variables: Letter at each position for each species
- Current day species - observed
- Ancestral species - hidden
- BN Structure: Tree topology
- BN Parameters: Branch lengths (time spans)

Main problem: Learn topology
If ancestral were observed
\Rightarrow easy learning problem (learning trees)

Overview

- Introduction
- Parameter Estimation
- Model Selection
- Structure Discovery
- Incomplete Data
- Learning from Structured Data

Bayesian Networks: Problem

- Bayesian nets use propositional representation
- Real world has objects, related to each other

Bayesian Networks: Problem

- Bayesian nets use propositional representation
- Real world has objects, related to each other

These "instances" are not independent!

Representing the Distribution

- Many possible worlds for a given university
- All possible assignments of all attributes of all objects
- Infinitely many potential universities
- Each associated with a very different set of worlds

Need to represent

 infinite set of complex distributions

Conclusion

\bullet Many distributions have combinatorial dependency structure

- Utilizing this structure is good
\bullet Discovering this structure has implications:
- To density estimation
- To knowledge discovery
- Many applications
- Medicine
- Biology
- Web

The END Thanks to	
- Gal Elidan - Lise Getoor - Moises Goldszmidt - Matan Ninio	- Dana Pe'er - Eran Segal - Ben Taskar
Slides will be av http://ww http://robotic	from: uji.ac.il/~nir/ ford.edu/~koller/

